
Direct Volume Rendering with Shading

via Three-Dimensional Textures

Allen Van Gelder Kwansik Kim
Baskin Center for Computer Engineering and Computer Science

University of California
Santa Cruz, CA 95064 USA

E-mail: avg@cse.ucsc.edu, ksk@cse.ucsc.edu

UCSC–CRL–96–16

July 19, 1996

Abstract

A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration,
and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images
at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously
reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large
volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports
orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique,
and compares it to the shear-warp factorization approach.

A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information.
Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which
serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the
gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and
not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut
the texture into many slabs. The slabs are composited to form an image.

Keywords: Computer Graphics, Scientific Visualization, Texture Map, Direct Volume Rendering, Spherical
Tesselation.

Note: This report appears in Proceedings of ACM/IEEE Symposium on Volume Visualization, San Francisco, Oct.,
1996, except for the following modifications. The appendix of this report does not appear in the proceedings.
References to the appendices are replaced by references to this report, in the proceedings. The proceedings includes
1/2 page of color images that are not included in the report, as distributedelectronically. The color images are available
separately from the authors.

1

1 Introduction

Rendering speed has always been a major problem in direct volume rendering, because all regions of the volume may
contribute to the image, and because new orientations generally require considerable re-computation. A spectrum of
methods offering different combinations of rendering speed versus image quality have been presented [DCH88, Sab88,
UK88, Lev88, Kru90, Lev90a, MHC90, Wes90, LH91, Lev92]. Image-order algorithms like ray casting produce
superior quality images, but have to traverse the data structure redundantly [Lev90b, DH92]. Some object-order
methods use hardware-assisted Gouraud-shading capabilities to accelerate rendering, by calculating the projections
of volume regions and treating them as polygons [ST90, LH91, WVG91, Wil92, VGW93, WVG94]. Shear-warp
factorization methods have been developed for parallel volume rendering [CU92, SS92], and serial [LL94]. The
method of this paper is compared with shear-warp in Section 4.

This paper presents a new method for direct volume rendering, called Voltx, that takes advantage of hardware-
assisted, 3D texture mapping, and incorporates a light model. We have found Voltx to be significantly faster than the
hardware-assisted Gouraud-shading method (called coherent projection), and comparable in speed to the shear-warp
algorithm of Lacroute and Levoy (called LL) when comparable imaging options are selected. Whenever one voxel
does not cover too many pixels, Voltx produces images comparable to ray-casting. Perspective projections, which
are essential for comfortable stereographic viewing, do not degrade the performance. A stereo interface has been
implemented.

Voltx is robust in the sense that it is able to produce images of good quality even though the transfer function has
high frequencies or discontinuities. Also, rotations of the volume do not introduce artifacts, and perspective projections
do not degrade the performance. All of these problems were reported for LL by Lacroute and Levoy [LL94]. Their
paper suggests ways to get around some of the problems.

Some limitations of Voltx are the restriction to rectilinear volumes, the need to redefine 3D texture maps whenever
the volume is viewed from a new rotation, and the fact that color, not data, is loaded into texture memory. The first
limitation may be inherent in the method. The latter limitations apply only when directional lighting is chosen, but
such lighting is usually needed to obtain informative images. They might be addressed as described in Section 3.3.

Several other papers describe the use of 3D texture-mapping hardware for direct volume rendering. Akeley briefly
mentioned the possibility for the SGI Reality Engine [Ake93]. Cullip and Neumann sketch two approaches, which
they call object space (somewhat related to shear-warp) and image space, and apply them to CT data [CN93]. Guan
and Lipes discuss hardware issues [GL94]. Cabral, Cam and Foran describe how to use texture-mapping hardware
to accelerate numerical Radon transforms [CCF94]. All of the methods described in these papers require substantial
programming to “hand compute” transformations, clipping, and the like, details of which are omitted. Wilson et al.
reported on an earlier version of Voltx [WVGW94]. To our knowledge no previously reported 3D texture-map method
addresses either shading with a light model or the necessity of multiple texture maps for large volumes. Our research
shows that these extensions impact performance by about a factor of ten.

After a quick overview in Section 2, this paper describes how most of the technical programming used by previously
reported 3D texture-map methods can be eliminated by use of graphics library procedures to perform texture space
transformations and set clipping planes (Section 3.2). A new method to judge which voxels are on a material
boundary within the volume, for shading purposes, is described in Section 3.1.2. We also present a software look-up
table technique with quantized gradients (actually, normal vectors), which makes our rendering technique nearly
interactive, while providing excellent image quality (Section 3.1.3). A new tesselation of the sphere is described,
which serves as the basis for normal-vector quantization (Section 3.1.4). Section 4 compares Voltx to shear-warp
factorization. Experimental results are reported in Section 5. Conclusions and future directions are discussed in
Section 6. Additional details are available in the appendices.

2

Figure 1: Slices through the volume in original orientation (left), and rotated (right). The viewer’s line of sight is
orthogonal to the slices. In both orientations, texture coordinates are assigned to corners of the square slices in such a
way that they interpolate into the range [0; 1:0] exactly when they are within the volume.

2 Overview of 3D Texture-Map Technique

In an initial step, the quantized gradient index and material classification of each voxel in the volume are computed. A
voxel may be classified as either reflecting or ambient, depending on the client-supplied gradient-magnitude threshold.
(If this threshold is modified, the voxels must be reclassified.) The result of this step is an index for each voxel into
the lookup table described next.

