CS 725/825 & IT 725 Lecture 8 Networking Fundamentals

September 25, 2023

Recall...

Routed networks

- topology driven by geography
- long distances (high latency)
- need for scalability
- location-related addresses
- routing
- **→ Network Layer (L3)**

Broadcast & select

- everyone connected to everyone
- short distances (low latency)
- lesser need for scalability
- arbitrary addresses
- address discovery
- → Link Layer (L2)

Routing Alternative: Bridging

- Motivation
 - L2 networks do not scale due to the broadcast nature of the underlying medium
 - Routers are expensive and require configuration
- Approach extend the reach of L2
- Solution limit the scope of packet delivery (bridging)

Motivation (personal)

John Green Hall, the former home of the *Department of Mathematics and Computer Science*, University of Denver

Image source: University of Denver

Historical Evolution

Link Layer Bridging

- Bridge "opens" for non-local traffic and broadcasts
- Bridge learns node locations from passing traffic and stores them in its Forwarding Database (FDB) (a.k.a. bridge, bridging, or switching table)

Transparent Bridging

- Initially, the bridging table (FDB) is empty
- Broadcast traffic is let to pass, source address recorded in the FDB
- Traffic to an unknown destination is let to pass through the bridge, source address address is recorded in the FDB
- Non-local traffic (to a known destination that is associated with different interface, e.g., a to d) is let to pass, "local" traffic (e.g., a to b) is blocked

MAC	Interface
a	1
b	1
С	2
d	2

L2 (Ethernet) Switching

MAC	Interface
a b c d	1 2 3 4
d	4

MAC	Interface
a	1
р С	1
d	2

Unicast packet from a to d

Unicast packet from a to d

Broadcast packet

Broadcast packet

Standardization

- ISO International Organization for Standardization
- ► ITU-T International Telecommunication Union Telecommunication Sector
- ▶ IEEE Institute of Electrical and Electronic Engineers
- ► IETF Internet Engineering Task Force
- x Forum / x Alliance / x Group

Standardization

- ▶ IEEE Institute of Electrical and Electronic Engineers
 - 802.3an: 10GBASE-T 10 Gbit/s (1,250 MB/s) Ethernet over unshielded twisted pair (UTP)
 - 802.11ad: (in works) gigabit "WiFi" in 60 GHz band
- ► IETF Internet Engineering Task Force
 - RFC791: Internet Protocol DARPA Internet Program Protocol Specification (1981)

Standardization Process

```
BOF - Birds of a Feather (... flock together)

WG - Work Group

-working documents / draft standards

Editor

-standard documents
```

Application Layer

Application Layer

Assumptions:

- each host (each network interface, actually) has a globally unique id (IP address)
- each communication endpoint of an application has an id that is unique within the host (port number)
- underlying network provides reliable connection-oriented or unreliable connection-less service (TCP or UDP)
- For a particular transport protocol, each "communication" is uniquely identified by a quadruple: src/dst IP addresses & src/dst port numbers

Client and Server

Client and Server

- Client (caller)
 - actively opens connection to a server
 - must know server's IP address and port #
 - typically uses ephemeral source (local) port number

Server (callee)

- connects to a local port (typically a well-known one)
- waits for clients to connect
- may handle multiple simultaneous client connections

Client and Server

A process (web browser) connected to ephemeral port 1111 on a host with IP address 132.177.4.36 opens connection to a process that listens on well-known port 80 (web server) on a host with IP address 132.177.4.32

Command Line Utility: nc

3. typing a message to the server

Sequence Diagram

(*) this is a more complex interaction than show here

Socket API

- Berkeley socket API (4.2 BSD Unix, 1983)
- POSIX socket API (reentrant)
- Designed to support any protocol not just TCP/UDP/IP
- Defined in C, but adopted by essentially all programming languages