
Spatially Distributed Multiagent Path Planning

Christopher Wilt
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA
wilt at cs.unh.edu

Adi Botea
IBM Research
Dublin, Ireland

adibotea at ie.ibm.com

Abstract

Multiagent path planning is important in a variety of fields,
ranging from games to robotics and warehouse management.
Although centralized control in the joint action space can
provide optimal plans, this often is computationally infeasi-
ble. Decoupled planning is much more scalable. Traditional
decoupled approaches perform a unit-centric decomposition,
replacing a multi-agent search with a series of single-agent
searches, one for each mobile unit.
We introduce an orthogonal, significantly different approach,
following a spatial distribution that partitions a map into high-
contention, bottleneck areas and low-contention areas. Lo-
cal agents called controllers are in charge with one local area
each, routing mobile units in their corresponding area. Dis-
tributing the knowledge across the map, each controller can
observe only the state of its own area. Adjacent controllers
can communicate to negotiate the transfer of mobile units.
We evaluate our implemented algorithm, SDP, on real game
maps with a mixture of larger areas and narrow, bottleneck
gateways. The results demonstrate that spatially distributed
planning can have substantial benefits in terms of makespan
quality and computation speed.

Introduction
Multi-agent path planning is an important problem in a va-
riety of fields, ranging from robotics to games. The prob-
lem is relevant to managing warehouse inventory (Wur-
man, D’Andrea, and Mountz 2008), where mobile robots in
charge with transporting warehouse goods must coordinate
with one another. In commercial games, mobile units have
to navigate in a realistic fashion over a shared map.

We focus on cooperative path planning, a popular formu-
lation among the multiple available flavours of the multi-
agent path planning problem. Mobile units within a shared
environment are interested in avoiding deadlocks and colli-
sions with other units. The goal of each unit is to reach its
target position, starting from a given initial position.

One way to optimally solve such problems is to central-
ize control. Centralized methods quickly become impracti-
cal as the number of mobile units grows. Recent years have
seen a significant progress with optimal multiagent pathfind-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing (Standley 2010; Sharon et al. 2012), but the scalability
remains a bottleneck in practice.

Decoupled suboptimal approaches are more practical. A
popular strategy is to decompose the search problem in a
unit-centric fashion, computing paths individually for each
agent (Silver 2005; Wang and Botea 2008; 2011). Split-
ting the computation based on map decompositon is orthog-
onal to unit-centric decomposition. Work in multi-agent
pathfinding based on this idea includes Ryan’s (2008) re-
search. As we argue in the related work section, there are
methods that take steps towards combining unit-centric de-
composition and map-based decomposition (Sturtevant and
Buro 2006; Wang and Botea 2011).

Multi-agent pathfinding can be solved suboptimally in
polynomial time (Kornhauser, Miller, and Spirakis 1984;
Röger and Helmert 2012), but the practical performance of
the available complete method is an open question.

In this paper, we focus on problems where spatial con-
tention is highly localized, with many units having to visit
some bottleneck areas. Unless such high-contention areas
are handled efficiently, jams can quickly build up, with neg-
ative effects on the solving time, the quality of plans, and
even the ability to solve the problem.

We introduce the Spatially Distributed Multiagent Plan-
ner (SDP), an algorithm that takes a map decomposition
approach and distributes the computation across the space.
SDP spawns agents called controllers1 to manage various
areas of the map. This allows some controllers to specialize
in high-contention areas, whereas others are specific to low-
contention areas. Adjacent controllers communicate with a
message-exchange system, used to agree on transferring a
mobile unit from one area to another. The routing of mobile
units inside each area is solved locally, independently from
the rest of the map. In particular, this allows handling each
high-contention area separately from the rest of the prob-
lem, with a focus on smooth navigation at bottleneck points.
The simple, limited communication interface between con-
trollers allows combining heterogeneous local solvers, each
of them suited to the specific properties (e.g., topology) of
the local area at hand.

1We deliberately avoid using the term “agent”, which could be
ambiguous here. Traditionally, it is the mobile units that are called
agents in multi-agent path planning.



To our knowledge, SDP is one of the first distributed al-
gorithms for cooperative multi-agent path planning. Ex-
isting approaches, including algorithms in the “decoupled”
category, rely on full map knowledge being available in a
centralised way. Global knowledge, however, might not
always be available, for reasons including privacy, limited
communication, and limited sensing abilities, as discussed
by Yokoo et al. (1998). Thus, in a distributed framework,
the knowledge is distributed across controllers. Controllers
know their own state, but they cannot directly observe the
state of other controllers.