Whenever a new orientation of the volume or new light position is specified by the client, a software lookup table
is created that assigns, for each combination of quantized gradient 1 and reflecting material, the appropriate color and
opacity (RGBA). Color and opacity are calculated to account for depth integration. Color calculations for ambient
material are also performed, but they are independent of the gradient, and consume negligible time. Thus the size of
the lookup table is effectively the product of the number of quantized gradients and the number of reflecting materials,
and is independent of the size of the volume. References to “color” generally mean color and opacity in the ensuing
discussion.

With the pre-assigned look-up table index of each voxel, 3D texture maps are filled with pre-computed color
values, one “texel” per volume voxel. While this work is proportional to the size of the volume, it involves only
few integer operations from one array to another, per voxel. The preceding steps are easily parallelizable in a MIMD
shared-memory environment. However, transferring the texture maps into texture memory, which uses the graphics
pipeline, is not parallelizable. Limits on texture memory force large volumes to be partitioned into multiple texture
maps.

These texture maps are then processed in the back-to-front visibility order of the partitions of the volume that they
represent. Each one is applied to many parallel planes, which make slices through the texture (see Figure 1). Each
plane, orthogonal to screen-z, is rendered as a square, so texture coordinates need be specified only at its four corners.
Whenever the lighting model changes or the client’s viewing direction changes, the lookup table entries are updated
and the texture map is redefined.

In 3D texture mapping, each polygon vertex is given a point in the texture space, and the graphics system maps
values from the texture map onto the polygon surface by interpolating texture coordinates. This is very similar to
Gouraud shading except that texture coordinates are being interpolated instead of colors. The crucial difference is that
texture coordinates outside of the range [0; 1:0] are still interpolated, whereas such colors would be clamped. The
corners of the squares have out-of-range texture coordinates, but interpolation creates in-range values precisely when
the pixel is within the volume.

1We shall refer to “quantized gradients” although only the direction is quantized, and not the magnitude.

3

The squares are parallel to the projection plane in screen space, while the 3D texture map can be oriented as the
client desires. More squares at thinner spacing, up to a point, give better image quality, while fewer give greater speed.

The major advantage of this method is that after the original data is converted into 3D texture maps, the Reality
Engine’s specialized texture hardware can perform the rendering and compositing of squares very quickly. While few
graphics workstations offer 3D texture mapping in hardware at present, we believe it will become more common,
providing a quick and simple direct volume rendering method for rectilinear data.

3 Detailed Description of Voltx

The two major steps in Voltx are: first, create the texture map (Section 3.1); and second, render the slices (Section 3.2).
Frequencies of these steps is discussed in Section 3.3.

3.1 Creating the Texture Map

The texture-map calculations have several parts, which are triggered by different events. Voxel classification occurs
when the transfer function or certain gradient parameters change; a lookup table is recalculated when the volume
rotation changes, or the light position changes; the texture map is filled whenever any of the above events occur. This
description assumes directional lighting is in effect. For ambient light only, faster alternatives exist (Section 3.3).

Each texture-map entry, or “texel”, corresponds to one voxel. Its color is the sum of ambient and reflecting
components. The “ambient” component is based on the traditional “luminous gas” model used in direct volume
rendering. The reflecting component is based on a surface responding to directional light, and only applies at parts of
the volume judged to represent the boundary surface between different materials. Details are spelled out below.

3.1.1 Ambient Light Component

We interpret each plane to be rendered as being at the center of a slab (slice with thickness) through the data. This
means that each plane must contribute the color intensity and opacity due to one such slab. The thickness of every slab,
∆, is just the total distance covered by the stack of planes divided by the number of planes. Let ∆ be the slab thickness.
Let E(p) denote the color emission per unit distance, for each primary color p, and let A1 denote opacity per unit
distance. These values are computed at each voxel of the volume based on the client-supplied classification function
and transfer function. The color C(p) and opacity A that must go into the texture map are computed by now-standard
methods [WVG91, VGW93]. Briefly, the formulas are:

� = ln
�

1
1 �A1

�

C(p) = E(p)

�
1 � e��∆

�∆

�

A = 1 � e��∆

where p ranges over Red, Green and Blue. Note that C is well-defined as � approaches 0, by taking a power series
expansion.

This equation expresses the integration of color and opacity through the thickness of the slab, without considering
the shading model, and is applied to both ambient and reflecting materials.

For perspective viewing, the effective slab thickness increases slightly with the off-axis angle. Our implementation
ignores this effect, which is at most 4% on the periphery of the image, for normal viewing geometry with a 600-pixel
window width (about 15 cm.) and viewing distance 70 cm. The error can increase to 14% for a 1000-pixel window
width. One way to compensate for this variation is to render concentric spherical shells, rather than planes. The
spherical tesselation technique of Section 3.1.4 is suitable for generating the triangles.

4

3.1.2 Reflecting Surface Classification

A voxel is considered to be reflecting material when it is judged to be “near” the boundary of a volume segment
composed of that material, based on the range of field values for that material, and the gradient of the field function.

Example 3.1: Consider a CT data set with unit spacing between voxels, in which bone is considered to be 110 and
greater densities. Suppose a voxel’s data is 114, and the gradient magnitude is 10. We estimate that the bone boundary
is 0.4 units from the location of this voxel, traveling in the direction of the negative gradient. If the voxel spacing is 1
unit, we judge the voxel to be on the boundary of bone, and classify it as reflecting material.

