CS 925 Lecture 3
Queues in Networks
Tuesday, January 30, 2024

Performance Modeling and Estimation:

- Why: to build a better performing and cheaper systems
> How:
- build and observe
- make a projection
- simulation
- analytical model
- Accuracy vs feasibility

Probability Recap

- Probability

- definitions \& conditional probability
- Random variable
- discrete \& continuous
- Characteristics of random variables
- cumulative distribution function (CDF) \& probability density function (PDF)
- mean / expected value
- variance / standard deviation

Standard Probability Distributions

- Exponential distribution (continuous)
- inter-arrival times
- Poisson distribution (discrete)
- counts within an interval
- Normal (Gaussian) distribution (continuous)
- latency (?)
- Binomial distribution
- number of busy ports

Exponential distribution

PDF:

$$
f(x ; \lambda)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

CDF:

$$
F(x ; \lambda)= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

Example:
describes packet inter-arrival times with rate λ

Poisson distribution

PMF:
$P(k$ events in interval $)=e^{-\lambda} \frac{\lambda^{k}}{k!}$

CDF:

$$
F(k ; \lambda)=\operatorname{Pr}(X \leq k)=e^{-\lambda} \sum_{i=0}^{\lfloor k\rfloor} \frac{\lambda^{i}}{i!}
$$

Example:
describes the number of packet arrivals within a time interval in a network with exponentially distributed inter-arrival times

Normal distribution

PDF:

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

CDF:

$$
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right]
$$

. averages of samples of observations of independent random variables of independent distributions converge to normal distribution
(Central Limit Theorem)

Binomial distribution

PMF:

$$
\begin{aligned}
& f(k, n, p)=\operatorname{Pr}(k ; n, p)= \\
& \qquad \operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

CDF:

$$
\begin{aligned}
& F(k ; n, p)=\operatorname{Pr}(X \leq k)= \\
& \qquad \sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{n-i}
\end{aligned}
$$

Example:
n ports, p probability of a packet present at a port, k number of ports with a packet

Time-Space Diagram

Stop and Wait Protocol

$d_{\text {prop }}$ - propagation time
L - packet length
R - transmission rate
d - distance
c - propagation speed
Assuming:

- ACK is infinitely small
- "tight" $T O=2 d_{\text {prop }}$

Throughput and Efficiency

- Throughput (measured in packets per second)
- maximum (theoretical) throughput
- $T_{\max }=\frac{1}{d_{t r}}$
- actual throughput of stop and wait protocol (no loss)
- $T_{a c t}=\frac{1}{d_{t r}+2 d_{p r o p}}$
- Efficiency (no loss scenario)
- ratio of maximum vs actual throughput
- $E=\frac{T_{a c t}}{T_{\text {max }}}=\frac{\frac{1}{d_{t r}+2 d_{p r o p}}}{\frac{1}{d_{t r}}}=\frac{d_{t r}}{d_{t r}+2 d_{\text {prop }}}$

Efficiency under loss

- First, let's assume that the first transmission fails but the retransmission succeeds:
- the packet is retransmitted as soon as the ACK fails to arrive (not realistic, but helps to keep the math simple)
- $E=\frac{T_{a c t}}{T_{\text {max }}}=\frac{\frac{1}{2\left(d_{t r}+2 d_{p r o p}\right)}}{\frac{1}{d_{t r}}}=\frac{1}{2} \cdot \frac{d_{t r}}{d_{t r}+2 d_{\text {prop }}}$

Efficiency under loss

- Assuming the first $N-1$ transmissions fail but the $N^{\text {th }}$ one succeeds:
- the packets are retransmitted as soon as the ACK fails to arrive
- $E=\frac{T_{a c t}}{T_{\max }}=\frac{\frac{1}{N\left(d_{t r}+2 d_{p r o p}\right)}}{\frac{1}{d_{t r}}}=\frac{1}{N} \cdot \frac{d_{t r}}{d_{t r}+2 d_{p r o p}}$
- Same result if it takes on average N transmissions to deliver a packet
- How to find N ?

Efficiency under loss

- Assuming that a packet transmission fails with probability p :

\# of Tx's	probability P_{k}	total time
1	$1-p$	$d_{t r}+2 d_{\text {prop }}$
2	$p(1-p)$	$2\left(d_{t r}+2 d_{p r o p}\right)$
3	$p^{2}(1-p)$	$3\left(d_{t r}+2 d_{\text {prop }}\right)$
\vdots	\vdots	\vdots
k	$p^{k-1}(1-p)$	$k\left(d_{t r}+2 d_{\text {prop }}\right)$
\vdots	\vdots	\vdots
	$\sum_{i=1}^{\infty} p^{i-1}(1-p)=1$	

Efficiency under loss

- Finding N, the expected number of transmissions:
- Recall, an expected value of a random variable X
- $\mathrm{E}[X]=\sum_{i=1}^{n} x_{i} P_{i}=x_{1} P_{1}+x_{2} P_{2}+\cdots+x_{n} P_{n}$
- so the expected number of transmissions N can be calculated as
- $N=\sum_{i=1}^{\infty} i P_{i}=\sum_{i=1}^{\infty} i p^{i-1}(1-p)=\cdots=\frac{1}{1-p}$
- and the efficiency of a stop and wait protocol E is
- $E=(1-p) \cdot \frac{d_{t r}}{d_{t r}+2 d_{\text {prop }}}$

Queues are everywhere

- Applications
- buffers/queues, APIs, threads
- Operating system kernel (protocol stack)
- Network interface cards
- Routers and switches
b ... even in peripheral devices, such as storage

Anatomy of a router/switch

TCP buffering and data flow

