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Abstract

Last year’s competition demonstrated that the NER
context contains important information that should
not be 1gnored 1n entity linking. State-of-the-art ap-
proaches anchor on unambiguous entities, look for
overlap in categories, or approximate a joint model
of candidate assignments, after Wikipedia candi-
dates have been selected. Current candidate ap-
proaches, such as anchor text maps, are effective but
may lead to very large candidate sets to be examined.
UMass has two objectives for our TAC submission.
First, we use cross-document context information to
perform entity neighborhood expansion and estimate
the importance of entity context using corpus-wide
information. Second, we use probabilistic informa-
tion retrieval that incorporates the neighborhood in-
formation to generate a ranked candidate set in a sin-
gle step. The result 1s a small candidate set that even
for less than 50 candidates contains the true answer
in 95% of the cases, allowing for computationally 1n-
tensive inference in the next phase. It turns out that
our best performing run simply predicts the top can-
didate of the unsupervised candidate ranking, out-
performing more than half of the contestants.
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Example Query:

ABC shot the TV drama "Lost" in Australia.

Candidates:
- Australian Broadcasting Corporation Television
- American Broadcast Central

"Australia” Is an unambiguous entity

But: "Australia" is not really relevant for
American Broadcast Central.

Danger to lead to the wrong conclusion.
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Neighborhood Expansion retrieves the true entity
at high cutoff rates

MRR 0.75 (versus 0.72) 95% recall at rank 45

Small candidate set allows for time intensive
re-ranking methods!
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vote for NERs,
welghted by retrieval probability

k closest
NERs, weighted
by relevance

Candidate Retrieval and Entity Linking
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Candidate Retrieval Model

Mention t, name variants v, sentences s, NER spans e
component weights A, relevance weights ¢

#Hcombine:0=(Ar + Ay ):1=Ag:2=Ag(
#combine:0=Ap:1=Ay (
#seqdep(t)
#combine(#seqdep(vg) . . . #seqdep(vy))
)
#combine(#seqdep(sg), . . . , #seqdep(sg))
#combine:0 = ¢f : ... k: ¢p (
#seqdep(eg), . . ., #seqdep(eg)
)
)

Retrieval model based on Markov Random Fields

Factor representing
the sequential
dependence model
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Joint Neighborhood Assignment Models

For each NER span:
Assuming candidate set is retrieved
Goal: find joint assignment that maximize likelihood
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Candidate Retrieval with Neighborhood
Expansion

Neighborhood expansion estimates reliability for
disambiguating the query mention.

\(’ No candidate set necessary!
< n Joint assignment model is
— 5% 3 optimized during

> candidate retrieval!
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