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ABSTRACT

Cross-lingual embeddings (CLE) facilitate cross-lingual natural lan-

guage processing and information retrieval. Recently, a wide variety

of resource-lean projection-based models for inducing CLEs has

been introduced, requiring limited or no bilingual supervision. De-

spite potential usefulness in downstream IR and NLP tasks, these

CLE models have almost exclusively been evaluated on word trans-

lation tasks. In this work, we provide a comprehensive comparative

evaluation of projection-based CLE models for both sentence-level

and document-level cross-lingual Information Retrieval (CLIR). We

show that in some settings resource-lean CLE-based CLIR models

may outperform resource-intensive models using full-blown ma-

chine translation (MT). We hope our work serves as a guideline for

choosing the right model for CLIR practitioners.

CCS CONCEPTS

• Information systems → Multilingual and cross-lingual re-

trieval; Retrieval models and ranking.
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1 INTRODUCTION

Distributional word vectors, that is, word embeddings have become

ubiquitous in natural language processing (NLP) and information

retrieval (IR) [2, 12, 17]. Researchers have soon broadened their

work towards cross-lingual word embeddings (CLEs). CLE models

represent words from two or more languages with vectors lying in
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the same shared cross-lingual vector space, so that words with similar

meanings end up with similar vectors, regardless of their actual

language. Due to this trait, CLEs offer support to cross-lingual NLP

[5–7, 10, 19, inter alia] and IR applications [13, 17].

Earlier models induced CLEs by exploiting bilingual supervi-

sion in the form of bilingual corpora, aligned either at the level of

documents or at the sentence level (see [15] for a comprehensive

overview). Recently, the focus has been put on projection-based
(also known as mapping-based or offline) CLE models. These mod-

els learn a projection (i.e., a mapping) between two (separately)

pre-trained monolingual embedding spaces. The projection-based

models are particularly suitable for resource-lean settings as they re-

quire only limited word-level bilingual supervision (i.e., dictionaries

commonly containing only few thousands word translation pairs)

[14, 16] or even no bilingual supervision at all [1, 3, 8]. Despite

requiring weaker and cheaper supervision (or no supervision at all),

projection-based CLE models still deliver the same end product – a

shared cross-lingual word vector space. However, evaluations of re-

cent projection-based CLEs have almost exclusively been limited to

testing word translation quality, commonly framed as the bilingual

lexicon induction (BLI) task, which can be seen as a type of intrinsic

evaluation of CLEs. Supported by the wide usage of cross-lingual

embeddings in various tasks, we argue that word translation (i.e.,

BLI) is not the main reason for inducing CLEs and that BLI eval-

uations of projection-based CLE models should be coupled with

downstream (i.e., extrinsic) evaluations.

In this work, we use CLIR tasks as benchmarks for extrinsic

evaluation of projection-based CLE models. We perform a system-

atic evaluation of a range of, both supervised and unsupervised,

projection-based CLE models on both document-level and sentence-

level CLIR tasks for a variety of different language pairs. Experimen-

tal results of our evaluation study, in which we couple different CLE

models with two simple semantically-informed ranking functions

[13], provide answers to the following questions: (1) Does CLIR

performance correlate with word translation performance of CLE

models (i.e., is the best-performing CLE model according to BLI

performance also the best-performing model in CLIR tasks)? (2)

How do unsupervised CLE models that do not employ any bilingual

signal perform in CLIR tasks in comparison to supervised models

using (seed) dictionaries with word translation pairs? (3) Can CLIR

models relying on resource-lean CLE models outperform corre-

sponding CLIR models relying on resource-demanding MT models?

(4) How does the CLIR performance of CLE models vary across

different language pairs (i.e., pairs of close vs. distant languages)?

Short Research Papers 2C: Search SIGIR ’19, July 21–25, 2019, Paris, France

1109

https://doi.org/10.1145/3331184.3331324
https://doi.org/10.1145/3331184.3331324
https://doi.org/10.1145/3331184.3331324


2 RESOURCE-LEAN CLE MODELS

Not requiring aligned multilingual data and by not being tied to

any specific embedding model, projection-based CLE models are

resource-lean and widely applicable. We formalize the projection-

based CLE framework and describe the models in evaluation.