However, if the voxel’s data is 130, even though the gradient magnitude is still 10, we judge that that neighboring
voxels are also bone. Thus, this voxel is not considered to be on the surface, and we classify it as ambient material.

Given a voxel at location q̄0, with data value d, and gradient vector , an approximate model of the field function
in its neighborhood is

f̃(q̄) = d+ � (q̄ � q̄0)

Let b be the lower limit of the range of data that is classified as the same material as d. (In the example, b was 110.)
Let ∆̄ be the inter-voxel spacing. Based on this linear approximation, one of the 26 neighboring voxels has data below
b if and only if (d� b) < s, where

s = ∆̄xjxj+ ∆̄y jyj+ ∆̄zjz j
Let us call the quantity s the cell-diagonal data shift. A similar test applies for the upper boundary a, using (a�d) < s.

When s is near the value of (d� b) or (a� d), we can assign a “probability” of being on the boundary, instead of
making a binary decision, to allow for noise in the gradient and nonlinearityof the field function. In the implementation,
when s � 0:5(d� b), the “probability” is set to 0, and it increases linearly to become 1 when s = 1:5(d� b). The
client can fine tune the classification by means of a scaling factor to be applied to this probability function, causing
either more or fewer voxels to be judged to be on a surface with some nonzero “probability”. The final shading for the
voxel combines the ambient and reflecting colors and opacities according to the “probability”.

Thus the gradient magnitude is interpreted in the context of the data value and the classification parameters, and
not in isolation, departing from earlier work [Lev90a, LL94].

3.1.3 Reflected Light Component

As mentioned, for each combination of quantized gradient and material, the material’s surface response to directional
lights is calculated, added to the ambient component, and stored in a lookup table. Our implementation uses the
“half-way vector” specularity model [TM67, CT82], as well as Lambertian diffuse shading. Gradient quantization is
discussed in Section 3.1.4.

The resulting color intensities, clamped if necessary, are real numbers in the range [0; 1:0] where 0 is black and
1.0 is full color. These floating point values must be converted to integers in an appropriate range, and packed into a
32-bit or 64-bit texture-map entry, for storage immediately in the lookup table, and eventually in the texture map.

Let the client have specified:

� m as the number of materials;

� k as the number of refinement levels for quantized gradients, as described in Section 3.1.4; then

� g = 30 � 4k + 2 is the number of quantized gradients.

The lookup table will have (m + 1)� g entries which are possible combinations of materials and gradients. Material
0 is the null material; however its places in the lookup table are used to store colors for ambient materials, which need
not be combined with a gradient index.

5

d

Lx

d

s(−d/2) s(d/2)

Figure 2: Geometry of Texture Coordinates. This illustrates an orthographic projection of a 3-D volume of size
(Lx; Ly; Lz) and the bounding cube of side d. Sides Ly and Lz are not labeled. The long diagonal through the volume
is length d = (L2

x + L2
y + L2

z)
1
2 .

In the setup procedure, each voxel’s material index M is classified and its field gradient is calculated. If the voxel
has reflection properties, according to the criteria of Section 3.1.2, then the quantized gradient index G is determined
by finding the closest available quantized gradient. The voxel’s final lookup index is (Mg + G). If the voxel has no
reflection properties, its index is simply M .

The lookup table needs to be recalculated whenever any factor involving light changes, including a rotation of
the volume or a movement of the light source. Previously reported methods for volume rendering with 3D texture
maps did not allow for directional lighting effects, and therefore could avoid recalculation after rotation of the volume
[CN93, CCF94, WVGW94].

3.1.4 Gradient Quantization

We quantize the gradient direction space into a finite number of unit gradients. The goal is to distribute a set of
points on a unit sphere as evenly as possible, and take the vectors from origin to the points as the quantized gradients.
Our method tesselates the sphere into triangles, and uses the triangles’ vertices as the quantized gradient directions.
Numerous tesselations of the sphere are known. Two are based on equilateral spherical triangles as the starting point:
the regular octahedron, with 8 triangles and the regular icosahedron, with 20 triangles. We have developed a new
method by considering both an icosahedron and its dual figure, the dodecahedron, with 12 pentagons. See Figure 7,
top, which shows the vertices of these dual polyhedra. Note that the icosahedron has 12 vertices (black) and the
dodecahedron has 20 vertices (gray). This combination provides 60 congruent, but not quite equilateral, triangles as
the starting point.

A typical method to refine the initial quantization is with recursive subdivision on the starting triangles. By
connecting midpoints of sides, each triangle is partitioned into four new triangles. However, on the sphere, unlike the
plane, the new triangles are not congruent. For example, a quick and easy way is to subdivide the equilateral triangles
from the regular octahedron. Unfortunately, this method will not produce very evenly distributed gradients, because
certain triangles will continue to have a 90� angle, while others approach the more desirable 60� angles. Starting from
the icosahedron’s 20 triangles, the discrepancy is less, varying from 72� to 60�.

Our new method starts from the 32 vertices of the icosahedron and dodecahedron, combined, which produce 60
triangles. These triangles, being more nearly planar than the starting spherical triangles associated with the regular
polyhedra, undergo less distortion during subdivision. The result of two levels of refinement is shown on the bottom
of Figure 7, where refinement vertices are shown as smaller dots.

6

Images in this paper are based on four levels of refinement, yielding 7682 vertices. The general rule for the number
of vertices after k levels of refinement is g = 30 � 4k + 2.