SDP is a suboptimal algorithm. As discussed in the pa-
per, the way it implements the controllers does not preserve
the completeness. SDP is evaluated empirically against
recent, state-of-the-art multiagent pathfinding algorithms,
such as MAPP (Wang and Botea 2011) and Parallel Push
and Swap (Sajid, Luna, and Bekris 2012). We demonstrate
the effectiveness of our ideas using real game maps with a
mixture of open areas and narrow gateways.

The rest of the paper is structured as follows. Related
work is reviewed next. We introduce a basic framework
for spatial distribution, after which we present our algorithm
SDP. This is followed by an empirical evaluation. The last
part includes concluding remarks and future work ideas.

Related Work
The main focus of this section is work on cooperative multi-
agent pathfinding. Relevant work in related problems, such
as other multi-agent pathfinding formulations, and single-
agent pathfinding is also included.

We start with suboptimal decoupled methods for coop-
erative pathfinding. Optimal methods have been discussed
briefly in the introduction. Cooperative A* and Windowed
Hierarchical Cooperative A* (WHCA*) (Silver 2005) re-
duce a problem to a series of single-agent 3D searches,
where the third dimension is the time. A spatio-temporal
reservation table marks the locations already reserved by
other units, as a mechanism to avoid collisions. Sturte-
vant and Buro (2006) have extended WHCA*, combining
the method with map abstraction. Abstraction constructs a
multi-level map representation, with cliques at a lower level
treated at single nodes at the next level (Sturtevant and Buro
2005). Abstraction improves the computation of individual
paths. For example, restricting the search for a path to a
narrow corridor, as opposed to the entire map, can improve
performance. Our low-contention areas use a local planner
based on Cooperative A*, as discussed later in this paper.

The MAPP algorithm (Wang and Botea 2011) assigns pri-
orities to units, and computes an individual path for each
unit. When resolving conflicts at runtime, low priority units
move out of the way of higher-priority units. MAPP is com-
plete for a class of problems called Slidable, and a few avail-
able extensions of that class. Besides being a unit-centric
decoupled method, MAPP implements specialized rules for
traversing single-width tunnels. This could be viewed as a
step towards distributing the computation across the map.

As the name suggests, the Push and Swap algo-
rithm (Luna and Bekris 2011) is a combination of two strate-
gies. In a push step, units attempt to move towards the

goal. When pushing is not possible, a swap macro-action
is started, with the end result of swapping the positions of
two units. Push and swap is complete on instances with at
least two unoccupied vertices on the map graph. Parallel
push and swap (Sajid, Luna, and Bekris 2012) is an exten-
sion that improves the quality of solutions, improving the
ability to run multiple actions in parallel.

Flow Annotation Replanning (FAR) (Wang and Botea
2008) imposes unidirectional travel on top of an initially
undirected gridmap. The travel direction alternates across
the rows (and columns), covering the grid with criss-
crossing virtual “road lanes”. Topology-specific additional
rules, applied locally, preserve the connectivity across the
map. In terms of map abstraction, this boils down to remov-
ing some directed edges from a graph, as opposed to splitting
a map into subgraphs. FAR computes a path for each unit
independently, in a unit-centric decomposition. Conflicts,
such as cycles, are addressed at runtime. A common idea
with our work is restricting the traffic flow by ignoring some
edges and imposing a travel direction on others. The flow in-
side SDP high-contention areas is restricted as shown later
in this paper. We take advantage of the specific topology of
high-contention areas, ensuring that they are free from local
deadlocks and head-to-head collisions.

Ryan’s (2008) abstraction approach partitions a map into
specific structures, such as stacks, rings and cliques. For
many maps, such as games gridmaps, it might be difficult
to obtain a partitioning that would allow an effective solv-
ing process. Similarities with our work include the idea of
partitioning a map, and the view that solutions need to in-
clude building blocks such as transferring units across com-
ponents, or having units cross a component. Differences in-
clude our distributed approach, the actual way of partition-
ing a map, and the actual way to govern routing inside each
area. Our motivation is to separate high-contention areas
from low-contention areas.