2.1 Projection-Based CLE Framework

We start from two independently pre-trained monolingual word

embedding spaces (XL1 and XL2) and seek to learn the projec-

tion/mapping function(s) that either project vectors from one mono-

lingual space to the other or vectors from both monolingual spaces

to the new shared vector space. The projection(s) are learned us-

ing the dictionary of word translations pairs D = {wi
L1,w

i
L2}

N
i=1.

Supervised models (§2.2) use some readily available external seed
translation dictionary (usually consisting of few thousand word

translation pairs), whereas unsupervised models (§2.3) induce D
automatically (typically iteratively through self-learning), assum-

ing that approximate isomorphism holds between two monolingual

word embedding spaces. Using the seed dictionary, projection-based

CLE models create word-aligned matrices – XS = {xiL1}
N
i=1 and

XT = {xiL2}
N
i=1 – by looking up vectors for aligned words fromD in

XL1 and XL2, respectively. In the general framework, a CLE model

uses XS and XT to learn two projection matrices WL1 and WL2,

projecting respectively XL1 and XL2 to the shared cross-lingual

space XCL = XL1WL1 ∪ XL2WL2. In practice, however, many of

the models we evaluate learn only a single-direction projection

matrix WL1 which projects vectors from XL1 to XL2. This can be

seen as a special instantiation of the framework in which WL2 = I ,
i.e., XCL = XL1WL1 ∪ XL2.

2.2 Supervised Models

We first examine supervised CLE models that require an externally

created seed translation dictionary D.

Canonical Correlation Analysis (CCA). Faruqui and Dyer [4]

treat XS and XT as different views on the same data points and

apply CCA to learn the data representations that maximize the

correlation between the two views. CCA learns both projection

matrices WL1 and WL2 and projects both monolingual spaces to

the new shared space. CCA is a simple and efficient CLE baseline

that has mostly been ignored in recent BLI evaluations.

Euclidean Distance and Procrustes Problem. Mikolov et al.

[14] cast the CLE induction as a problem of learning the unidirec-

tional projection WL1 that minimizes Euclidean distance between

the projected source language vectors XS and their correspond-

ing target language vectors XT : WL1 = argminW∥XL1W − XL2∥.
By constraining WL1 to an orthogonal matrix, this minimization

becomes a well-known Procrustes problem [16, 18] which has the

following closed-form solution:

WL1 = UV⊤, with

UΣV⊤ = SVD (XT XS
⊤). (1)

We evaluate two supervised models based on the solution on the

Procrustes problem. First, we evaluate the Proc model that induces

WL1 using a larger translation dictionary (5K word translation

pairs). The secondmodel, Proc-B, starts from a significantly smaller

translation dictionary (1K word pairs): it first learns two single-

directional projections –WL1 which induces the cross-lingual space

X1

CL = XL1WL1 ∪ XL2 and WL2 which induces a different cross-

lingual space X2

CL = XL2WL2 ∪ XL1 – and then augments the

translation dictionary D with pairs of words that are cross-lingual

nearest neighbours according to both projections (i.e., both in X1

CL
andX2

CL ). Finally, Proc-B computes the new projectionmatrixWL1
by solving the Procrustes problem on the augmented dictionary.

Relaxed Cross-Domain Similarity Local Scaling (RCSLS). In-

stead of minimizing the Euclidean distance, the model of Joulin et al.

[9] learns the projection matrix WL1 by maximizing the ranking-

based measure called Cross-Domain Similarity Local Scaling (CSLS)

[3] between XSWL1 and XT . CSLS, commonly used for inference in

word translation (BLI), is the cosine similarity normalized with the

average similarity that each of the vectors has with its cross-lingual

nearest neighbours. For the maximization of CSLS to be a convex

optimization problem, the constraint that WL1 is orthogonal must

be relaxed. By using a BLI inference metric as its learning objective

RCSLS is particularly tailored for good BLI performance.