3.2 Rendering Slices

Once the 3D texture is created, we render the volume by applying the texture to parallel planes (represented as squares
in screen-space) and, thus, build up a stack of slabs through the texture, each slab being the region between two
adjacent slices (see Figure 1). The squares are drawn from back to front.

3.2.1 Texture Coordinates for Original Orientation

Consider a world space (x; y; z) coordinate frame in which the center of the volume is the origin. Texture coordinates
(s; t; r) will become proxies for spatial (x; y; z). Essentially, we construct a bounding cube centered on the origin that
is large enough to contain any rotation of the volume. The side of the bounding cube needs to be the length of the
diagonal through the volume, which we shall denote by d. The squares to be rendered (see Figure 1) comprise a series
of slices through the bounding cube, parallel to the cube’s xy faces.

Now suppose the volume has resolution (nx; ny; nz) and spacing (∆x;∆y;∆z). We view this as a set of voxels, so
the volume has sides of lengths nx∆x, ny∆y, and nz∆z. The existing hardware requires the texture-map resolutions
to be powers of two. Therefore, let Nx, Ny and Nz be the least powers of two that are at least as great, respectively,
as nx, ny and nz. We also define

Lx = Nx∆x; Ly = Ny∆y; Lz = Nz∆z:

In its initial orientation, we want the texture coordinates of the point (� 1
2nx∆x;� 1

2ny∆y;� 1
2nz∆z) to be (0; 0; 0).

Similarly we want the texture coordinates of (1
2nx∆x;� 1

2ny∆y;� 1
2nz∆z) to be (nx=Nx; 0; 0), and so on for other

corners of the volume. The constraints are satisfied by the functions

s(x) = (x+ 1
2nx∆x)=(Nx∆x)

t(y) = (y + 1
2ny∆y)=(Ny∆y)

r(z) = (z + 1
2nz∆z)=(Nz∆z) (1)

Since the corners of the bounding cube are (� 1
2d;� 1

2d;� 1
2d), it follows that we want to assign texture coordinates to

these corners by evaluating s, t, and r in Eq. 1 at � 1
2d.

We can represent the required 3D transformation from (x; y; z) to (s; t; r) as a combination of scales and
translation. Let matrix D denote the uniform scale by d, let matrix S denote the nonuniform scale by
(d=Lx; d=Ly; d=Lz) (the reason for two scales will become evident later), and let matrix T denote the translation by
(1

2nx=Nx;
1
2ny=Ny;

1
2nz=Nz). Then

(s; t; r) = (x; y; z)D�1 S T (2)

The texture map has resolution (Nx; Ny; Nz).
Once the texture coordinates for the corners of the bounding cube have been found, those for the squares that slice

up the cube are found easily by interpolation in z; only the r coordinates are affected.

3.2.2 Arbitrary Viewing Angles

From the description in Section 3.2.1, the volume can be correctly rendered if it is being viewed “from head-on”, in
its original orientation. (Observe that nz ordinary 2D textures could be used to do this.) However, to view the volume
from an arbitrary angle requires a 3D texture map, to correctly calculate the intersection of the rendered squares with
the 3D volume. To render the volume from a rotated viewpoint, we keep the bounding cube stationary in screen space,

7

Data, Gradients

3D texture map buffers

3−4 parameter
texture lookup table

texture memory

Frame
buffer

Classification,
map to colors

Ideal Architecture

Data, Gradients

3D texture map buffers

texture memory

Frame
buffer

Classification,
map to colors

Current Architecture

3−4 parameter
software lookup table

Data, Gradients

3D texture map buffers

texture memory

Frame
buffer

Classification,
map to colors

Open GL Alternative

4 one−parameter
color−index lookups

Figure 3: Alternatives for use of 3D texture maps. Heavy boxes denote special hardware; light boxes are software
tables. Double arrows indicate operations needed for each new viewpoint. Single arrows denote occasional operations.
Trilinear interpolation applies to contents of texture memory. Ideal architecture would apply 3-4 parameter texture
lookup table to the interpolated values. Reality engine offers 4 one-parameter texture lookup tables, which suffice only
for rendering without directional lighting.

and instead rotate the texture-space coordinates of the corners of the squares that slice up the bounding cube (see right
half of Figure 1).

This can be done in program code using standard matrix multiplication techniques. Alternatively one can use the
texture matrix, which is part of the graphics system. This matrix is just like a viewing matrix: it transforms texture
coordinates before they actually are used. In this way the programmer gives the same texture coordinates at geometry
vertices no matter what the orientation and the texture matrix does the rotation. In either method, the CPU overhead
is small.

The required texture-space transformation is obtained simply by inserting the inverse of the client’s rotation matrix
R into the transformation of Equation 2, as follows:

(s; t; r) = (x; y; z)R�1 D�1 S T

= (x; y; z)D�1 R�1 S T (3)

using the fact that uniform scaling commutes with rotation. Evaluating (s; t; r) at the corners of the bounding cube (i.e.,
(� 1

2d; � 1
2d; � 1

2d)) can be accomplished by applying the texture-space transformation R�1 S T to (� 1
2 ; � 1

2 ; � 1
2).

The graphics library calls, while in texture mode, are therefore the given translate T , nonuniform scale S, as defined
before Equation 2, following by negated, reversed order, rotation calls as specified by the client.

