A Low-Latency Garbage Collector for GHC

Ben Gamari
Well-Typed LLP
London, UK.
ben@well-typed.com

Abstract

GHC 8.10.1 offers a new latency-oriented garbage collector
to complement the existing throughput-oriented copying
collector. This demonstration discusses the pros and cons of
the latency-optimized GC design, briefly discusses the tech-
nical trade-offs made by the design, and describes the sorts
of application for which the collector is suitable. We include
a brief quantitative evaluation on a typical large-heap server
workload.

CCS Concepts: « Software and its engineering — Gen-
eral programming languages.

Keywords: garbage collection implementations

1 Introduction

The past several years have seen a significant increase in
Haskell adoption in industry, particularly in server-side ap-
plications as components of larger distributed systems.

In such systems, the worst-case response time is dictated
by the worst-case response time of any constituent system
component. Consequently developers of distributed systems
must maintain tight control over the tail of each compo-
nent’s response time distribution to maintain overall system
performance.

Stop-the-world garbage collection represents a major source

of uncontrolled pauses in many server applications. In par-
ticular, GHC’s moving garbage collector incurs a maximum
pause time proportional to the amount of live heap data.
With even moderate-sized heaps, these pauses can span many
hundreds of milliseconds.

As a result, authors of Haskell server applications must
resort to the use of off-heap data structures, compact normal
forms, multiple server processes, and other techniques to
avoid unacceptably-long pause times.

In GHC 8.10.1 we introduced! a new garbage collection

scheme targetting latency-sensitive applications with moderate-

to-large working-sets.

2 Approach

We use a non-moving collection scheme inspired by Ueno,
et al. [3] to manage old objects, while relying on a bounded-
size moving nursery for new and young objects. Collection

More details on the design, implementation, and performance character-
istics of the collector can be found in our ISMM 2020 paper [1]

Laura Dietz
University of New Hampshire
Durham, NH, U.S.A.
dietz@cs.unh.edu

of the non-moving heap is achieved via concurrent mark &
sweep.

Our collector relies on a snapshot-at-the-beginning col-
lection strategy, supported by a variant of the heap struc-
ture described by Ueno, et al. [4]. The collector preserves
fast allocation and avoids the need for recompilation by re-
lying on the existing moving collector and nursery for mu-
tator allocation. The collector is generational, with one or
more moving young generations, which are evacuated into
a single non-moving old generation.

The concurrent non-moving collector imposes few addi-
tional write barrier obligations on the mutator, taking ad-
vantage of the fact that the most mutations in Haskell pro-
grams are due to thunk updates. Consequently, nearly no
changes are necessary in generated mutator code.

Note that unlike the earlier work of Ueno, et al. [3], our
collector is not a fully-concurrent design: all mutator threads
must be stopped for at the beginning and end of every ma-
jor collection. However, as most marking work is done con-
currently, these pauses are typically short (on the order of
milliseconds). Moreover, full-concurrency would offer rela-
tively few advantages without also addressing the problem
of stop-the-world minor collections (e.g. Marlow, et al. [2]).

3 Usage

The non-moving garbage collector can be selected by en-
abling the +RT'S --nonmoving-gc runtime system flag. For
concurrent collection the only requirement is that the pro-
gram is linked against GHC’s threaded runtime system; no
further recompilation is necessary. Diagnostic output char-
acterising heap fragmentation, collection lifecycle, and tim-
ings can be enabled via the +RT'S -s flag and the usual GHC
eventlog.

4 Should You Use This Collector?

Garbage collector design is a field fraught with trade-offs. In
this demonstration, we provide some insight into the trade-
offs made by our collector and their implications on users
of GHC. In short, the new collector is right for applications
that:

o struggle with long pause times: the new collector is a
concurrent collector, requiring only two short pauses
at the beginning and end of the collector.

e have large heap: under the moving collector, applica-
tions with very large heaps (e.g. tens of gigabytes) can



N nonmoving, N=16, R=8000/s
10° 4 moving, N=16, R=8000/s
=== nonmoving, N=8, R=4000/s
moving, N=8, R=4000/s
----- nonmoving, N=4, R=2000/s
o) 1o-11 moving, N=4, R=2000/s
S
O
[
)
()
E
&
510724
©
Qo
10-3 4
0% 90% 99% 99.9% 99.99%

Percentile

Figure 2. A latency histogram showing the GC pause time
distribution (including both major and minor collection
pauses) from the same application shown in Figure 1.