Many of the previously surveyed methods employ best-
first search methods, such as A*, on various search spaces,
ranging from centralized multi-agent search to single-agent
search. There are notable alternative approaches, involv-
ing different types of search. Bouzy (2013) introduces
Monte-Carlo Fork Search (MCFS). Previous Monte-Carlo
tree search methods have been very successful in domains
such as Go. Yu and LaValle (2012) model multi-agent
pathfinding as a multiflow optimisation problem, which is
given as input to an off-the-shelf optimisation engine.

Map abstraction is popular in related, single-agent search
problems, such as Sokoban (Junghanns and Schaeffer
2001; Botea, Müller, and Schaeffer 2002) and single-agent
pathfinding (with a single mobile unit). Many methods
in the later category implement various forms of map de-
composition (Botea, Müller, and Schaeffer 2004; Sturte-
vant and Buro 2005; Björnsson and Halldórsson 2006;
Harabor and Botea 2008; Yap et al. 2011).

In our approach, entry points to each area to be visited by
a mobile unit can be seen as a sequence of subgoals. Sub-
goals and related concepts, such as landmarks, have success-
fully been used in domain-independent planning and other
search problems (e.g., (Korf 1987; Koehler and Hoffmann



2000; Porteous, Sebastia, and Hoffmann 2001)).
Distributed path planning has been investigated in a set-

ting where units are allowed to simultaneously share an
edge (Lim and Rus 2012). This is significantly different
from our domain. Finding any solution is easy, boiling
down to putting together individual paths computed inde-
pendently. Thus, research has focused on optimal planning,
under a congestion-related assumption that the time to tra-
verse an edge depends on the number of units using the edge.

De Mot et al. (2002) address a different problem where
multiple units with limited local sensing seek to arrive at
the same target, and mobile units are allowed to share the
same vertex. Finding a legal solution is simple, and work
has focused on optimality. In that work, the term spatial dis-
tribution refers to the way agents position across the map, to
communicate efficiently, and to gather as much information
as possible about the map, while still allowing the units to
exploit the knowledge that was collectively gathered.

Spatial Distribution
Spatial distribution is based on a partitioning of the map
graph G into k ≥ 1 components C1, . . . Ck. To achieve
this, the vertex set V is partitioned into disjoint subsets
V1, . . . Vk. Edges connecting two vertices in component Ci

belong to that component. Edges connecting two compo-
nents are transition edges. Each component is controlled by
an agent called a controller. As there is a 1-to-1 mapping be-
tween components and controllers, we will use these names
interchangeably, when the clarity is not affected.

The knowledge is distributed across controllers. A con-
troller knows its own state (topology and configuration of
mobile units) but it does not know the state of other con-
trollers. A controller is responsible for all routing inside its
component. Furthermore, two adjacent controllers negotiate
the transfer of units from one component to another.

We distinguish between crossing moves and internal rout-
ing moves. A crossing move is a single step of a unit, along
a transition edge, from one component to another. Internal
routing moves are performed inside a component without in-
teracting with the rest of the map. Internal routing can serve
for three purposes: have contained units reach local targets
(target macros); create the conditions to transfer a unit to an
adjacent controller (i.e., take the unit to the border); and cre-
ate the conditions to accept a unit from an adjacent controller
(i.e., make available a given position by the border). We call
a transfer macro a collection of moves including: a possi-
bly empty internal-routing sequence ψ to bring a unit to the
border of a controller c; a possibly empty internal-routing
sequence ψ′ to make room at the border of a controller c′;
and the corresponding crossing move from c to c′.

Observation 1. For any valid solution to a multi-agent path
planning problem, there exists a valid solution, obtained
through a possibly empty reordering of the moves, that is
a sequence of transfer macros and target macros.

To transfer a unit u from c to c′, the two controllers need
to agree on a transfer place (i.e., a transition edge (l, l′))
and a transfer time. Controller c checks if it can bring u to a
border location l, after which it sends a message to c′, asking

whether c′ can accept unit u at an adjacent location l′. When
controller c′ can accept the unit, a corresponding transfer
macro π is generated. In general, there can be many possible
transfer macros π, depending on the position by the border
where the transfer is made, and the actual sequences ψ and
ψ′. In the discussion on the completeness presented later in
this section, we take into account the following condition:
Condition 1. Instantiating a macro into actual moves (e.g.,
ψ, ψ′ and the crossing move for a transfer macro) systemat-
ically enumerates possible combinations.

