
9/15/14 R. Daniel Bergeron
1

Volume Visualization

R. Daniel Bergeron
Department of Computer Science

University of New Hampshire
rdb@unh.edu

9/15/14 R. Daniel Bergeron
2

Volume Visualization Techniques

• Planar Slicing
– move slice through space  

• Isosurface —surface from equal  
valued cells
– change value over time

• Direct volume rendering
– viewing “gas” using color/opacity
– ray casting and splatting

9/15/14 R. Daniel Bergeron
3

Volume Data

• Volume data is a set of data points in 3D
– regularly spaced sampling is common from medicine
– irregular sampling sometime occurs with finite element analysis

problems
• Assume sampling from a continuous phenomena
• Regular sampling leads to division of volume into

rectilinear voxels (volume data elements)
– sometimes view the sample value as the center of a

voxel, sometimes as a corner

9/15/14 R. Daniel Bergeron
4

Isosurface Rendering
Often useful to construct a surface within a volume that

represents a constant value, k
Three common algorithms
• Connectivity
• Marching Cubes [Lorenson&Cline 87]
• Dividing Cubes [Cline et al. 88]

9/15/14 R. Daniel Bergeron
5

Connectivity Isosurface Algorithm
• Start with a “seed” voxel, recursively find neighboring

voxels with same value  
connect(voxel(x,y,z)):

– if voxel(x,y,z) intersects surface & is not marked  
 mark (x,y,z)  
 connect (x+1, y, z)  
 connect (x-1, y, z)  
 connect (x, y+1, z)  
 connect (x, y-1, z)  
 connect (x, y, z+1)  
 connect (x, y, z -1)

• Allows separation of surfaces with same value

9/15/14 R. Daniel Bergeron
6

Marching Cubes Overview
1. Label each voxel vertex + (>=k) or – (<k)
2. Assign index to each voxel based on vertices.

64 cases, 15 unique ones, but some ambiguous.
3. For each voxel edge with +/– end points,

linearly interpolate along edge to get estimate
of position where value is k

4. For each voxel with +/– edges, connect points
to get polygon.

5. Triangulate and display all such polygons –

– –
–

–
–

+

–

– –
–

–
–

+

9/15/14 R. Daniel Bergeron
7

Marching Cubes  
Basic Cases

• There are only 15 truly different cases

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

9/15/14 R. Daniel Bergeron
8

Marching Cubes  
Ambiguous Cases

• Cube face with adjacent different vertices and diagonally opposite
same vertices — 6 cases

• Inconsistent neighbor choices yields holes

3 6 7 12 1310

9/15/14 R. Daniel Bergeron
9

Marching Cubes  
Computing Normals

• For each vertex, estimate a vector normal using forward
differences:
– dx[i, j, k] = x[i+1, j, k]-x[i, j, k]
– dy[i, j, k] = y[i, j+1, k]-y[i, j, k]
– dz[i, j, k] = z[i, j, k+1]-z[i, j, k]

9/15/14 R. Daniel Bergeron
10

Other Isosurface Algorithms

• Dividing cubes - never generate triangles
– if cube contains isosurface, project it to screen

if projection is smaller than a pixel, render it  
else subdivide cube and recurse

• Marching tetrahedra
– Divide each cube into 5 tetrahedra
– Surface can only pass through a tetrahedron in 2

unique ways: both of which yield 1 triangle
– 5 times as many objects, but each is much simpler

9/15/14 R. Daniel Bergeron
11

Direct Volume Rendering  
Ray Casting

• Figure out how each pixel is built from data values
• Ray intersects each voxel

– value inside voxel is a density
– distance ray travels through voxel determines opacity

that is added to pixel’s opacity value
– if pixel opacity reaches 1, ray traversal terminates

9/15/14 R. Daniel Bergeron12

Direct Volume Rendering  
Splatting

• Figure out how each data value contributes to each pixel
• Treat each voxel as a solid object, project its faces onto

the display area (from back to front)
• the color and opacity of the projected polygons are

determined from the voxel’s values
• the projected polygons are composited according to

their depths, opacities and colors

