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Abstract

With the goal of studying robust sequence modeling via time series, we propose
a robust multi-horizon forecasting approach that adaptively reacts to distribution
shifts on relevant time scales. It is common in many forecasting domains to observe
slow or fast forecasting signals at different times. For example wind and river
forecasts are slow changing during drought, but fast during storms. Our approach is
based on the transformer architecture, that across many domains, has demonstrated
significant improvements over other architectures. Several works benefit from
integrating a temporal context to enhance the attention mechanism’s understanding
of the underlying temporal behavior. In this work, we propose an adaptive temporal
attention mechanism that is capable to dynamically adapt the temporal observation
window as needed. Our experiments on several real-world datasets demonstrate
significant performance improvements over existing state-of-the-art methodologies.
The code for reproducing the results is open sourced and available online1.

1 Introduction

Time series forecasting is a vital problem across many domains such as economics [8], retail [4],
and healthcare [10] just to name a few which benefits from robust sequence modelling approaches.
The temporal behavior of a time series often changes over time, sometimes slowly and other times
rapidly which results in distribution shifts. Building a robust and adaptive model in response to
such dynamic shifts can be challenging. Transformers [15] have gained popularity in modeling the
temporal behavior of a time series. However, the basic attention mechanism in transformers estimates
the similarity based on a point-wise vector of the query and key, each representing individual time
steps, thereby ignoring the underlying distribution of the surrounding temporal context, we find
that adding multiple layers does not fix this insufficiency, see Section 4.1. Lie et al [9] suggest to
integrate temporal context by using a convolutional neural network (CNN) to inform the attention
mechanism with temporal information. However, our experimental results demonstrate a weakness in
this approach, as it is based on a single fixed-length temporal window, which limits the degree of
flexibility to respond to distribution shifts on different time scales. We dive into this problem and
investigate the importance of models that can adaptively adjust the attention’s window size and how
this leads to a better forecasting model.

2 Problem Definition

Given the input data prior to time step t0, the task is to predict the variables of interest for
multiple steps into the future from t0 to t0 + τ . Given the historical observations denoted

1https://github.com/SepKfr/Eff_pattern_matching.git

Workshop on Robustness in Sequence Modeling, 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).
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Figure 1: A synthetic example of predicting the future after time step t0 given the preceding data.
The attention mechanism identifies the most similar points for the query at time step t0, (depicted in
orange), and predicts a similar trajectory observed in keys. In the case of point-wise attention this
would be the dark blue point (denoted as *) which would result in an erroneous forecast following the
dashed dark blue line (denoted as *). In the case of temporal attention with a fixed-length temporal
context, the light blue rectangle (denoted as **) is determined to exhibit the most similar behavior
which also results in an erroneous forecast following the dashed light blue line (denoted as **). In
the case of our adaptive temporal attention the similarity is apparent on different time scales, the big
and small green rectangles (denoted as ***), which would result in an accurate forecast depicted in
dashed green line (denoted as ***).

as x0:t0 = [x0, . . . ,xt0 ], we predict the variables of interest for the next τ steps denoted as
yt0:t0+τ = [yt0 , . . . ,yt0+τ ]. Where xi ∈ Rdx , and yi ∈ Rdy .

3 Related Work

One of the most dominant classical time series forecasting methods is autoregressive integrated
moving average (ARIMA) [3]. ARIMA and other traditional models assumes that the time series
is stationary, therefore are not suitable for modeling distribution shifts. Recurrent neural networks
(RNNs) have been widely used to model the temporal behavior of time series [12, 2, 11]. The
DeepAr [13] model uses long short-term memory networks (LSTMs) to generates parameters of a
Gaussian distribution. Transformers have shown superior performance in modeling temporal behavior
compared to RNNs [9, 5]. To enhance the forecasting quality several works benefit from employing a
CNN layer to integrate the temporal context [8, 9, 14]. Recently, new approaches developed more
generalized alternatives to the attention mechanism in transformers to obtain more robust models,
from which Autoformer [6] and Informer [16] have demonstrated the best performance. We compare
our proposed model to these methods in the experimental section.

4 Methodology

4.1 Background: Point-wise Attention

Given time series data, a single-layer transformer with point-wise scaled dot-product attention
predicts the output yi at time step i as yi =

∑
j≤i aijxj with attention aij = softmax(q⊺

i ·kj/
√
d).