2.3 Unsupervised Models

Unsupervised CLE models automatically induce seed translation

dictionaries without any bilingual data. In this evaluation we in-

clude models that induce seed dictionaries using different strate-

gies: adversarial learning [3], similarity-based heuristics [1], and

principal component analysis (PCA) [8]. After obtaining the seed

dictionary, a bootstrapping procedure, similar to the one described

for Proc-B, is executed. In the final step, the Procrustes problem is

again solved, using the dictionary produced through bootstrapping.

Heuristic Alignment (VecMap). Artetxe et al. [1] induce the ini-

tial seed lexicon by comparing monolingual distributions of word

similarities, assuming that word translations have similar distribu-

tions of similarities with other words from the same language.Word

pairs having closest vectors of monolingual similarity distributions

make the initial seed dictionary, which is then expanded in a self-

learning bootstrapping procedure. VecMap’s empirical robustness

also crucially depends on amultitude of additional steps: unit length

normalization, mean centering, ZCA whitening, cross-correlational

re-weighting, de-whitening and dimensionality reduction.

Adversarial Alignment (Muse). Conneau et al. [3] use a Gener-

ative Adversarial Network (GAN) architecture that learns a pro-

jection WL1 (generator) from XL1 to XL2 until a discriminator (a

deep feed-forward network) cannot distinguish whether a vector

originally comes from the target space XL2 or has been projected

from the source space (i.e., comes from XL1WL1 produced by the

generator). The initial projection is then improved in an iterative

bootstrapping procedure (similar to Proc-B and VecMap). Muse

strongly relies on isomorphism ofmonolingual spaces, often leading

to poor GAN initialization, particularly for distant languages.

Iterative Closest Point Model (ICP). Hoshen and Wolf [8] in-

duce the small seed dictionary by projecting vectors of N most

frequent words from both languages to a lower-dimensional space

using PCA. They then search for translation matrices WL1 and

WL2 that find the optimal alignment (minimal Euclidean distance)

between the two sets of N words in this low-dimensional space.
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Since the projection matrices and optimal word alignment are both

initially unknown, they learn with the Iterative Closest Point al-

gorithm. In each iteration, ICP first fixes the projections and finds

the optimal alignment D and then uses D to update the projection

matrices. Next, they employ iterative dictionary bootstrapping and

produce the final projection by solving the Procrustes problem.

3 EXPERIMENTAL SETUP

CLIR Models and Baselines. For comparing different CLE meth-

ods we adopt two simple retrieval methods from Litschko et al. [13].

The first model (AGG-IDF) embeds queries and documents as IDF-

weighted sums of corresponding word embeddings from the CLE

space and uses cosine similarity as the ranking function. The sec-

ond model (TbT-QT) employs a cross-lingual embedding space as

the translation dictionary, replacing each query term with its cross-

lingual nearest neighbour: such term-by-term query translation

reduces the task to monolingual retrieval in which the documents

are ranked with the unigram language model (LM-UN) with Dirich-

let smoothing. We compare the results of CLE-based models to

two baselines: (1) a monolingual LM-UN (i.e., without query trans-

lation) as a sanity check baseline;
1
(2) a much stronger baseline

(MT-IR) translates the query to the collection language using a full-

blown MT model and then performs monolingual retrieval using

LM-UN. In contrast to CLE-based CLIR, our MT-IR baseline is more

resource-demanding as it requires large sentence-aligned corpora.

Languages, Vectors, and Dictionaries.We experiment with five

languages – English (EN), German (DE), Italian (IT), Finnish (FI) and

Russian (RU) – from which we create nine language pairs of vary-

ing language proximity: EN–{DE, FI, IT, RU}, DE–{FI, IT, RU}, and

FI–{IT,RU}. For each langage we use pre-trained 300-dimensional

fastText embeddings, trained on respective Wikipedias.
2
We ob-

tained dictionaries for supervised CLE models by translating 7K

most frequent English words to the other four languages via Google

translate. For each language pair, we split the dictionaries into 5K

pairs for training
3
and 2K pairs for BLI evaluation.

CLIR Datasets.We evaluate CLE-based models in both sentence-

level and document-level CLIR. For document-level retrieval exper-

iments we use the 2003 portion of the CLEF benchmark,
4
which

contains test collections for all nine language pairs listed above.