Multi-agent plans can be sequential (totally ordered) or
they can allow moves in parallel. A theoretical discussion
on complenetess is simpler under a sequential-plan assump-
tion. This is why, in this section, we restrict our attention to
sequential plans, even though our implemented algorithm,
presented later, allows parallel movements.

Consider a synchronous framework, where controllers
take turns at taking the initiative (i.e., performing a target
macro internally or initiating communication to perform a
transfer macro). Thus, assume a total ordering among con-
trollers, and assume that a token is passed around, in a circle,
to indicate the current controller to take the initiative. When
controller c gets the token, it can choose between three op-
tions: directly pass the token further, or perform a target
macro, or initiate a communication for a transfer macro.
Observation 2. The ability to directly pass the token to the
next controller ensures that arbitrary (valid) sequences of
transfer macros and target macros can be generated.

In the overall search space, the options of a controller
with the token (i.e., choosing one of the available macros,
or choosing to pass the token directly) create new branches.
Furthermore, various low-level realizations of a given macro
create different branches as well. In such a resulting search
space, one needs to recognize deadends, goal states, and cy-
cles (repetitions of the global configuration of the mobile
units along a given exploration branch).

When trying to perform a given macro, a controller runs
into a deadend if no low-level instantiation of the macro is
found, despite searching systematically at the local level of
the component(s) at hand. Controllers can identify a global
goal state through a communication mechanism where each
controller reports if its local state is a local goal. Repetitions
of the global unit configuration along a given branch can be
identified in a similar, but slightly more involved way. Each
local component maintains a history of its local positions at
relevant time moments such as the initial moment and the
times after a macro is generated. Given a current time mo-
ment, each component can report a list of previous time mo-
ments with a local state identical to the current one. If the
lists reported by the components have a non-empty intersec-
tion, a global repetition of the unit configuration has been
detected. In particular, this implies that passing the token
directly all the way through in a completed circle results in
a duplicated global state.
Theorem 1. When Condition 1 holds, the generic dis-
tributed framework is complete.
Proof Sketch: Observation 1 states that restricting the at-
tention to sequences of target macros and transfer macros



preserves the completeness. Observation 2 and Condition 1
state that the distributed framework allows to generate arbi-
trary valid sequences of low-level moves that can be seen, at
the higher abstraction level, as a sequence of transfer macros
and target macros. These facts combined prove the result.

Mobile Unit Interface
To keep the previous completeness discussion as straight-
forward as possible, we assumed the entire system was gov-
erned by controller agents. No heuristic guidance has been
discussed so far, such as indicating, for a given unit and
a given host controller, what should be the next controller
where to transfer the unit. A high-level path, with a sequence
of components to visit all the way to the goal, could be a
valuable heuristic. One way to integrate such heuristic guid-
ance is to assume that mobile units store a high-level path,
being able to specify the next controller to visit.

Such information is provided on request to a hosting con-
troller, so that the controller knows what adjacent controller
to contact for a transfer. Obviously, when the hosting con-
troller is the last one on the abstract path at hand, the con-
troller attempts to locally route the unit to its target destina-
tion. To maintain completeness, units may need to backtrack
on their high-level paths.

Controller Agent Interface
While the precise details of how various controller agents
work will differ, all controllers need a core set of abilities.
First, a controller must be able to determine whether it can
successfully route a mobile unit arriving at a particular ver-
tex and time, and simultaneously honor all previous commit-
ments it has made. A controller must also be able to com-
mit to accepting mobile units at a particular vertex and time.
Last, in order to allow for completeness, controllers should
be able to undo the effects of accepting a mobile unit, which
will allow backtracking. The mobile unit will have to find
either a different arrival time, or a different high-level path.

The SDP Algorithm
SDP, our implemented algorithm, is based on the generic
framework outlined in the previous section. It trades away
completeness for efficiency, and it uses high-level individual
paths as heuristic guidance. SDP makes use of two types
of controllers, corresponding to high-contention and low-
contention areas.

Each unit has a high-level path consisting of a sequence
of components to be visited by that unit. We opted for a
simple and fast-to-code implementation of high-level path
computation: run an A* search on the original map, ignor-
ing all other units. Then, remove all unnecessary details,
such as actual low-level moves. If desired, this step can
be sped up with abstraction: treat each component traver-
sal as a single action (macro step), and run A* in that ab-
stracted, smaller graph. Both alternatives could respect the
limited-knowledge principle adopted in the distributed ap-
proach. For example, in abstracted search, give a controller
an entry vertex together with its g cost, and request a set of
outgoing vertices with their g costs. The controller computes

this internally, similarly to abstraction methods for single-
agent pathfinding mentioned in the related work section. As
mentioned earlier, in general, more than one high-level path
might have to be considered to ensure completeness. Being
incomplete, SDP considers only one high-level path per unit.