The mapping from world space to texture space is linear, therefore any rotation of it is also linear. Trilinear
interpolation (done in hardware, in our case) of linear functions commutes with rotation. Therefore the image of
the volume is not deformed. Care must be taken however with regards to the order in which scaling and rotation
operations are performed on the texture coordinates. If a volume does not have the same ∆’s in each dimension, matrix
S specifies a non-uniform scale, which does not commute with rotation. The wrong order leads to shearing distortion.
When transforming the texture coordinates, the correct order of operations is rotation, then scaling. More details and
examples appear in Appendix A.

3.2.3 Planar Regions Outside the Volume

One issue is how to deal with rendering regions of the planes that lie outside the volume. Recall that the planes always
remain parallel to the projection plane, and extend to the bounding cube, but the image of the volume within them

8

rotates. Previous methods “hand-clipped” planes by intersecting them with the faces of the volume, producing a 3–6
sided polygon. The solution we chose uses clipping planes. We can position six programmable world-space clipping
planes (available in Silicon Graphics workstations) at the six faces of the volume, to clip out any parts of the rendered
squares that lie outside the volume. Clipping planes may also be controlled by the client to restrict the portion of the
volume to be drawn.

3.2.4 Number of Planes

The default number of planes is chosen as d=∆z, so that when viewed straight on, each data point is sampled by one
plane. For example, a 643 volume with uniform ∆’s would get 110 planes. The rendered images are more accurate
as more planes are used. With few planes, artifacts may be noticeable where a clipped edge of a rendered square is
visible. We usually chose two to four times the default, as the cost of additional rendered planes is a very minor factor
with directional lighting.

3.3 Hardware Texture Map Issues

Several possible organizations of a volume rendering system based on 3D texture maps in hardware are shown in
Figure 3. Ideal texture-mapping hardware would be able to interpolate data and gradient, then map to color (“color”
includes opacity in this discussion). This produces the greatest accuracy in the presence of nonlinear mappings from
data to color [WVG94]. For such interpolation to make sense, the texture memory must be a continuous function of
the data and gradient values.2

For rendering without directional lighting, the gradient is irrelevant, and a one-parameter texture lookup table, as
offered in the SGI Reality Engine, suffices. In this case, Voltx realizes the “ideal” architecture. But such images have
limited usefulness. One possible application is simulation of x-ray views (Figure 6).

In the more common case where directional lighting is desired, Voltx realizes the architecture in the middle of
Figure 3. In this case, and in the Open GL alternative, the texture memory contains color, computed independently
at each voxel of the volume. Buffers contain discontinuously encoded representations of the gradient, as described in
Section 3.1.3. (In the figure, the “Data, Gradient” are so encoded in the “current” architecture; this one-time operation
is not shown. The buffers in the middle section are maintained by the SGI GL library, and contain color. The buffer
shown in the “Open GL alternative” is encoded and maintained by the application program.) Thus the hardware
interpolates color, rather than data. This leads to inaccuracies in the presence of nonlinear mappings from data to
color [WVG94]. The inaccuracies are more pronounced in close-up views. The 3–4 parameter texture lookup table
needed to realize the “ideal” architecture seems unlikely to be economically justified for commercial systems in the
foreseeable future.

4 Comparison to Shear-Warp Factorization

The Voltx method has certain similarities to the shear-warp technique, in that the volume is represented as a series
of parallel planes for rendering purposes. In the shear-warp technique, those planes correspond to slices of the original
volume. The principal slices are used, which are those most nearly orthogonal to the sight line. In general, they are
oblique to the line of sight. The principal face is the principal slice closest to the viewer. In the Voltx method the
planes are parallel to the projection plane, and are, in general, oblique to the volume.

The shear-warp method can be viewed as a form of ray-casting in which the rays are sparse, and arranged in
a parallelogram pattern that corresponds to the vertices in the principal face of the volume (Figure 4, left), rather
than the usual square pattern of pixels. Values computed on these obliquely arranged rays in the “shear” phase are

2An attempt to encode data and gradient discontinuously into one parameter, and sample the texture memory by the “nearest neighbor” method
failed on the SGI Reality Engine. Following our problem report, the new SGI documentation states that the “nearest neighbor” method is only
approximate. Due to inaccuracy of a filter, values that do not correspond to any neighbor may be delivered. This makes it impossible to use a
discontinuous texture lookup table to perform arbitrary decodings of the texture map.

9

Shear−Warp ‘‘Ray’’ Sampling 3D Texture Map ‘‘Ray’’ Sampling

Figure 4: Shear-warp and volume texture methods are equivalent to certain ray-casting policies, as discussed in
Section 4. The volume is 4 � 4 � 4. Screen-z is out of the page on the left, where the volume is represented by its
principal slices. Screen-z is down in the center and right, where the principal slices slant up to the right.

interpolated at screen pixels in the “warp” phase. Figure 4, center, shows how shear-warp “rays” sample the volume.
The dots represent points sampled, and the lines going up from the dots indicate where the volume is assumed to have
the sampled value for color/opacity integration purposes. Figure 4, right, shows the comparable situation for Voltx,
assuming 20 pixels and 8 rendered planes. In effect, a ray is shot from each pixel, and the sample is computed by
trilinear interpolation.

Lacroute and Levoy have reported on a fast shear-warp implementation [LL94], a limited version of which has
been distributed. It will be called LL in this discussion. It is apparent from their paper and their code that speed
was a major design objective of LL, and they have succeeded admirably in attaining this objective. We have made
comparison tests of the same volume data on LL and Voltx. The general rule is that LL is somewhat faster, while Voltx
is less prone to artifacts. Some of the issues are discussed below.

