
CS 925
Lecture 21

Network-based
Time Synchronization
Tuesday, April 16, 2024

Motivation
Timing in cyber-physical systems: the last inch problem: John C. Eidson, Kevin B. Stanton, IEEE ISPCS 2015

Synchronized Clock

Frequency SynthesizerFrequency, Phase Output Signal

C-Frequency Synthesizer

Synchronized Clock

Actuation RegisterActuation Time

Comparator Actuator Trigger

B-Actuation Generator

Synchronized Clock

Latch Register Event TimestampEvent Signal

A-Timestamp Generator

Fig. 1. CPS time primitives.

made at several locations with sufficient temporal coherence
to permit meaningful analysis, e.g. by Fourier transform.

Note in Figure1 that the clocks are indicated as being
synchronized. While these primitives are useful even in non-
distributed applications, in a distributed application they en-
able coherent sampling and actuation with accurate temporal
semantics and with accuracy and precision limited only by
the clock synchronization protocol and the resolution of each
node’s clock.

In many cases, one node hosts a single CPS application. In
others, a single system may be designed to host more than one
time-aware application or even multiple virtualized operating
systems, each of which hosts one or more application. In
addition, these applications might each be part of a distinct
CPS, each of which must be synchronized to a different
timebase. One approach to faciliate unlimited scaling of the
supported number of timebases in a single system is to replace
the synchronized hardware clock with a free-running hardware
clock along with sufficiently-accurate estimates of the time
offset and frequency ratio between the appropriate clocksource
and the free running hardware local clock. Clearly, appropriate
limits must be placed on how far into the future time can
be extrapolated when scheduling a future event. We use the
term ”clock” in the following to refer either to one or more
synchronized hardware clocks or to a hardware clock reference
that, together with the known or measured relationship be-
tween them, facilitates transformation of a timestamp, trigger
time, or frequency in a remote clocksource into the domain of
the local hardware clock reference. These logical clocks can
be represented as multiple TSCclocks as described by Veitsch,
et al. [21]

V. CORRECT-BY-CONSTRUCTION TIMING FOR CPS
As noted in Section II, there has been considerable discus-

sion of the concept of timing that is correct-by-construction.
This concept is included in the timing and synchronization

section of a ”Framework for Cyber-Physical Systems” being
prepared by the NIST Cyber-Physical Systems Public Working
Group [22]. The goal of timing correct-by-construction is:

• The designer can explicitly specify timing in the context
of the design.

• Upon choosing the target hardware, the system deter-
mines if that hardware can support the designed timing,
and if so, generates the code and implementation details
to support the design.

• Designs will compile and execute with correct timing
on any set of hardware and network resources meeting
certain conditions.

• Upgrades (or downgrades) of hardware and network
resources that continue to meet the conditions will not
affect the correctness of the timing.

Clearly there are conditions that must be satisfied both on the
design and the implementations. Based on recent work these
are:

• Designs must not violate causality.
– Not all timing designs can be executed, e.g. violating

speed of light constraints.
– Not all timing designs can be executed on a given set

of hardware and network resources, e.g. insufficient
computing power to complete required computations
in the allotted time.

• All realizable designs will have limits on input/output
rates (Kopetz closed world assumption [23]) and achiev-
able timing intervals.

• All computation and network transmission times must
have an upper bound

In general, the requirement for an upper bound on computa-
tions and network transmission times in today’s architectures
cannot be strictly met. Packets delays and loss in networks
are unpredictable. Worst case execution times (WCET) are
very difficult to predict [24]. However from an engineering
standpoint it is usually possible to specify useful bounds and
then implement appropriate actions when these bounds are
exceeded. There is recent work on architectures that greatly
improve the ability to bound WCET [25] [26] [27]. IEEE
802.1Q-2011 [28] incorporates the concepts of traffic shaping
and stream reservation which can help reduce and establish
useful bounds on network latency. Deterministic worst-case
network latency is the promise of new enhancements being
developed by the IEEE 802.1 Time Sensitive Networking
(TSN) task group[29].

Precise timing of application events and efficient execution
of microprocessor computations and event handling requires
low latency access to the local clock. For distributed applica-
tions, software must have low latency access to time that is
shared with its peers. The local clock must be synchronized
to its peers.

An interesting discussion of these topics as well as other
timing issues in CPS is found in Lee [9] where he cites an
existence proof for correct-by-construction timing based on the
work of Zhao [10] [11]. An interesting aspect of this work is

21

Current Applications
‣Navigation
- Satellite positioning
- Indoor navigation

‣ Telecom networks
‣ IoT networking
- e.g., LoRa

‣Power grid
- Synchrophasor

networks

Applications
‣ Industrial automation
- Industry 4.0

‣High-speed algorithmic securities trading
- trade scheduling
- globally-timestamped logs

of trades (for audit)

‣Professional audio-video
‣High-energy particle

physics

Applications
‣Distributed consensus in blockchain algorithms (Algorand)
‣Consistency in geographically-distributed data centers (Google)
‣Power conservation in IoT (LoRa)
‣Stereo audio (Apple HomePod)
‣Delayed message authentication (IEEE 1588)

Three challenges
‣What is the “correct” time?
- “Clock in the sky” - time derived from astronomical observations
- Atomic time (which one? TAI, UTC)
- Says who? Consortium of national bureaus of standards
- Mostly futile question when you bring in the theory of relativity

