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Abstract

The SemEval-2019 Task 12 is toponym resolu-
tion in scientific papers. We focus on Subtask
1: Toponym Detection which is the identifi-
cation of spans of text for place names men-
tioned in a document. We propose two meth-
ods: 1) sliding window convolutional neu-
ral network using ELMo embeddings (CNN-
ELMo), and 2) sliding window multi-Layer
perceptron using ELMo embeddings (MLP-
ELMo). We also submit a bi-directional
LSTM with Conditional Random Fields (bi-
LSTM) as a strong baseline given its state-
of-art performance in Named Entity Recogni-
tion (NER) task. Our best performing model is
CNN-ELMo with a F1 of 0.844 which was be-
low bi-LSTM F1 of 0.862 when evaluated on
overlap macro detection. Eight teams partici-
pated in this subtask with a total of 21 submis-
sions.

1 Introduction

Toponyms are textual spans of text identifying
geospatial locations. This can range from the
canonical name of populated places, such as “Lon-
don” to direct or indirect mentions of geographic
entities. The parsing of geographic locations from
unstructured text is considered an open challenge
due to domain diversity, place name ambiguity,
metonymic language and often limited leverag-
ing of context (Gritta et al., 2018). Many scien-
tific publications contain toponyms which can be
challenging to extract automatically. Specifically,
names of institutions and viruses often contain ge-
ographic references which may confuse the ex-
tractor. Often, the extractor needs to handle noisy
text parsed from PDF versions of scientific articles
which can introduce artifacts.

In Task 12, a toponym is defined to include
proper names and geographic entities but to ex-
clude indirect mentions of places and metonyms.

Additional discussion of the motivation and task
description is available at the task web site.1

2 Related Work

There is significant work in the area of toponym
detection (Matsuda et al., 2015; D. Lieberman
et al., 2010) and the closely related fields of named
entity recognition (NER) (Li et al., 2018) and en-
tity mention detection (EMD) (Shen et al., 2015)
with many different approaches. State-of-the-art
named entity detection models have historically
employed a combination of hand-crafted features,
rules, natural language processing (NLP), string-
pattern matching, and domain knowledge using
supervised learning on manually annotated cor-
pora (Piskorski and Yangarber, 2018). A common
approach to toponym detection has been to utilize
place name gazetteers which are directories of ge-
ographic names and their corresponding geoloca-
tions to perform string matching of place names in
text (D. Lieberman et al., 2010).

Contemporary approaches in entity detection
have utilized neural-based architectures. (Col-
lobert et al., 2011) propose a window-based,
multi-layer, dense feed-forward neural architec-
ture using word embeddings concatenated with
orthographic features and a gazetteer as an in-
put layer with a hard Tanh output layer for supe-
rior performance on a standard NER task. Huang
et al. (2015) utilise a bi-directional LSTM with
a sequential conditional random layer using a
gazetteer and Senna word embeddings to ob-
tain superior performance. Magge et al. (2018)
achieves state-of-the-art results in toponym de-
tection by utilizing a window-based deep neural
network, word embeddings trained on a domain-
specific corpus, orthographic features, and a
gazetteer.

1https://competitions.codalab.org/competitions/19948
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Table 1: Gold Standard Corpus Statistics

Documents Tokens Toponyms

Train 72 396,668 3,637
Valid 32 179,443 2,141
Test 45 253,159 4,616

Total 149 829,720 10,394

3 Data

A gold standard corpus, composed of 150 full
text journal articles in open access from PubMed
Central (PMC), is provided by the task organiz-
ers.2 Additional information can be found at Weis-
senbacher et al. (2017) for the general approach
followed by the task organizers for developing the
corpus. Table 1 highlights the gold standard cor-
pus statistics.

4 Approach

Our approach is motivated by the simplicity and
strong performance of windows-based approaches
on the NER and toponym task with the strong per-
formance of deep contextual embeddings on re-
lated NLP tasks. Two different neural based ap-
proaches are undertaken by the team: 1) sliding
windows convolutional neural network using deep
embeddings, and 2) sliding window multi-layer
perceptron using deep embeddings. The embed-
dings are composed of an ELMo contextual em-
bedding concatenated with hand-crafted features.

4.1 Embeddings
The ELMo embeddings (Gardner et al., 2018) are
learned functions of the internal states of a deep
bidirectional language model (biLM) that has been
pre-trained on the 1B Word Benchmark. These
vectors are developed from the concatenation of
each of the 1,024 length vector outputs from the
model for each token and are a function of the
complete input sentence.