Both methods use planes through the volume, and increasing the number of planes improves the resolution. In
Voltx the number of planes is a minor cost consideration and can be adjusted at run time, as it is independent of the
volume. In LL, the number of planes is fixed by the resolution of the volume. To increase it requires resampling the
volume in a preprocessing step, and the increased resolution has a substantial impact on performance. This appears to
be an implementation choice, not an inherent property of shear-warp.

Both methods currently compute color (“color” includes opacity in this discussion) independently at each voxel of
the volume, then interpolate color from those points. This leads to inaccuracies in the presence of nonlinear mappings
from data to color, which are more pronounced in close-up views, as discussed in Section 3.3. The shear-warp
technique, being entirely in software, can interpolate data and gradient, then map to color.

Smoothing out the transfer function was also recommended as a way to improve the shear-warp image quality, but
such a step must bring image accuracy into question. Actually, Voltx always uses discontinuous transfer functions, as
the each voxel is always classified as a single material. This can cause aliasing artifacts, but they are not noticeably
sensitive to the orientation of the volume. Lacroute and Levoy reported that artifacts increase for LL as the rotation
approaches 45 degrees.

10

5 Results

Rendering times for data with various sizes are summarized in Figure 5. The rendering was done on a Silicon Graphics
Reality Engine II with two megabytes of 3D texture-map hardware and one raster manager. Classification time includes
material classification, and quantizing the voxel gradients, and is based on one processor. This task is needed only
once per run, as a rule. Rendering time includes updating the lookup table and rendering with new rotation or new
lighting model for material definition. Times are real elapsed seconds, rather than CPU seconds, because CPU times
do not reflect delays due to the graphics pipeline, which is heavily used. For comparison, the last column shows times
without directional lighting, which are about 10 times faster.

Figures 6 and 8 (color plate) present a sample rendering of data sets listed in Figure 5. We used 1000 planes to
render all volumes except Hipip, (High Potential Iron Protein) for which we used 128. (“Planes” were discussed in
Section 3.2.) All images were rendered at 600 � 600 pixels, with four 8-bit color channels.

We found that times can be reduced by a factor of 1.2 to 2.5 by using four processors. These disappointing
speed-ups are due to the fact that the graphics pipeline must be used serially, and it comprises a large fraction of the
elapsed time. The GL interface requires redundant copying and processing of of 3D texture maps. For example, on
the MR brain data set, 8 seconds are consumed in defining the 32 texture maps withtexdef3d, using one processor.
Open GL offers a different interface (glTexImage3DEXT with COLOR INDEX format, and mapping tables for each of
R,G,B,A), but our test showed that it still took 8 seconds to process 32 texture maps.

However, perspective projections incur no observable time penalty, in contrast to shear-warp techniques. They are
essential for comfortable stereographic viewing. Also a pair of stereo images often requires much less than twice the
time of a single view, as one pass through the texture loading suffices.

6 Conclusions and Future Directions

Volume texturing is a fast and simple method for direct volume rendering of rectilinear volumes available to those with
appropriate hardware. With a directional light model, images have very good quality. Our implementation uses either
orthographic or perspective projection, and supports stereo viewing (Figure 6 and color plate Figure 8).

By turning over many tasks to the hardware and libraries, we have simplified the programming task, but have
given up on many optimization opportunities. On the other hand, with directionally shaded 3D texture-map images,
the best-quality options consume only a little more time than the cheapest, so you might as well use them.

Lacroute and Levoy describe several optimizations that greatly increase the performance of LL. Their best reported
times depended heavily on: (1) skipping over low-opacity (.05) voxels and nearly opaque (.95) pixels, (2) monochrome
imaging, and (3) the use of orthographic, rather than perspective, projection. These practices compromise image quality
under some circumstances, but they are not inherent parts of shear-warp. The fact that LL software competes with
hardware-dependent Voltx calls into question the value of hardware 3D texture maps, at least as offered in the Reality
Engine, for this application. (The fact that hardware designs cannot be fixed or modified by end-users is another
practical consideration.)

While the graphics library and hardware handle many implementation details that would otherwise require hand-
coding, there is some possibility that a software implementation of the same transformations could be competitive
through increased ability to use parallelism. This would permit improved accuracy by interpolating data and gradients,
rather than color, as discussed in Section 4. This is one topic for future investigation.

A related question that deserves investigation is whether the shear-warp technique can be improved in accuracy by
interpolating data and gradients, rather than color, without incurring too great a loss of time.

Acknowledgements Funds for the support of this study have been allocated by a cooperative agreement with NASA-
Ames Research Center, Moffett Field, California, under Interchange No. NAG2-991, and by the National Science
Foundation, Grant Number ASC-9102497, and Grant Number CCR-9503829.

11

Texture Wall-Clock Seconds
Data Size Maps Class- Render, 1 proc Render, 4 procs 1 proc
Set (voxels) Needed ific’n 1 view stereo 1 view stereo unshaded

Hipip 64�64�64 1 1 1.0 1.4 .8 1.2 .16
MR brain 256�256�109 32 61 13.3 17.4 5.0 9.5 .70
Engine 256�256�110 32 62 13.5 16.9 4.7 8.8 1.10
CT head 256�256�113 32 77 13.5 17.0 5.3 9.5 1.33

Figure 5: Rendering and classification times for Voltx. Times are for a Reality Engine II, with one raster manager,
using one or four 150-MHz processors. Rendered images are 600x600 pixels. See Section 5 for discussion.