Algorithm 1 Main processing loop in SDP
1: t = 0 . time step in solution
2: while True do
3: for each controller c do
4: processTurn(c,t)
5: if global goal then
6: return solution
7: t++

Algorithm 1 outlines the main processing loop in SDP. In
the method processTurn, a controller can perform internal
routing as part of goal and transfer macros, communicate
with adjacent controllers, and transfer units. The rest of this
section shows how high-contention and low-contention con-
trollers are built and how they work, routing mobile units
internally and transferring units as needed.

High-contention controllers
A high-contention component contains a narrow passage-
way, called the corridor center area, together with a sur-
rounding buffering area, used as a waiting place while either
entering or exiting the corridor.

Examples of a corridor center area L include a few loca-
tions in a row forming a narrow gate, or a few contiguous lo-
cations forming a loading area. An area L can be seen as an
intermediate disjunctive goal for the units that need to cross
it. For example, in order to cross a gate, one has to reach at
least one (but not necessarily all) of the gate locations.

Identifying corridor center areas on the map. We iden-
tify corridor centers with a number of patterns, an example
of which is illustrated in the left part of Figure 1. This pat-
tern identifies vertical corridors that are 2 cells wide and less
than 8 cells long, centered at the cells marked with a “C”.
There are similar patterns for finding horizontal corridors,
and corridors of different widths and lengths. In our imple-
mentation, we detected corridors that were 2, 3 and 4 cells
wide.

The pattern is moved around the map like a sliding win-
dow, to identify corridors and their corresponding center
cells. After all of the patterns have been run on the map,
adjacent corridor centers are merged to form a single longer
corridor center. Figure 1 is used as a running example for
the construction of a high-contention component after the
corridor center area has been identified.

Building a high-contention area around a corridor cen-
ter set. Each (merged) corridor center identified as shown
is used to create a high-contention area around it. The first
step of this process is to impose direction restrictions on cor-
ridor center cells. For vertical corridors, the cells on the



Figure 1: A sample pattern for finding corridors for grids
(left), and an example of a high-contention component
(right). In both figures, the corridor centers are marked with
a C. Buffering areas are in gray. Permissible routes in the
high-contention component are denoted by arrows.

left allow an upwards-oriented flow, whereas the cells on the
right are for travelling downwards.2 The separation line be-
tween the two directions is used as shown next.

The next step is to add cells to create the buffering area.
This is done once for each direction of travel by initializing a
breadth first search at the corridor centers for that direction,
and expanding the first N cells that are on the same side
of the separation line, besides the cells inside the gateway
tunnel (we used N = 13). The breadth-first search depth
of each node, which we call the BFS depth, is recorded.
After both breadth-first searches have finished, the high-
contention controller’s vertexes have been identified.

The last step is to verify that creating the high-contention
area will not cause problems for the map. If it causes either
low-contention area to be disconnected, the high-contention
area is removed. Likewise, if there are short paths around
the high-contention area, it is easy to get around the high-
contention area, making it unnecessary.

Internal routing in a high-contention component. Inter-
nal routing takes units from the border of an incoming buffer
to the corresponding corridor center and then further to the
border of the corresponding outgoing buffer. A few simple
rules ensure that no deadlocks occur, and that all units even-
tually succeed in crossing a high-contention area. Units that
have not yet crossed the corridor center are always routed to
an empty vertex with a lower BFS depth, giving priority to
the unit that has been in the controller longer to ensure that
no unit is starved. Ties are broken in an arbitrary but consis-
tent manner. There are no head-to-head collisions (i.e., units
trying to travel in opposite directions along the same edge
e). The existence of such collisions would imply that each

2For odd widths, ties are broken in favor of the direction with
heavier expected demand, based on initial high-level plans of units.
We found that breaking ties randomly also works well.

of the two end nodes of e would have a smaller BFS depth
than the other, which is a contradiction.