Typically the query and key vectors are derived via projection qi = proj(xi), and kj = proj(xj)
using two different multi-layer perceptron-style projections of inputs to vectors with dimensionality d.
We call this attention point-wise as it estimates the similarity between query qi and key kj based on
information at time step i and j, and this does not inform the attention mechanism with the underlying
temporal context that the query qi and key kj are representing. This point-wise attention overlooks
the temporal behavior required for more robust predictions, see Figure 1. The canonical approach to
integrate the temporal context is to use a multi-layer model. The hypothesis is that from a previous
layer, the temporal context can be absorbed into the queries and keys. However, none of the layers
have an innate understanding of temporal context, which is a hurdle to overcome during training.
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Table 1: Results summary in MSE and MAE of all methods on three datasets. Lower MSE and MAE
indicate a more accurate model. Where ▼ denotes significant deterioration compared to our model
using a paired-t-test at p ≤ 0.05.
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Ours Autoformer Informer CNN-trans Transformer LSTM ARIMA

Tr
af

fic

24 MSE 0.404 0.422▼ 0.513▼ 0.610▼ 0.903▼ 0.524▼ 2.109▼

MAE 0.289 0.304▼ 0.513▼ 0.492▼ 0.723▼ 0.355▼ 1.198▼

48 MSE 0.433 0.438▼ 0.501▼ 0.835▼ 1.233▼ 0.634▼ 2.600▼

MAE 0.333 0.346▼ 0.391▼ 0.616▼ 0.923▼ 0.461▼ 1.276▼

72 MSE 0.408 0.426▼ 0.496▼ 1.191▼ 0.966▼ 0.625▼ 2.657▼

MAE 0.333 0.356▼ 0.496▼ 0.915▼ 0.770▼ 0.491▼ 1.278▼

96 MSE 0.404 0.444▼ 0.431▼ 0.824▼ 1.039▼ 0.635▼ 2.413▼

MAE 0.338 0.362▼ 0.352▼ 0.634▼ 0.809▼ 0.485▼ 1.255▼

A
ir

Q
ua

lit
y

24 MSE 0.807 0.838▼ 0.830▼ 0.999▼ 1.010▼ 1.002▼ 1.265▼

MAE 0.774 0.785▼ 0.788▼ 0.874▼ 0.878▼ 0.871▼ 0.923▼

48 MSE 0.827 0.931▼ 0.878▼ 1.081▼ 1.062▼ 1.130▼ 1.518▼

MAE 0.777 0.837▼ 0.806▼ 0.902▼ 0.896▼ 0.927▼ 1.030▼

72 MSE 0.834 0.953▼ 0.879▼ 1.091▼ 1.091▼ 1.134▼ 1.705▼

MAE 0.785 0.850▼ 0.806▼ 0.907▼ 0.907▼ 0.926▼ 1.103▼

96 MSE 0.831 0.960▼ 0.875▼ 1.091▼ 1.087▼ 1.127▼ 1.836▼

MAE 0.785 0.853▼ 0.810▼ 0.913▼ 0.910▼ 0.925▼ 1.151▼

So
la

rE
ne

rg
y

24 MSE 0.233 0.245▼ 0.277▼ 0.389▼ 0.406▼ 0.269▼ 2.416▼

MAE 0.268 0.280▼ 0.310▼ 0.464▼ 0.485▼ 0.306▼ 1.151▼

48 MSE 0.240 0.248▼ 0.272▼ 0.269▼ 0.269▼ 0.284▼ 2.406▼

MAE 0.276 0.287▼ 0.301▼ 0.301▼ 0.308▼ 0.308▼ 1.153▼

72 MSE 0.241 0.258▼ 0.255▼ 0.286▼ 0.291▼ 0.279▼ 2.470▼

MAE 0.269 0.285▼ 0.294▼ 0.318▼ 0.317▼ 0.312▼ 1.174▼

96 MSE 0.233 0.253▼ 0.235▼ 0.310▼ 0.275▼ 0.271▼ 2.476▼

MAE 0.262 0.282▼ 0.272▼ 0.320▼ 0.304▼ 0.303▼ 1.174▼

4.2 Background: Temporal attention

CNN-trans includes the temporal context into the attention mechanism to build a more robust
attention model. It is accomplished by deriving query and key vectors from the temporal window of
observations preceding the time step i. Denoting this temporal window i<W = [i−W, . . . , i], the
transformer’s attention has only needs to be modified by how query and key vectors are obtained:
qi = proj(xi<W ) and kj = proj(xj<W ). It has been shown that deriving the query qi and key kj

vectors from a temporal window of observations enables the attention mechanism to better understand
the underlying temporal behavior of the query qi and key kj [9]. While the incorporation of the
temporal context can be helpful, a limitation is that he temporal window is of fixed size W . Even after
tuning the window size W , or choosing a larger temporal window issues remain: (1) noise induced by
an excessively large window may hinder good performance. (2) dynamic time periods (e.g. storms)
may need a shorter window than stagnant time periods (e.g. droughts). (3) some temporal patterns
may be stretched to slightly different time scales, such would not be recognized by the CNN-trans
approach (see Figure 1). In the following, we address this shortcoming with an adaptive approach.