References

[Ake93] Kurt Akeley. RealityEngine graphics. Computer Graphics (ACM Siggraph Proceedings), 27:109–116,
1993.

[CCF94] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomographic reconstruction
using texture mapping hardware. In ACM Symposium on Volume Visualization, pp. 91–98, Washington,
1994.

[CN93] T. J. Cullip and U. Neumann. Accelerating volume reconstruction with 3D texture hardware. Technical
Report TR93-027, University of North Carolina, Chapel Hill, N. C., 1993.

[CT82] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer graphics. ACM Transactions
on Graphics, 1(1):7–24, 1982.

[CU92] G. G. Cameron and P. E. Undrill. Rendering volumetric medical image data on a SIMD-architecture
computer. In Third Eurographics Workshop on Rendering, Bristol, UK, MAy 1992.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. Computer Graphics (ACM
Siggraph Proceedings), 22(4):65–74, 1988.

[DH92] John Danskin and Pat Hanrahan. Fast algorithms for volume ray tracing. In ACM Workshop on Volume
Visualization, pp. 91–98, Boston, 1992.

[GL94] S. Guan and R. G. Lipes. Innovative volume rendering using 3D texture mapping. In Image Capture,
Formatting and Display. SPIE 2164, 1994.

[Kru90] Wolfgang Krueger. Volume rendering and data feature enhancement. Computer Graphics (Proceedings
of the San Diego Workshop on Volume Visualization), 24(5):21 – 26, 1990.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications,
8(3):29–37, March 1988.

[Lev90a] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–261, 1990.

[Lev90b] Marc Levoy. A hybrid ray tracer for rendering polygon and volume data. IEEE Computer Graphics and
Applications, 10(2):33–40, March 1990.

[Lev92] Marc Levoy. Volume rendering using the fourier projection-slice theorem. In Proceedings of Graphics
Interface ’92, Vancouver, B.C., 1992. Also Stanford University Technical Report CSL-TR-92-521.

12

[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: A progressive refinement algorithm for volume
rendering. Computer Graphics (ACM Siggraph Proceedings), 25(4):285–288, 1991.

[LL94] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factorization of the
viewing transformation. Computer Graphics (ACM Siggraph Proceedings), pp. 451–458, 1994.

[MHC90] Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence for efficient visualization
of 3D scalar functions. ACM Workshop on Volume Visualization, 24(5):27–33, 1990.

[Sab88] Paolo Sabella. A rendering algorithm for visualizing 3D scalar fields. Computer Graphics, 22(4):51–58,
1988.

[SS92] Peter Schroeder and Gordon Stoll. Data parallel volume rendering as line drawing. In ACM Workshop
on Volume Visualization, pp. 25–32, Boston, 1992.

[ST90] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering.
Computer Graphics, 24(5):63–70, December 1990.

[TM67] Kenneth E. Torrance and Sparrow E. M. Theory for off-specular reflection from roughened surfaces.
Journal of the Optical Society of America, 57(9):1105–1114, 1967.

[UK88] Craig Upson and Michael Keeler. The v-buffer: Visible volume rendering. Computer Graphics (ACM
Siggraph Proceedings), 22(4):59–64, 1988.

[VGW93] Allen Van Gelder and Jane Wilhelms. Rapid exploration of curvilinear grids using direct volume
rendering. In IEEE Visualization ’93, 1993. (extended abstract) Also, Univ. of California technical
report UCSC-CRL-93-02.

[Wes90] Lee Westover. Footprint evaluation for volume rendering. Computer Graphics (ACM Siggraph
Proceedings), 24(4):367–76, 1990.

[Wil92] Peter Williams. Interactive splatting of nonrectilinear volumes. In IEEE Visualization ’92, pp. 37–44,
1992.

[WVG91] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volume rendering.
Computer Graphics (ACM Siggraph Proceedings), 25(4):275–284, 1991.

[WVG94] Jane Wilhelms and Allen Van Gelder. Multi-dimensional trees for controlled volume rendering and
compression. In ACM Symposium on Volume Visualization, Washington, 1994.

[WVGW94] Orion Wilson, Allen Van Gelder, and Jane Wilhelms. Direct volume rendering via 3D textures. Technical
Report UCSC-CRL-94-19, Univ. of California, Santa Cruz, 1994.

13

Figure 6: Autostereograms of CT head and MRI head (left and center), to be
viewed without instruments at a distance of 1–2 feet. Try to look at a point
about three times the distance of the page, 3–6 feet away. Raise page into line of
sight, seeing 3 images. Middle image should fuse, giving stereo effect. Blinking
the eyes might help. Alternatively, place a card or piece of stiff paper between
images, and extending towards the eyes; page should still be about one foot away.
Right upper image is x-ray-style image of CT head. Volume has opacity only,
and light is emitted from back plane. CT head is classified as bone on a ramp
from 0% at 90 to 100% at 130 Hounsfield units. MRI uses binary classification
at threshold 550. For a new viewpoint, stereo images required 18 seconds per
pair; x-ray image required 1 second. All images required 32 texture maps.

Figure 7: Vertices of regular
icosahedron (black) and its dual
dodecahedron (gray) are triangu-
lated into 60 triangles (right, cen-
ter), which are recursively subdi-
vided (right, lower) to give points
on the unit sphere that serve as
quantized normal vectors.