Units that have already crossed the corridor center are al-
ways routed to a cell with a greater BFS depth (on the other
side of the corridor center). When heading away from the
corridor center, some cells are adjacent to a neighbor low-
contention controller. If this is the case, the high-contention
controller attempts to pass the unit on to the next controller.
If the next controller is unable to accept the transfer request,
the unit is pushed further into the outgoing buffer of the cur-
rent controller. If the unit has reached the end of the buffer,
or if the deeper cells are already occupied, the unit is in-
structed to wait. At the next time step, the high-contention
controller repeats the attempt to pass the unit to the next con-
troller or push the unit deeper into the exit buffer.

Algorithm 2 High Contention Can Accept Mobile Unit
1: function CANACCEPTUNIT(unit u, location l, time t)
2: tc ← current time
3: κp ← previous acceptance commitments . Triples

(u′, l′, t′), with tc ≤ t′
4: κ← κp ∪ {(u, l, t)}
5: σ ← current unit configuration in this HCA
6: ts ← tc . Initialize simulation time
7: while κ 6= ∅ do
8: for all (u′, l′, t′) ∈ κ with t′ ≤ ts do
9: if l′ is occupied in σ then

10: return False
11: Remove (u′, l′, t′) from κ
12: Add unit u′ at location l′ in σ
13: Update σ . Relaxed simulation of internal

routing one time step ahead (see text)
14: ts ← ts + 1

15: return True

As mentioned earlier, controllers, including high-
contention controllers, can receive requests to accept a given
unit at a given time. The decision whether to accept a given
unit u, at a location l and a future time t boils down to
the availability of a free location in the incoming buffer at
that time, without impacting previously made acceptance
commitments. This decision procedure is outlined in Al-
gorithm 2. The check involves simulating ahead the con-
troller’s internal routing, starting from its current configura-
tion and taking into account previous acceptance commit-
ments. The simulation uses the relaxing assumption that
units can leave the current controller at the time they make
it to the border of the outgoing buffer. In reality, it is pos-
sible that a mobile unit may be stuck in the high-contention
area waiting for the next controller to accept the transfer.
Even if one or several mobile units need to wait until they
exit the high-contention area, the controller might still be
able to accept new incoming units, unless the controller area
is already full. We found that optimistically assuming that
mobile units would leave on time worked well, unless the
density of mobile units in an instance was too high. This op-
timistic assumption, which affects SDP’s completeness, is
discussed further in the experiments section.



Low-contention controllers
After building high-contention controllers, every remaining
maximal contiguous area is a low-contention component.

A low-contention controller is responsible for routing
mobile units across the low-contention component, to the
next high-contention component, or to local target locations.
Each low-contention controller uses Cooperative A* (Sil-
ver 2005), restricted to the low-contention area at hand, and
adapted as discussed later in this section. Cooperative A*
performs individual searches in a 3D space, with time being
the third dimension. The space/time positions of units with
already planned paths are treated as obstacles when comput-
ing the paths of the remaining units.

Algorithm 3 Low Contention Can Accept Mobile Unit
1: function CANACCEPTUNIT(unit u, location l, time t)
2: Run A* with start (l, t), 3D search space, 3D dis-

junctive goal test (see text)
3: if no path found then
4: return False
5: else
6: Store the path for future use
7: return True

When a low-contention controller receives a request to ac-
cept a unit, it runs an A* search in the 3D space to compute
a path from the entry location to either the target location, or
the next controller. If a path is found, the request is accepted
(Algorithm 3), and the path is used to route the unit.

If the path computation fails or all of the replies from the
next controller are negative, the current low-contention con-
troller rejects the acceptance request at hand. Otherwise, it
accepts the incoming unit and the 3D trajectory of the com-
puted path is added to the set of obstacles to be considered in
subsequent 3D searches in the low-contention area at hand.

Standard Cooperative A* turned out to require a number
adaptations to work in our problem. To understand why,
consider the main differences between standard multi-agent
path planning and routing inside a low-contention area. In
the standard case, mobile units have a specific target loca-
tion, and any arrival time is acceptable in terms of solution
validity. We extend a standard goal state both spatially and
temporally. In our problem, there could exist multiple com-
munication points between two adjacent components. As a
result, we use a more permissive definition of a “destination
location”, allowing disjunctive destinations. A disjunctive
destination contains locations adjacent to the current con-
troller owned by the next controller. In addition, not all ar-
rival times at a next component are acceptable. Thus, testing
whether a state in the 3D search space is a goal is extended
with a temporal condition. Assume that the spatial compo-
nent (x, y) of a 3D state (x, y, t) is a disjunctive destination
of the current search. To consider it a goal state, the accept-
ing controller has to agree that it can accept the incoming
unit at the location (x, y) with an arrival time of t.

