
CS 925
Lecture 8

Queuing in Networks
Thursday, February 15, 2024

Prioritization of Flows
‣Goals:
- simple to implement
- independent of packet length
- prioritization

‣ Let’s start with fair scheduling of equal-priority flows:
- single queue (shared fate)

- idea: a queue per flow

A B A A A A A B A A A B A A AB
full queue

dropped
x

Prioritization of Flows
‣Equal-priority flows:
- multiple per-flow queues served in round-robin fashion

A A A A A A A A A A A A A A AA
full queue

dropped
x

B B B B
enqueued

A B A B A B

classifier

‣Equal-priority flows:
- multiple per-flow queues served in round-robin fashion

- what if flows consist of packets of consistently different lengths?

Prioritization of Flows

A A A A A A A A A A A A A A AA
full queue

dropped
x

B B B B
enqueued

A B A B A B

B A B A B A

classifier

Prioritization of Flows
‣Need a method to account for the amount of traffic sent and

serve queues in an order that reflects the amount of traffic sent
- this is easier said than done

‣ The solution is based on theoretical approach called Processor
Sharing (PS):
- assuming packets can be fragmented into small equal-size fragments
- if we serve packet fragments in round-robin fashion, there is no packet

size bias:
- except that we cannot break packets into small fragments (!)

B1 A A A B2 B3

Fair Queuing (FQ)
‣Simulate Processor Sharing to find the order of finish times of

packet transmissions
‣Schedule (full) packets in that order
- surprisingly, this can be done by a simple algorithm

Processor Sharing (PS)
‣Definitions

• - number of non empty queues at time
• - number of rounds at time

• - the length of packet in queue

• - arrival time of packet in queue

• - round when the transmission of packet in queue started

• - round when the transmission of packet in queue was over (the last bit was sent in the
previous one)

‣ Then the packet schedule can be computed using:

- and

N(t) t
R(t) t
Pα

i i α
τα

i i α
Sα

i i α
Fα

i i α

Fα
i = Sα

i + Pα
i Sα

i = max [Fα
i−1, R(τα

i)]

Example
Queue

Packet Arrival Length Arrival Length Arrival Length

0 0 3 1 1 3 3

1 2 1 2 4 - -

α γβ

01

01

0

α
β
γ

Fair Queuing (FQ)
‣ For every packet calculate

- and

‣Schedule them in the increasing order of their

- per-queue packet order is preserved ()

- smaller when compared to other queues indicates “lower utilization”
by that queue

Fα
i = Sα

i + Pα
i Sα

i = max [Fα
i−1, R(τα

i)]
Fα

i
Fα

i < Fα
i+1

Fα
i

Arrival (tau) 0
Length (P)

O(

F
QueuIplia)

Packet 0 Packet 1 /
QueuBeta)

Packet 0 Packet 1

Start round (S) C)

L

Queue amma

Packet 0

End round (F)

I a

Time Round

Queue Alpha

1

Packet 1

Queue Beta

Packet 0

2

3

Packet 1

Queue Gamma

4

Packet 0

5

6

7

5-

8

9

10 1t
11

12

Queue Alpha

wx
Queue Beta Queue Gamma

Packet 0 Packet 1

0
Packet 0 Packet 1 Packet 0C Arrival (tau)

Length (P)

Start round (S)

End round (F)

[_l)

Queue Alpha Queue Beta Queue Gamma

Time Round Packet 0 Packet 1 Packet 0 Packet I Packet 0

2

5

6

11

12

\pJ

Weighed Fair Queueing
‣ Fair Queuing does not support prioritization
‣ Idea:
- Generalized Processor Sharing (GPS): adjust fragment sizes of PS to

reflect priority of the flow
-Weighted Fair Queuing (WFQ): use simulation of GPS to schedule

packets

Deficit Round Robin
‣An improvement on WFQ
‣ Each queue has a deficit counter
‣Queues with deficit counter values higher than the packet length

are served in round robin fashion (and the deficit counter is
reduced accordingly)
‣A quantum is added to deficit counter of a queue that is skipped

‣Complexity: vs for WFQO(1) O(log N)

Active Queue Management
‣A method used by routers or switches of preemptive dropping

(or marking) of packets before queues become full with the
intent of:
- avoiding congestion
- reducing end-to-end latency

Random Early Detection
‣ TCP flow control
- packet loss triggers back-off (rate reduction)
- it takes time to recognize that packet was lost (network latency,

timeouts)

‣Possible outcome network synchronization
- periods of congestion followed by periods of low load caused by a TCP

flows backing off

‣Solution: 1993 Sally Floyd
- RED (Random Early Detection)

RED - Goals
‣Goals:
- Avoid congestion and global synchronization
- Avoid bias against bursty traffic
- Bound on queuing delay

‣Method
- calculate average queue size
- set two thresholds (THmax and THmin) within the queue size
- enqueue or drop packets based the relation between the average queue

size and the thresholds

RED - Details
‣Average queue size
- use exponentially weighted average
- RED uses low weights (0.002)

‣Determining packets to discard:
- discards should be regular (so burst are not targeted)
-… but not too regular (because strict regularity is also undesirable

