CS 925Lecture 21 Network-based Time Synchronization

Tuesday, April 16, 2024

Motivation

Current Applications

Navigation

Satellite positioning

- Indoor navigation
- Telecom networks
- IoT networking
 - e.g., LoRa
- Power grid
 - Synchrophasor
 networks

Applications

- Industrial automation
 - Industry 4.0
- High-speed algorithmic securities trading
 - trade scheduling
 - globally-timestamped logs of trades (for audit)
- Professional audio-video
- High-energy particle physics

Applications

- Distributed consensus in blockchain algorithms (Algorand) Consistency in geographically-distributed data centers (Google) Power conservation in IoT (LoRa)

- Stereo audio (Apple HomePod)
- Delayed message authentication (IEEE 1588)

Three challenges

- What is the "correct" time?

 - "Clock in the sky" time derived from astronomical observations - Atomic time (which one? TAI, UTC)
 - Says who? Consortium of national bureaus of standards
 - Mostly futile question when you bring in the theory of relativity
- Design a clock that keeps the correct time (syntonized with the reference)
- Design a mechanism for time transfer

Precise clocks

John Harrison marine clocks to be used to determine ship's longitude

National time reference

NIST 7 Cesium Frequency Standard (1993)

Time transfer

Time transfer

One O'clock Gun Edinburgh Castle

Centralized time reference

Radio broadcast

 – WWV broadcasting from Fort Collins, CO

Phone: Talking Clock

Minute or second time signal from a reference time source

GNSS-based systems

- clients:
 - location
 - precise time (!)
- Operational systems:
 - GPS (USA)
 - Glonass (Russia)
 - BeiDou (China)
 - Galileo (European Union)
 - QZSS (Japan)

Multiple satellites with high-precession clocks on board at known precise locations send the timing information to terrestrial

10-18 uncertainty...

Source: Frequency ratio measurements at 18-digit accuracy using an optical clock network, Nature, March 2021, https://doi.org/10.1038/s41586-021-03253-4

Synchrony vs syntony

- when they "show the same time"
 - synchrony = same time
- they "tick" at the same rate
 - syntony = same tone (frequency)

We need solutions for synchronization and syntonization

Clocks are said to be synchronized (at a specific point in time)

Clocks are said to be syntonized (over a period of time) when

Offset and Skew

time (a.k.a. phase difference)

Skew - the rate with which the clock drifts with respect to the global (reference) time (a.k.a. frequency difference)

- Offset difference between the clock time and global (reference)

Offset and Skew

Ottset and Skew

converted to global (reference) time t_{g} :

$$t_g = t_c +$$

Ideally, knowing the the values for skew s and offset o (and assuming the they are constant), the clock time t_c can be

$$(\Delta t \cdot s + o)$$

Precision and Accuracy

Precision

- how well the clock tracks passing of time (over a period of time)
- Accuracy
 - how well the clock reflect the global time (at an instant)

Accurate

ALERT: Frequently used but highly misleading analogy

Maintaining local time

- Synchronize with a reference clock to find offset
 - adjust the clock time (how?)
- Do it periodically to find skew adjust the clock

Maintaining local time

- Synchronize with a reference clock to find offset
 - adjust the clock time (how?)
- Do it periodically to find skew adjust the clock

Maintaining local time

- Synchronize with a reference clock to find offset
 - adjust the clock time (how?)
- Do it periodically to find skew adjust the clock

Time transfer

- Let's assume that I have the most precise master clock that money can buy and that the clock is synchronized to some form of universal time
- You need precise time...
 So I write the current time
 on Post-it note and take it to you ...
- The key issue is time transfer and the key challenge is the latency of the communication

Time transfer

- Let's assume that I have the most precise master clock that money can buy and that the clock is synchronized to some form of universal time
- You need precise time...
 So I write the current time
 on Post-it note and take it to you ...
- The key issue is time transfer and the key challenge is the latency of the communication

Time transfer - example

 $RTT = (t_4 -$

 $Offset = (t_2$

$$(t_1) - (t_3 - t_2)$$

 $(t_1) - \frac{RTT}{2}$

RTT = (1060 - 1010) - (1030 - 1020) = 40 units

Offset = (1010 + 40/2) - 1020 = 10 units

The client clock is 10 units ahead of the server clock

Time transfer - example

RTT = (1060 - 1010) - (1030 - 1020) = 40 units

Offset = (1010 + 40/2) - 1020 = 10 units

The client clock is 10 units ahead of the server clock