All test collections contain 60 queries and the average document

collection size per language is 131K (ranging from 17K documents

for RU to 295K for DE). For sentence-level CLIR evaluation, we

resort to the parallel Europarl corpus [11]. Since Europarl does

not contain Russian translations, we evaluate sentence-level CLIR

on the remaining six language pairs. For each language pair we

randomly sample 1K “queries” (i.e., source language sentences) and

100K “documents” (i.e., target language sentences). Given a sen-

tence in the source language, an ideal CLIR model would rank its

mate sentence (i.e., its translation) in the target language on top (i.e.,

in this setting there is only one relevant “document” per “query”).

1
Relying on lexical overlap between the query and documents, LM-UNI is bound to

perform poorly in CLIR where the query language differs from the collection language.

2
https://fasttext.cc/docs/en/pretrained-vectors.html

3
We use all 5K pairs to train all supervised models except Proc-B, for which we use

training dictionary of only 1K pairs. This is because we want to evaluate whether the

bootstrapping procedure can compensate for less bilingual supervision.

4
http://catalog.elra.info/product_info.php?products_id=888

4 RESULTS AND DISCUSSION

Word Translation Results. We examine how word translation

performance of CLE models relates to their CLIR performance

in Table 1. We first intrinsically evaluate BLI performance on 2K

test dictionaries, in terms of mean reciprocal rank (MRR). Not

surprisingly, the RCSLS model with a BLI-tailored objective ex-

hibits the best word translation performance. Simple projection

models – CCA and Proc – also exhibit solid performance and the

bootstrapping-based model Proc-B, trained using only 1K pairs,

does not lag behind by much. Unsupervised CLE models, among

which VecMap [1] performs best, despite recent claims [1, 3], do

not match the performance of their supervised competitors.

CLIR Results. Table 2 shows CLIR results at the document level

(CLEF dataset; MAP), whereas Table 3 summarizes sentence-level

CLIR performance (Europarl dataset; MRR) of CLE-based CLIR mod-

els. The scores in the upper half of both tables correspond to the

embedding aggregation model (Agg-IDF), whereas we obtained the

scores in the lower half with the term-by-term CLE-based query

translation model (TbT-QT). In both CLIR evaluations, for all CLE

models (except for VecMap on CLEF), Agg-IDF variants signifi-

cantly outperform corresponding TbT-QT models. This is because

(1) for most terms there is more than one suitable translation and

the translation retrieved by the CLE model often does not match

the one used in the document collection and (2) even the best CLE

spaces are not perfect word translators. On the other hand, through

aggregating semantic CLEs of words, Agg-IDF avoids direct word

translation altogether. TbT-QT models in many cases perform even

worse than the LM-UNI baseline, since many queries contain named

entities, which get replaced with different entities by the CLEmodel.

Compared to the resource-hungry MT-IR baseline, CLE-based mod-

els underperform in document retrieval, but Agg-IDF models are

competitive in sentence retrieval: the unsupervised ICP model out-

performs MT-IR in sentence-retrieval across the board.

Comparing different CLE models, we observe that these CLIR

results do not follow the trends observed in the BLI task. For ex-

ample, the best-performing CLE model on BLI, RCSLS, yields only

mediocre CLIR results. This implies that overfitting CLE models

to word translation performance may hurt performance in down-

stream tasks such as CLIR. Furthermore, the Proc-B model, trained

using only 1K word pairs, exhibits better CLIR performance than

other supervised models (CCA, Proc, and RCSLS), trained on 5K

word pairs. Somewhat suprisingly, in sentence-level CLIR evalua-

tion, the unsupervised ICP outperforms all other CLE models, as

well as the resource-intensive MT-IR baseline. In combination with

ICP’s moderate BLI performance, this suggests that ICP induces

CLE spaces in which semantic relatedness (albeit not necessarily

semantic similarity) is better captured than with other models.

Overall, we conclude that MT is a better option for document-

level CLIR, whereas the resource-lean CLE models offer a competi-

tive and viable solution for sentence-level CLIR.