4.3 Adaptive Temporal-aware Attention (Ours)

The temporal behavior of a time series can change from fast and dynamic to slow and steady. Hence,
our goal is to build a robust and adaptive model that respond to distribution shifts on different time
scales as needed. Furthermore, we want the model to have this ability to identify similar behaviors
regardless of their time scales. For example, if the unseen data exhibits fast and dynamic behavior,
the desired model should be able to identify a similar temporal pattern even if it is slightly stretched
in the past observations. Considering the storm forecasting domain, storms can be short and extreme
or long and steady, where both of which generally produce similar outcomes, therefore identifying
and matching these temporal behaviors is critical for accurate forecasting. To achieve this goal, we

3



will consider multiple temporal window sizes W = [w1, . . . , wn] to derive query and key vectors
using MLP-projections:

For all temporal windows w ∈ W we obtain: query qi,w = proj(xi<w) and key kj,w =
proj(xj<w). With this approach at each position i and j, there exists temporal-aware query and
key vectors that represent the temporal behavior across different time scales via different window
sizes. Therefore, it allows the attention mechanism to match queries with keys that represent similar
temporal behaviors regardless of the pace at which they occur. This comparison enables the attention
mechanism to identify the similarity on different time scales from stretched to compressed. (see
Figure 1). This would result in a more robust model under distribution shifts, and hence a better
forecasting model. Our experimental evaluation will demonstrate the validity of this claim.

After deriving query and key vectors for all temporal windows, a time series with Q queries and
K keys would contain |W| · Q query and |W| · K key vectors. Note that this approach leads to
redundancies, since any input xi and xj are subsumed into multiple overlapping context windows
of query qi,w, qi+1,w, . . . and of key kj,w,kj+1,w, . . . vectors. We exploit these redundancies by
selecting an optimal subset of query and key vectors with total number of Q and K queries and
keys. Then use query and key vectors at indexes i ∈ Is and j ∈ Js to calculate the attention scores
ai,j = softmax(q⊺

i ·kj)/
√
d, where Is ⊂ {1, 2, . . . , |W | ·Q} and Js ⊂ {1, 2, . . . , |W | ·K} denote

the selected subset of query and key positions. These positions are selected to represent the top
Q and K highest valued query and key vectors. The chosen subsets meet the training objective to
minimize the forecasting loss. The intuition is that during training the back-propagation encourages
higher weights on the subset of query and a key vectors that contribute to a better overall forecasting
performance.

5 Experiments

Datasets: We empirically perform experiment on three datasetes that have been widely used for
evaluations by previous studies: (1) Traffic 2 is a collection of hourly occupancy rate of 440 SF Bay
Area freeways. (2) Air quality3 is a collection of hourly air pollution of ten cities in China. (3) Solar
energy4 is a collection of hourly solar power in different locations in America. Implementation
details: All neural models are trained and evaluated three times. We use Optuna [1] for hyper-
parameter optimization. The model size is chosen from {16, 32} for all neural models, and the batch
size is set to 256. Baselines: (1) ARIMA [3] (2) LSTM [7] (3) Transformer [15]: a multi-layer
encoder-decoder with basic attention. (4) Conv-trans [9]: an encoder-decoder with convolutional
attention. (5) Autoformer [6] and (6) Informer [16].

5.1 Main Results

Results are reported as mean and standard error of MSE and MAE scores. Table 1 summarizes the
evaluation results on three datasets when generating predictions for horizons of 24, 48, 72, and 96.
Across all datasets and settings our model outperforms other methods. Our model exhibits an MSE
reduction compared to the next best model by 6% (at 96 horizons), 5% (at 72 horizons), and 5%
(at 72 horizons) on traffic, air quality, and solar energy datasets. The difference in performance to
CNN-trans demonstrates the gain when providing the model with the flexibility to choose the right
temporal context in response to distribution shifts.

6 Conclusion

In this paper, we study the multi-horizon time series forecasting problem in the presence of distribution
shifts in the timescale of temporal patterns and introduce the adaptive temporal attention, which
adaptively respond to such changes, and can detect patterns if temporarily stretched or compressed.
Our experimental evaluation on three datasets demonstrates performance improvements over state-
of-the-art methods, including temporal CNN-trans, and generalized transformer-based models such
as Autoformer and Informer. Given the complementary nature of our adaptive temporal approach,

2https://archive.ics.uci.edu/ml/machine-learning-databases/00204
3https://archive.ics.uci.edu/ml/machine-learning-databases/00501/PRSA2017-Data.zip
4https://www.nrel.gov/grid/assets/downloads/al-pv-2006.zip
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it can be integrated into future forecasting methods whenever relevant temporal patters need to be
recognized across shifting timescales.
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