Color plates omitted; available separately from authors.

Figure 8: Autostereogram of Hipip (left, center, see Fig. 6 for viewing hints), and image of Engine (right).

14

0,0

0,1

1,0

1,1

.75,.750,.75

.75,0

Translate

.5,0

Rotate

= 3 , 6

= 4 , 1

= 12 , 6

= 4 , 8

= 13.416

= 63.58°

= 0.839 , 1.677

= 0.375 , 0.375

0, −.5

−.5,0

−.5, −.5 .5, −.5

.5,0

The Geometry Square
.375,−.375

Scale

.447,−.224

 Data Resolution

 Data Deltas

 Data Side Lengths

Texture Map Resolution

 Data Diagonal

 Rotate

 Scale

 Translate

Data in the Texture Map

The Texture Map

R
esulting Im

age of the D
ata,

w
ith texture coordinates via interpolation.

after Scaling.
Coordinates

after Rotation.
Coordinates

Coordinates
which get
used in the
texture map.

Figure 9: 2-D Example of Texture Coordinate transformations. Coordinates are specified at the corners of the Geometry
Square, then by a series of matrix transformations are mapped to the texture map.

Appendix A Texture Coordinate Examples

We thank Orion Wilson for helping to work out these examples and for drawing the accompanying picture.

Example A.1: Assume the volume has resolution (3; 4; 4) and spacing (∆x;∆y;∆z) = (1; 3; 1). The diagonal is
d = 13. Then (Nx; Ny; Nz) = (4; 4; 4). We get

s(�d=2) = �1:25

s(d=2) = 2:00

t(�d=2) = �0:041667

t(d=2) = 1:041667

r(�d=2) = �1:125

r(d=2) = 2:125

Example A.2: This 2-D example works thru a texture-matrix calculation to show that the pre-matrix texture
coordinates for a given corner of the data rectangle get transformed to the correct final texture coordinates.

Assume the data has resolution (nx; ny) = (3; 6) and spacing (∆x;∆y) = (4; 1). Then the diagonal is d = 13:42,
and the texture map resolution (Nx; Ny; Nz) = (4; 8). Assume the viewer has rotated the volume Θz = �63:58�. (In
case of multiple rotations by the viewer, their order must be reversed here). The parameters of the texture matrices are:

Rotate = (�Θz;
0
z
0) = (63:58�):

15

Scale =

�
d

Lx
;
d

Ly

�
=

�
13:42

4
;

13:42
8

�
= (:839; 1:677):

Translate =

�
nx

2Nx

;
ny

2Ny

�
=

�
3
8
;

3
8

�
= (:375; :375):

We choose the pre-matrix texture coordinates at the corners of the planes to be (�:5;�:5);: : : ; (:5; :5), as explained in
connection with Equation 3.

For example, the interpolated “raw” texture coordinates of the lower right corner of the rotated data set are (0;�:5).
These are transformed in hardware by the texture matrices, as follows:

Original Coordinates = (0;�:5)
After Rotation = (:447;�:224)

After Scaling = (:375; �:375)

After Translation = (:75; 0)

which agrees with the corresponding texel in the texture map, whose coordinates are:
�

3
4
;

0
8

�
= (:75; 0):

Appendix B Hardware Texture Map Details

This section discusses some detailed choices to be made in the use of the hardware texture map feature.

Appendix B.1 Interpolation Options

The Reality Engine can be set to sample the texture map either using a nearest neighbor method (so-called point
interpolation)3 or a trilinear interpolation. The trilinear method is about 50% slower than point interpolation, but gives
smoother-appearing images. Because the actual rendering time is dwarfed by the time needed to recalculate the texture
map after a rotation, we normally choose the superior image.

Appendix B.2 Rounding Errors

In creating the texture map, it is possible to encounter significant rounding error problems when using an eight-bit
rather than a twelve-bit texture map. However, rendering with an eight-bit texture map is about twice as fast as with
a twelve-bit map, the memory requirement is half as much, and the problem only occurs under certain conditions.
Consequently, it is sometimes desirable to use an eight-bit map.

For example, if the color contribution to a plane is small, rounding error can make it appear zero. This can be seen
as blank areas in the final image when the number of slices is large enough so that the color contributions of many
single pixels in each plane are rounded to zero. If the texture map has eight bits per color channel, then rounding errors
are up to one half of 1=256. In this case, rounding-error may become detrimental if several hundred slices are used.
The problem is exacerbated if the data set in question is largely homogeneous, because in a region of constant value,
the pixels are all rounded in the same direction and the error accumulates. In non-homogeneous data, rounding-errors
tend to cancel each other out.

The problem becomes negligible (for hardware texture maps of a size available now) when the texture map is given
more bits per channel, simply reducing the magnitude of the errors. Twelve-bit textures (supported in the Reality

3Actually, the “nearest neighbor” method is only approximate. Due to inaccuracy of a filter, values that do not correspond to any neighbor may
be delivered. This makes it impossible to use a discontinuous “texture lookup table” to perform arbitrary decodings of the texture map.

16

Engine) let rounding-error be only one half of 1=4096. This is quite sufficient to make an acceptable texture map for
distributing the data even over several thousand slices. An accurate final image rarely requires more slices than 3.5
(2 �p

3) times the maximum resolution in the volume.
Besides rounding-errors in the storage of the texture, we were also concerned that errors would accumulate during

the blending and compositing stage of rendering, but this has not been noticed.

17