Low-contention controllers are also responsible for rout-
ing mobile units to their final goals. This is achieved by
bringing the mobile unit to its goal location, and at every

time step, re-planning to bring the mobile unit back to its
goal. Most of the time, the plan is trivial, consisting of one
“sit” move. Unlike in Cooperative A*, mobile units at their
goal do not reserve the use of the goal location. Thus, other
units can plan their paths through the goal of a unit u. When
this happens, u’s re-planning will force it to temporarily va-
cate the goal position and return at a subsequent time when
no other unit reserved that location.

Empirical Evaluation
We ran experiments comparing SDP against state-of-the-art
multiagent path planning algorithms. The authors of Paral-
lel Push and Swap (Sajid, Luna, and Bekris 2012) and the
authors of MAPP (Wang and Botea 2011) kindly gave us
copies of their code to use for experiments. These programs
are written in C++. As mentioned in the related work sec-
tion, a remarkable property of both these benchmark algo-
rithms is that they offer completeness guarantees for well-
specified classes of problems. SDP is implemented in Java.
Experiments were carried out on a Macbook Pro with a 2.26
Intel Core 2 Duo and 4GB of RAM running OSX 10.8.3.

For evaluation domains, we consider 27 different maps
from Dragon Age: Origins (Sturtevant 2012). All algo-
rithms allow 4 way motion, and mobile units must com-
pletely vacate a node before another mobile unit may enter
the vacated node.

Mobile units were assigned random start locations that
were outside of the high contention areas. Goals were
also assigned randomly, with the additional restriction that
goal locations were neither inside a high contention area,
nor among the 90 closest cells to a high contention area.
This typically produced a buffer that was 2 cells wide.
We imposed this restriction because our implemented high-
contention controllers do not support goals or start locations
within or next to the high-contention areas. While address-
ing this efficiently might be challenging, there are many sce-
narios where such a restriction makes sense. For example, in
real life, bridges do not host parking lots or petrol stations.
The narrow space available on bridges should be used for
passing, and all locations that could act as vehicle destina-
tions (e.g., parking lots or petrol stations) should be placed
where more room is available.

Given a map and a number of mobile units, let the density
be the number of mobile units divided by N , the number of
traversable cells on the map. For each map, the density is
initialised to 0.25%, and gradually increased in increments
of 0.25% of N at a time. For every combination of a map
and a density, we conducted 10 trials, each trial consisting
of a different collection of mobile unit start and goal loca-
tions, and averaged the results of the 10 runs. Among all
these discrete increments, the max number of mobile units
considered for a map corresponds to the case where SDP
completed all ten runs without halting prematurely. The im-
plemented SDP halts prematurely when a high-contention
controller optimistically accepts a unit transfer request, but
it is unable to accept the transfer at the agreed time.

The total number of problem instances considered in our
experiments, built as shown earlier, is 3,500. Our first ex-
periments evaluate how SDP performs compared to MAPP



Figure 2: Solution quality measured in makespan vs number of mobile units on a number of Dragon Age: Origins maps.

and PP&S as we change the number of mobile units. On
all maps, we enforced a timeout of 5 minutes per instance.
PP&S ran into this limit on some problems. So did MAPP
in a few cases. Any algorithm that failed to find solutions to
all 10 instances of a given agent density was dropped from
the higher mobile unit densities.

The results of this comparison can be seen in Figure 2.
We show a representative subset of all maps. First, many
data points for PP&S (and a few for MAPP) are missing, due
to failures for the reasons previously mentioned. Each row
shows one of the three tendencies we have observed in the
data. At the top, SDP computes solutions with a significantly
better makespan. In easier instances, where the mobile unit
density is low, SDP is initially outperformed by MAPP and,
more seldom, by PP&S. This is due to the fact that SDP im-
poses restrictions on how the mobile units go through door-
ways, which can increase the makespan in simple instances.
Eventually SDP starts dominating. The differences increase
as the instances grow in density. The middle row illustrates a
similar tendency (e.g., SDP eventually dominating), but the
makespan differences are smaller.