‣Design a clock that keeps the correct time (syntonized with the
reference)
‣Design a mechanism for time transfer

Johan Stradanus inv., Philip Galle ex., c.1595

Precise clocks

John Harrison marine clocks
to be used to determine

ship’s longitude

National time reference
‣NIST 7 Cesium Frequency Standard (1993)

Time transfer
‣Dropping balls…

‣One O’clock Gun
Edinburgh Castle

Time
transfer

Centralized time reference
‣Radio broadcast
-WWV broadcasting from

Fort Collins, CO

‣Phone: Talking Clock

‣Minute or second time signal
from a reference time source

GNSS-based systems
‣Multiple satellites with high-precession clocks on board at

known precise locations send the timing information to terrestrial
clients:
- location
- precise time (!)

‣Operational systems:
- GPS (USA)
- Glonass (Russia)
- BeiDou (China)
- Galileo (European Union)
- QZSS (Japan)

10-18 uncertainty…

Source: Frequency ratio measurements at 18-digit accuracy using an optical clock
network, Nature, March 2021, https://doi.org/10.1038/s41586-021-03253-4

Synchrony vs syntony
‣Clocks are said to be synchronized (at a specific point in time)

when they “show the same time”
- synchrony = same time

‣Clocks are said to be syntonized (over a period of time) when
they “tick” at the same rate
- syntony = same tone (frequency)

‣We need solutions for synchronization and syntonization

‣Offset - difference between the clock time and global (reference)
time (a.k.a. phase difference)

Offset and Skew

Clock 1

Clock 2

Clock 1

Clock 2

‣Skew - the rate with which the clock drifts with respect to
the global (reference) time (a.k.a. frequency difference)

Offset and Skew

global (reference) time

clo
ck

 ti
m

ePerfect
clock

offset

global (reference) time

clo
ck

 ti
m

eClock
with

offset

global (reference) time

clo
ck

 ti
m

eClock
with
skew

global (reference) time

clo
ck

 ti
m

e

Clock
with

offset
and

skew

Sy
nc

hr
on

ize
d

Syntonized

skew

Offset and Skew
‣ Ideally, knowing the the values for skew and offset (and

assuming the they are constant), the clock time can be
converted to global (reference) time :

s o
tc

tg

tg = tc + (�t · s+ o)

Precision and Accuracy
‣Precision
- how well the clock tracks

passing of time (over a
period of time)

‣Accuracy
- how well the clock reflect

the global time (at an
instant) Ac

cu
ra

te

Precise

ALERT: Frequently used but
highly misleading analogy

Maintaining local time
‣Synchronize with a reference clock to find offset
- adjust the clock time (how?)

‣Do it periodically to find skew
- adjust the clock

Maintaining local time
‣Synchronize with a reference clock to find offset
- adjust the clock time (how?)

‣Do it periodically to find skew
- adjust the clock

Watchmaker

Clock

Sync
Adjust-
ment

Time

(speed up or
slow down)

Image credit: https://en.wikibooks.org/wiki/Budget_Watch_Collecting/Regulating

Maintaining local time

Controller
(servo)

Clock

Sync
Adjust-
ment

Time

(speed up or
slow down)

‣Synchronize with a reference clock to find offset
- adjust the clock time (how?)

‣Do it periodically to find skew
- adjust the clock

Time transfer
‣ Let’s assume that I have the most

precise master clock that money
can buy and that the clock is
synchronized to some form
of universal time
‣ You need precise time…

 … so I write the current time
on Post-it note and take it to you …

‣ The key issue is time transfer
and the key challenge is the
latency of the communication

Time transfer
‣ Let’s assume that I have the most

precise master clock that money
can buy and that the clock is
synchronized to some form
of universal time
‣ You need precise time…

 … so I write the current time
on Post-it note and take it to you …

‣ The key issue is time transfer
and the key challenge is the
latency of the communication

t1
t2

t3
t4

t1

t1, t2,
t3

t1 , t2 , t3 , t4

RTT = (t4 � t1)� (t3 � t2)

O↵set = (t2 � t1)�
RTT

2

Sync

Delay_Resp

Delay_Req

Client Server

Time transfer - example

t1 = 1010

t4 = 1060

t3 = 1030

t2 = 1020

Client time Server time

1000

1050

1040

1030

GET

{"t2":1020,

 "t3
":1030}

RTT = (1060 - 1010) - (1030 - 1020) = 40 units

Offset = (1010 + 40/2) - 1020 = 10 units

The client clock is 10 units ahead of the server clock

RTT = (t4 � t1)� (t3 � t2)

O↵set = (t2 � t1)�
RTT

2

Time transfer - example

t1 = 1010

t4 = 1060

t3 = 1030

t2 = 1020

Client time Server time

1000

1050

1040

1030

GET

{"t2":1020,

 "t3
":1030}

RTT = (1060 - 1010) - (1030 - 1020) = 40 units

Offset = (1010 + 40/2) - 1020 = 10 units

The client clock is 10 units ahead of the server clock

RTT = (t4 � t1)� (t3 � t2)

O↵set = (t2 � t1)�
RTT

2
Assumption!

Sometimes not true
in real systems

