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TCP Congestion Control
‣Receiver congestion (flow control) 
- Window Size field - explicitly reported by the receiver 
- TCP Window Scale Option 

‣Network congestion 
- Retransmission timeout 
- Transmission window 
- Set based on observed RTT and on detected packet loss



TCP buffering and data flow
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(*) many APIs call the read() operation “receive” (eg: recv() ), read is used here to avoid confusion with receiving data on an interface



TCP Sliding Window
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TCP Sliding Window
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TCP SACK
‣ TCP Selective Acknowledgment 

(SACK) 
- negotiated during connection open 
- additional info about received data on 

top of TCP’s cumulative 
acknowledgment  (ACK# field) 

- a TCP option negotiated when a 
connection is opened 

Wireshark decode of a TCP SYN packet



TCP SACK
‣ TCP Selective Acknowledgment 

(SACK) 
- negotiated during connection open 
- additional info about received data 

on top of TCP’s cumulative 
acknowledgment  (ACK# field) 

- a TCP option negotiated when a 
connection is opened 

TCP SACK Option:

Kind: 5

Length: Variable

                  +--------+--------+
                  | Kind=5 | Length |
+--------+--------+--------+--------+
|      Left Edge of 1st Block       |
+--------+--------+--------+--------+
|      Right Edge of 1st Block      |
+--------+--------+--------+--------+
|                                   |
/            . . .                  /
|                                   |
+--------+--------+--------+--------+
|      Left Edge of nth Block       |
+--------+--------+--------+--------+
|      Right Edge of nth Block      |
+--------+--------+--------+--------+

Source: RFC2018



Network Congestion Control
‣ACK self-clocking  
‣Retransmission timer management  
‣Additive Increase Multiplicative Decrease (AIMD) 
‣Slow start mechanism 
‣…



Initialization:

RTO ←1 sec 

After the first measurement:

SRTT ← R 
RTTVAR ← R/2 
RTO ← SRTT + max (G, K * RTTVAR) 

After subsequent measurements:

RTTVAR ← (1 - beta) * RTTVAR + beta * |SRTT - R'| 
SRTT ← (1 - alpha) * SRTT + alpha * R' 
RTO ← SRTT + max (G, K * RTTVAR)

Retransmission Timeout
Where:  
R - first RTT measurement 
R' - subsequent RTT measurement 
RTTVAR - RTT variance 
SRTT - smoothed RTT estimate 
RTO - retransmission timeout 
G - clock granularity 
Recommended values: 

alpha=1/8, beta=1/4, K=4

RFC 6298



Exponential Back-off
RTO after a timeout:


RTO ←q * RTO 
 

This a congestion control mechanism since retransmissions are 
delayed after packet loss detected. The delay is increasing 
exponentially with more packet losses.

 Recommended value: q = 2



TCP Timestamp
‣Question: 
- ACK for what? 

  

‣RTTM - RTT Management 
- TCP option, two 4-byte values 
- TS value (TSval) - current “timer” value 
- TS echo reply value (TSecr) - most 

recently received TSval (only if it 
acknowledges new data) 

Wireshark decode of a TCP SYN packet