For each token in the context of its sentence,
a vector representation is generated by concate-
nating the ELMo model embedding with the one-
hot encoding of orthographic features and an addi-
tional flag bit indicating if the token was contained
within the set of gazetteer tokens. This resulted in
a vector of length 3,081 for each token. A padding

2We are unable to successfully parse one of the documents
from the train set due to an encoding error

vector of all 0s was used for the sliding window
neural models.

4.2 Hand-crafted Features
Hand-crafted features were added as they slightly
improve model performance when compared to
using the ELMo embeddings alone for the input
layer to the neural models.

Orthographic Features: a one hot encoding is
assigned to each token based on its orthographic
structure: only numeric, all lower case alpha-
betic characters, all upper case alphabetic charac-
ters, title-case alphabetic characters, mixed case
(not title-case) alphabetic characters, alphabetic
characters with numeric, padding token, and the
“other” for the remaining tokens not matched by
previously listed features. Alphabetic characters
are UTF-8.

Gazeteer Features: a set of toponynm tokens
is generated from the entries in GeoNames.3 For
example, for the entry in Geonames,“Gulf of Mex-
ico”, the tokens “Gulf”, “of”, and “Mexico” are
added to the toponym set. This is used as a binary
feature for the presence of the parsed token in the
constructed Geonames token set.

4.3 Implementation details
The documents are parsed into sentences and tok-
enized using the open-source NLP library Spacy.4

Pre-trained embeddings are provided by
Pyysalo et al. (2013).5 which are generated from
Wikipedia, PubMed, and PMC texts using the
word2vec tool. They are 200-dimensional vectors
trained using the skip-gram model with a window
size of 5, hierarchical softmax training, and a
frequent word subsampling threshold of 0.001.
These vectors are used in the baseline and the
bi-LSTM with CRF models.

ELMo embeddings are generated using the Al-
lenNLP tool .6 The deep learning library Keras
2.2.1 7 is used for training the neural models. Ten-
sorflow 1.128 is the backend used for training and
evaluating all of the models attempted. In training
the models, the Adam optimizer in Keras is used.
Additional code and data will be available in an
on-line appendix.9

3https://www.geonames.org/export/
4https://spacy.io/
5http://bio.nlplab.org/
6https://github.com/allenai/allennlp/
7https://keras.io/
8https://www.tensorflow.org/
9 https://cs.unh.edu/ mfm2/index.html
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4.4 Models

We compare the following models:
MLP-ELMo: A sliding window (size = 5) is

applied to each sentence with padding vectors ap-
plied to boundary tokens. The input layer to the
neural models is a 5 x 3081 matrix using the
ELMo-based embeddings. The input layer is con-
nected to two fully connected layers with 128 hid-
den units each and relu activation. The output is
a sigmoid with a binary output to indicate if the
token is part of a toponym.

CNN-ELMo: A sliding window (size = 5) is
applied to each sentence with padding vectors ap-
plied to boundary tokens. The input layer is a 5
x 3081 layer. The input layer is two 1d convolu-
tional layers with filter sizes of 250 and a kernel
size of 3. A global 1-d max pooling layer follows
the convolutional layers. Two fully connected lay-
ers with 100 hidden units each and relu activation
follow max pooling. A sigmoid function is applied
in output layer to indicate if the token is part of a
toponym.

4.5 Baseline

Two models are used for evaluation: 1) a slid-
ing window mlp provided by the task organizers,
and 2) bi-LSTM with CRF. The bi-LSTM with
CRF model demonstrates state-of-the-art results
on NER and is used as an additional strong bench-
mark for model comparison.

MLP-Baseline: The task organizers provide a
state-of-the-art geoparser as a strong baseline. The
system has a specific component for toponym de-
tection using a two-layer feedforward neural net-
work (200 hidden units per layer) as described
in Magge et al. (2018). The baseline features
a sliding window (size = 5) over each sentence
using Wikipedia-Pubmed-PMC word2vec embed-
dings for token encoding. The baseline did not in-
clude a gazetter-based lookup but did incorporate
orthographic structure of the tokens: 1) All Caps
- ASCII, 2) First letter capitalized - ASCII, and
3) first letter not-capitalized - ASCII. The base-
line also uses separately trained vectors if the to-
ken contained a digit or unknown token in the vo-
cabulary.

Bi-LSTM-Baseline: This strong baseline im-
plementation utilizes the code developed by
Reimers and Gurevych (2017).10 Input sentences
for the model are generated in the CoNLL format

10https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf

with the IOB representation for labeled toponyms
in the training data. The embeddings are the
Wikipedia-Pubmed-PMC word2vec vectors. Each
LSTM has a size of 100 and is trained with a
dropout of 0.25. Character embeddings are gen-
erated using a convolutional neural network and
the maximum character length is 50. The model is
fit over 25 training epochs.