5 CONCLUSION

We have presented a comprehensive evaluation on the usefulness of

resource-lean models for inducing cross-lingual embeddings (CLEs)

in cross-lingual retrieval. We have shown that word translation

performance, the standard evaluation of resource-lean CLE models,
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Table 1: BLI performance of different CLE models.

CLE Model DE-FI DE-IT DE-RU EN-DE EN-FI EN-IT EN-RU FI-IT FI-RU AVG

CCA 0.353 0.506 0.411 0.542 0.383 0.624 0.454 0.353 0.340 0.441

Proc 0.359 0.510 0.425 0.544 0.396 0.625 0.464 0.355 0.342 0.447

Proc-B 0.354 0.507 0.392 0.521 0.360 0.605 0.419 0.328 0.315 0.422

RCSLS 0.395 0.529 0.458 0.580 0.438 0.652 0.510 0.388 0.376 0.481

VecMap 0.302 0.493 0.322 0.521 0.292 0.600 0.323 0.355 0.312 0.391

Muse 0.000 0.496 0.272 0.520 0.000 0.608 0.000 0.000 0.001 0.211

ICP 0.251 0.447 0.245 0.486 0.262 0.577 0.259 0.263 0.231 0.336

Table 2: Document-level CLIR results (CLEF).

Model CLE DE-FI DE-IT DE-RU EN-DE EN-FI EN-IT EN-RU FI-IT FI-RU AVG

LM-UN – .111 .143 .000 .142 .142 .137 .001 .132 .001 .090

MT-IR – .340 .418 .196 .339 .278 .423 .225 .389 .212 .313

Agg-IDF

CCA .251 .210 .158 .249 .193 .243 .151 .145 .146 .194

Proc .255 .212 .152 .261 .200 .240 .152 .149 .146 .196

Proc-B .294 .230 .155 .288 .258 .265 .166 .151 .136 .216

RCSLS .196 .189 .122 .237 .127 .210 .133 .130 .113 .162

ICP .252 .170 .167 .230 .230 .231 .119 .117 .124 .182

Muse .001 .210 .195 .280 .000 .272 .002 .002 .001 .107

VecMap .240 .129 .162 .200 .150 .201 .104 .096 .109 .155

TbT-QT

CCA .052 .112 .074 .079 .063 .174 .090 .031 .014 .077

Proc .061 .098 .058 .081 .048 .181 .069 .044 .021 .073

Proc-B .054 .155 .048 .097 .057 .196 .058 .024 .050 .082

RCSLS .069 .112 .088 .104 .037 .167 .096 .070 .025 .085

ICP .019 .062 .078 .079 .043 .143 .086 .012 .056 .064

Muse .000 .131 .111 .102 .001 .196 .001 .004 .001 .061

VecMap .204 .166 .080 .205 .087 .237 .117 .140 .115 .150

Table 3: Sentence-level CLIR results (Europarl).

Model CLE DE-FI DE-IT EN-DE EN-FI EN-IT FI-IT AVG

LM-UN - .040 .064 .066 .041 .067 .033 .052

MT-IR - .520 .676 .712 .639 .783 .686 .669

Agg-

IDF

CCA .487 .602 .761 .483 .790 .361 .581

Proc .497 .614 .766 .481 .791 .371 .587

Proc-B .523 .636 .778 .498 .791 .395 .604

RCSLS .477 .562 .754 .505 .784 .320 .567

ICP .637 .723 .822 .622 .858 .537 .700

Muse .020 .630 .764 .009 .774 .010 .368

VecMap .590 .599 .741 .551 .789 .442 .619

TbT-

QT

CCA .021 .118 .071 .031 .234 .023 .083

Proc .022 .120 .077 .032 .236 .025 .085

Proc-B .029 .133 .065 .025 .247 .023 .087

RCSLS .025 .140 .140 .044 .282 .049 .113

ICP .022 .081 .056 .028 .132 .018 .056

Muse .008 .125 .072 .009 .204 .010 .071

VecMap .098 .262 .291 .068 .437 .098 .209

is a poor predictor of downstream CLIR performance. While fully

unsupervised CLE models can outperform MT-based CLIR models

in sentence retrieval, they lag behind for document-level CLIR. We

hope our findings will guide future research on resource-lean CLIR.
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