100 4

—~ 1071 4

Latency (seconds

—— nonmoving, N=16, R=8000/s
moving, N=16, R=8000/s

=== nonmoving, N=8, R=4000/s
moving, N=8, R=4000/s

------ nonmoving, N=4, R=2000/s
moving, N=4, R=2000/s

0% 90% 99% 99.9% 99.99%

Percentile

99.999%

Figure 1. A latency histogram showing end-to-end re-
sponse time of a simple server application emulating a large
caching HTTP server. Four different server and load condi-
tions are shown: N denotes the server’s core count where
R refers to the request rate as provided by the wrk2 load
generator run on eight cores.

produce pauses of many seconds. This is particularly
relevant for long-lived server applications with large
working sets.
o prefer low-latency over high throughput: in particu-
lar, interactive applications and distributed systems
By contrast, applications with the following properties
would likely be better served by the moving collector:

e high-throughput demands: batch data processing, com-
pilation

o small heap sizes: these cases will see very little benefit
from the concurrent collection provided by the non-
moving collector.

Ben Gamari and Laura Dietz

The moving collector is quite well-suited for throughput-
oriented applications. Its compacting nature provides excel-
lent data locality for the mutator while providing efficient
collection. Its Achilles heel is the requirement to pause the
mutator for the entirety of the copying process.

The new collector comes at the price of slower allocation
and loss of compaction, leading to a reduction in mutator
performance. However, it brings the advantage of being able
to perform the majority of marking work concurrently with
mutator execution.

In addition, the non-moving collector incurs a small ad-
ditional cost on the mutator while marking is underway in
the form of a write barrier.

5 Evaluation

Figures 2 and 1 display pause-time and response-time sta-
tistics for a set of measurements on a model client/server
application with 20 gigabyte heap.

6 Demonstration

In our demonstration we will discuss the motivations for our
design, describe the sorts of applications for which our col-
lector is especially suitable, describe the performance char-
acteristics users can expect from these applications and show
a few examples of the such applications in action, compar-
ing with GHC’s existing copying collector.

In addition, we will describe a few opportunities for fu-
ture improvement and how these improvements might fur-
ther grow the collector’s domain of applicability.

Acknowledgments

We would like to thank Omer Sinan Agacan, whose code,
skillful debugging, and helpful discussions during the imple-
mentation part of the project were invaluable in bringing it
into its current state.

We would also like to acknowledge the contributions of
Pepe Iborra and Atze Djikstra for their assistance in testing
and characterising the collector.

References

[1] Ben Gamari and Laura Dietz. 2020. Alligator collector: a latency-
optimized garbage collector for functional programming language. In
Proceedings of the 2020 ACM SIGPLAN International Symposium on
Memory Management.

[2] Simon Marlow and Simon Peyton Jones. 2011. Multicore garbage col-

lection with local heaps. In Proceedings of the 10th International Sympo-

sium on Memory Management. ACM New York, NY, USA.

Katsuhiro Ueno and Atsushi Ohori. 2016. A fully concurrent garbage

collector for functional programs on multicore processors. In Proceed-

ings of the 21st ACM SIGPLAN International Conference on Functional

Programming. 421-433.

Katsuhiro Ueno, Atsushi Ohori, and Toshiaki Otomo. 2011. An efficient

non-moving garbage collector for functional languages. In Proceedings

of the 16th ACM SIGPLAN International Conference on Functional Pro-

gramming. ACM New York, NY, USA, 196-208.

[3

=

[4

[l



	Abstract
	1 Introduction
	2 Approach
	3 Usage
	4 Should You Use This Collector?
	5 Evaluation
	6 Demonstration
	Acknowledgments
	References