5 Experiment Evaluation

5.1 Metrics

The metrics for evaluation are precision, recall
and F-measure. Two variants are provided for
toponym detection: strict and overlapping mea-
sures. In the strict measure, mentions match the
gold standard if they match exact span boundaries.
In the overlapping measure, a match occurs when
the mention and gold standard share any common
span of text.

There are two methods for computing precision
and recall: micro averaging, and macro averag-
ing. In micro averaging the corpus of documents
is treated as one large document when calculating
precision and recall. In macro averaging precision,
recall and f-measure are calculated on a per docu-
ment basis, and then the results are averaged.

5.2 Results

The model results are shown in Tables 2, 3, 4,
and 5. The best model in the task by the Team
“DM NLP” (Davy Weissenbacher, 2019) is pro-
vided for comparison with the results our team
achieves. The F1 scores of the two sliding window
models and the bi-LSTM benchmark outperforms
the task benchmark on all metrics. Each model
is run once with a random model parameter ini-
tialization. The MLP-ELMo model had a similar
feedforward structure and approach as the baseline
neural model. The primary difference is the em-
bedding vectors used. For both strict and overlap
toponym detection, MLP-ELMo model achieves
the same or higher precision and recall than the
baseline.

The convolutional network using the ELMo-
based embeddings exhibits higher performance on
the f1 score relative to MLP-ELMo, however pre-
cision is higher and recall is lower for both strict
and overlap measures.

The best performing model is the bi-LSTM with
CRF method. This shows that the sliding win-
dow models with deep contextual embeddings did
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Table 2: Overlap Macro

Run P R F1

Bi-LSTM-Baseline 0.910 0.819 0.862
CNN-ELMo 0.908 0.788 0.844
MLP-ELMo 0.886 0.798 0.840
MLP-Baseline 0.864 0.797 0.829

DM NLP 0.946 0.924 0.935

Table 3: Overlap Micro

Run P R F1

Bi-LSTM-Baseline 0.897 0.704 0.789
CNN-ELMo 0.913 0.697 0.791
MLP-ELMo 0.890 0.737 0.807
MLP-Baseline 0.880 0.687 0.772

DM NLP 0.954 0.880 0.915

not achieve state-of-art performance on this task.
However, bi-LSTM with CRF has lower perfor-
mance than the best model submitted for the task
which indicates that other approaches can exceed
the performance of a state-of-the-art Named Entity
Recognition model.

Fine tuning shows that a window size of 5 yields
the best performance on the validation set dur-
ing training for the sliding window neural models.
The sliding window neural models do not require
many epochs of training with approximately only
three required before overfitting of the training
data becomes evident. Adding dropout to training
did not appear to improve sliding window model
performance.

6 Conclusion

The best performing submission by our team is
bi-LSTM with CRF. This is not surprising as this
technique has achieved state-of-the-art results in
NER NLP tasks. The sliding window models we
propose are similar in the approach as the task
baseline model. The ELMo-based embeddings do
achieve a boost in performance relative to base-
line given the richer context and character struc-
ture they embed. This indicates that the ELMo-
derived embeddings are superior in the task to
embeddings trained on a domain-specific corpus
using word2vec. However, for both overlap and
strict macro the recall for MLP-ELMo is identical
to the baseline model.

Bi-LSTM with CRF and the baseline neural
model are noteworthy in that they are both able

Table 4: Strict Macro

Run P R F1

Bi-LSTM-Baseline 0.862 0.781 0.819
CNN-ELMo 0.836 0.737 0.784
MLP-ELMo 0.811 0.740 0.774
MLP-Baseline 0.791 0.740 0.764

DM NLP 0.927 0.906 0.916

Table 5: Strict Micro

Run P R F1

Bi-LSTM-Baseline 0.835 0.650 0.731
CNN-ELMo 0.807 0.618 0.700
MLP-ELMo 0.782 0.646 0.707
MLP-Baseline 0.775 0.603 0.678

DM NLP 0.929 0.856 0.891

to extract toponym mentions only using context
from embeddings to acheive high-quality results
without relying on the presence of a gazetteer.
An open question is if a gazetter or other knowl-
edge graph structure could be incorporated into a
deep neural model using contextual embeddings
to achieve superior performance. It is also not
clear why CNN-ELMo has lower recall than MLP-
ELMo and baseline.

The results suggest that a sliding window model
can be enhanced by better-quality embeddings and
a convolutional component. The sliding window
model approach is attractive due to its relatively
straight-forward implementation and quick train-
ing time. The results achieved by bi-LSTM with
CRF and the model submitted by DM NLP, sug-
gest that other approaches may ultimately gener-
ate superior performance on the toponym detec-
tion task.
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