
CS 925
Lecture 10

TCP Congestion Control
Thursday, February 22, 2024

TCP Congestion Control
‣Receiver congestion (flow control)
- Window Size field - explicitly reported by the receiver
- TCP Window Scale Option

‣Network congestion
- Retransmission timeout
- Transmission window
- Set based on observed RTT and on detected packet loss

TCP buffering and data flow
Application

OS (protocol stack)
Send buffer

send()

Application

OS (protocol stack)
Receive buffer

read()*

Data in flight

ACKs

send()ACK received

data rec’dread()

transmit

receive

(*) many APIs call the read() operation “receive” (eg: recv()), read is used here to avoid confusion with receiving data on an interface

TCP Sliding Window
232-1 0

Initial sequence #

Data delivered to the
application

Sent but not yet
received (in flight)

Received but not yet
ACK’d

Received and ACK’d but
not yet delivered to the

application

data transmitted

ACK sent

Receiver
buffer size

Data sent by the application
waiting to be transmitted

Sender’s
window

size

data received

data read by

application

data sent by application

TCP sequence #s

ACK received

data in
sender’s

buffer

data in
receiver’s

buffer

Events:

receiver
sender

TCP Sliding Window
232-1 0

Initial sequence #

Data delivered to the
application

Received but not yet
ACK’d

Received and ACK’d but
not yet delivered to the

application

ACK sentdata received

data read by

application

TCP sequence #s

data in
receiver’s

buffer

Events:

receiver

TCP Sliding Window
232-1 0

Initial sequence #

data transmitted

Data sent by the application
waiting to be transmitted

Sender’s
window

size

data read by

application

data sent by application

TCP sequence #s

data in
sender’s

buffer

Events:

receiver
sender

ACK received

Data delivered to the
application

Data in flight or received but
not yet delivered to the

application

Data in flight or received but
not yet delivered to the

application

Receiver
buffer size

TCP SACK
‣ TCP Selective Acknowledgment

(SACK)
- negotiated during connection open
- additional info about received data on

top of TCP’s cumulative
acknowledgment (ACK# field)

- a TCP option negotiated when a
connection is opened

Wireshark decode of a TCP SYN packet

TCP SACK
‣ TCP Selective Acknowledgment

(SACK)
- negotiated during connection open
- additional info about received data

on top of TCP’s cumulative
acknowledgment (ACK# field)

- a TCP option negotiated when a
connection is opened

TCP SACK Option:

Kind: 5

Length: Variable

 +--------+--------+
 | Kind=5 | Length |
+--------+--------+--------+--------+
| Left Edge of 1st Block |
+--------+--------+--------+--------+
| Right Edge of 1st Block |
+--------+--------+--------+--------+
| |
/ . . . /
| |
+--------+--------+--------+--------+
| Left Edge of nth Block |
+--------+--------+--------+--------+
| Right Edge of nth Block |
+--------+--------+--------+--------+

Source: RFC2018

Network Congestion Control
‣ACK self-clocking
‣Retransmission timer management
‣Additive Increase Multiplicative Decrease (AIMD)
‣Slow start mechanism
‣…

Initialization:

RTO ←1 sec

After the first measurement:

SRTT ← R
RTTVAR ← R/2
RTO ← SRTT + max (G, K * RTTVAR)

After subsequent measurements:

RTTVAR ← (1 - beta) * RTTVAR + beta * |SRTT - R'|
SRTT ← (1 - alpha) * SRTT + alpha * R'
RTO ← SRTT + max (G, K * RTTVAR)

Retransmission Timeout
Where:
R - first RTT measurement
R' - subsequent RTT measurement
RTTVAR - RTT variance
SRTT - smoothed RTT estimate
RTO - retransmission timeout
G - clock granularity
Recommended values:

alpha=1/8, beta=1/4, K=4

RFC 6298

Exponential Back-off
RTO after a timeout:

RTO ←q * RTO

This a congestion control mechanism since retransmissions are
delayed after packet loss detected. The delay is increasing
exponentially with more packet losses.

 Recommended value: q = 2

TCP Timestamp
‣Question:
- ACK for what?

‣RTTM - RTT Management
- TCP option, two 4-byte values
- TS value (TSval) - current “timer” value
- TS echo reply value (TSecr) - most

recently received TSval (only if it
acknowledges new data)

Wireshark decode of a TCP SYN packet

