CS 925 **Lecture 4** Traffic Management

Thursday, February 1, 2024

Queuing System

- service or a resource (server)
- Entities

. . .

- packets, messages, tasks, people, ...
- Service / Resource
 - switching fabric of a networking device
 - transmission line
 - protocol stack

A model of a system where entities wait (in a queue) for a Queue Server

Queuing System

Exercise

Considering expected wait time, which one of the arrangement is "better"?

Assume that all servers are the same

Queueing System

Challenges:

. . . .

- Randomly arriving "requests"
- Random "service time"
- Random number of requests

- Goal: performance evaluation
 - Average performance
 - Break down point

Model characteristics:

- Arrival rate λ
- Number of waiting items w, queue waiting time T_w
- Server utilization ρ , service time T_s , service rate μ
- Number of items in the system r, residency time T_r
- Item population, queue size, dispatching discipline, probability distributions, ...

Kendall Notation

- X/Y/N
 - X distribution of inter-arrival times
 - Y distribution of service time
 - N number of servers
- Values for X and Y
 - G general
 - -M exponential (memoryless)
 - D deterministic

Example: M/D/1 - a single server queuing system with exponential arrivals and deterministic service time

Goals of Queuing Analysis

- With some simplification...
- Given:
 - Arrival rate λ
 - Service time T_s or service rate μ
- Find:
 - number of items in the queue w or the system r
 - waiting time in the queue T_w or the system T_r
- Mean values, std deviations, etc.

Basic Queuing Relationships

 $\mu = \frac{1}{T_s}$ Service time and service rate: Server utilization: $\rho = \frac{\lambda}{\mu} = \lambda T_s$ - percentage of time the server is in use Number of items in the system: $r = w + \rho$

Basic Queuing Relationships

$$r = w + \rho = \lambda T_w + \frac{\lambda}{\mu} =$$

The mean number of items in a queuing system depends only on the mean arrival rate and the mean waiting time

$\lambda T_w + \lambda T_s = \lambda (T_w + T_s) = \frac{\lambda Tr}{\lambda Tr}$

M/M/1 Queue

- Given:
 - $1/\lambda$ $1/\mu = T_s$ $\lambda < \mu$
 - exponentially distributed inter-arrival time with mean exponentially distributed service time with mean - the system is stable
- Find the mean number of items on the system/queue and the mean waiting time in the system/queue

$$r = ?$$
 $T_r = ?$

 $w = ? \qquad T_w = ?$

M/M/1 Queue

Summary of results:

$$w = \frac{\rho^2}{1 - \rho}$$
$$T_w = \frac{\lambda}{\mu(\mu - \lambda)}$$

M/M/1 Queue

 $r = \frac{\rho}{1 - \rho}$

 $\rho = \lambda/\mu$

$$w = \frac{\rho^2}{1 - \rho}$$