CS 725/825 \& IT 725 Lecture 21 Network Layer

November 20, 2023

IPv6 - Motivation

- What's wrong with IPv4?
- not enough addresses
- to complex to process in routers
- autoconfiguration
- security
- Can we avoid switching to IPv6?
- Network Address Translation (NAT)

IPv6 - Protocol Design

- Keep the good stuff...
- unreliable datagram service
- TTL, TOS (for compatibility)
- Eliminate the unnecessary...
- no fragmentation (only as an option)
- no header checksums
- Address the issues...
- longer addresses and more

Ver.	Traffic cls	Flow label		
Payload length			Next header	
Hop limit				
Source address				
Destination address				

IPv6 Address Representation

- An IPv6 address is represented by 8 groups of 16-bit hexadecimal values separated by colons (:)
- Can be abbreviated:
- omit leading zeroes in a 16-bit value
- replace one group of consecutive zeroes by a double colon
- Example:
- 2606:4100:38c0:9::5 vs 2606:4100:38c0:0009:0000:0000:0000:0005

Special Use IPv6 Addresses

| ::/128 - Unspecified address
| ::1/128 - Loopback address
| ::FFFF:0:0/96 - IPv4-mapped address
| FE80::/10 - Link-local unicast
| FF00::/8 - Multicast

Routing

- Approaches:
- First find a path from source to destination and then follow it... (Source Routing)
- Go to the first corner, ask for direction to the next corner that is on the way to the destination*. Repeat until you reach the destination... (Hop-by-hop Forwarding)

Routing Table Content

- Automatically populated with entries based in local L2 configuration
- Static entries - added by the network administrator
- Dynamic entries - added by dynamic routing protocols

Routing

- Finding a good path from source to destination
- topology discovery
- route selection
- Network as a graph...
- links (point to point and L2 subnets) and routers

- destinations are typically L2 subnets, not individual nodes
- links may have "weights"

What is a good measure of "weight" of a link?

Weight of a path?

p Link measures:

- Throughput / bit rate
- Latency
- Loss probability
- Availability
- Current load
- Security
- Monetary cost
- Path measures:
- Sum

Latency
Monetary cost

- Min/Max

Throughput / bit rate

- Product

Loss probability

Trivial routing methods

- Hot potato routing (not practical)
- send to randomly chosen outgoing link...
> Flooding (not practical)
- send a copy to every outgoing link...
- Limited flooding
- every packet has a sequence number (together with the source address, this makes a copy of a packet uniquely identifiable)
- send a copy to every other outgoing link
- keep track of forwarded packets so that copies are sent only once

Routing Protocols - Categories

- Link State

- exact neighbor information flooded to everyone
- topology of the entire networks is discovered in each node
- shortest paths calculated and used to populate the routing tables

Distance Vector

- estimates of distances to all nodes in the network sent to all neighbors
- estimates are improved based on information from neighbors
- the process is repeated and routing tables are populated based on the estimates

Distance Vector (recap)

- Estimates of distances to all nodes in the network (Distance Vector) is sent to all neighbors
- Estimates are improved based on information from neighbors
- The process is repeated and routing tables are populated based on the estimates

Distance Vector routing

Distance Vector routing

Distance Vector routing

Distance Vector routing

Distance Vector update

- Is routing to D through X's neighbor Y (with distance $d_{X Y}+d(Y, D)$) better than the current best route from \mathbf{X} (with distance $d(X, D)$)?

Distance Vector routing

Distance Vector routing

Distance Vector routing

Distance Vector routing