As the number of mobile units increases, MAPP begins

to build plans with significantly larger makespans. Mobile
units are routed towards their destinations, but sometimes
mobile units will get stuck in a traffic jam near a doorway,
and stop moving. Eventually, MAPP resolves the traffic jam
by sliding the mobile units in question around to allow the
higher priority units to get through, but doing this is time
consuming, producing plans with a long makespan. As the
number of mobile units increases, the likelihood of this oc-
curring in any given doorway increases. The same general
trend can be seen in PP&S, for those cases where PP&S
scales up. In contrast, SDP deploys dedicated controllers
(the high-contention controllers) to govern the high demand
cells at and near each doorway, which keeps the makespan
performance more stable as we add additional mobile units.

The bottom row in Figure 2 illustrates cases where MAPP
provides better or comparable makespans for all densities
considered. In this category, the differences between MAPP
and SDP are stable and relatively low. The difference
can be as high as 33% of SDP’s makespan (map hrt201d).
It is around 5% or less for maps such as den505d and
den005d. An exception from the summary just outlined is
map orz201d. For two out of 24 densities, SDP makespans



Figure 3: Running times in seconds. Given a map-density combination, the results are averaged over the 10 trials considered.

are 3.17 and 3.45 times as large as PP&S makespans. For
one density, the SDP makespan is 3.57 times as large as the
MAPP makespan. For all other densities on this map, the
makespans are largely comparable, with SDP being slightly
better than PP&S and slightly worse than MAPP.

At a closer analysis we observed that, on maps such as
hrt201d, most of the area ends up as one enormous room.
There are doorways that would allow a partitioning, but they
were not identified by our implemented detectors. If this
happens, SDP largely reduces to Cooperative A* run on
(almost) the entire map, with a corresponding performance
degradation. Alternative low-contention controllers based
on other, more recent algorithms than Cooperative A* might
be considered in principle. On the map den203d, a differ-
ent problem arises. Some of the rooms for low-contention
controllers are long and thin. Adding the buffer for a high-
contention controller creates a new bottleneck separating
two parts of the adjacent low-contention area, making path
planning in the region inefficient.

In summary, each row in Figure 2 illustrates a distinct
tendency observed in the makespan data. The separation
line between these categories is informal to some extent.
However, we note that the top row is representative for 9
out of 27 maps. The middle row corresponds to 6 maps.
For three maps, no significant differences were observed be-
tween MAPP’s and SDP’s makespans.

As the number of mobile units further increases, the op-
timistic high-contention controllers we implemented some-
times made commitments that, in reality, they were unable
to honor. This is a situation that we detected, but did not
address in this work. Instead, our main focus was to study
the impact that spatial distribution can have on the computa-
tion speed and the quality of plans. Figure 2 shows approxi-
mately how well we can expect SDP to scale currently.

Figure 3 summarizes the speed results, showing running
times on a logaritmic scale. At the left, all map-density pairs
used in experiments are taken into account. At the right, we
show the running times for the highest density considered
for each map. The speed data show two general trends. The

first is that, on the easier instances, where SDP requires a
few seconds or less, SDP is generally slightly slower than
MAPP. The second trend, however, is that on the more dif-
ficult instances SDP has a substantial advantage. PP&S is
significantly slower than both other programs in most cases.

Conclusion

Existing approaches to cooperative multi-agent path finding,
including centralized search and decoupled techniques, as-
sume centralized problem knowledge. We have introduced
a distributed framework for multi-agent path planning, based
on distributing the knowledge and the control across a map.
Our aim with this framework was to set a basis for building
actual algorithms based on spatial distribution.

We have developped such an algorithm, SDP, aimed at
handling efficiently maps with a mixture of narrow bottle-
necks and larger areas. In multi-agent pathfinding, the ex-
istence of small areas with a high spatial contention can
greatly increase the difficulty of a problem. Solving high-
contention areas separately from the rest of the problem can
be key in solving a problem efficiently.

In SDP, we created specialized controllers in charge with
one map area each. Controllers exchange messages to agree
on transferring mobile units. Thus, the architecture is sim-
ple and modular. Any controller that implements the simple
messaging interface could in principle be plugged in. Our re-
sults show that even a simple, incomplete implementation of
the high-contention and the low-contention controllers could
be effective, solving instances with bottleneck areas signifi-
cantly more efficiently than state-of-the-art methods.

In future work, we plan to analyze the connections be-
tween decoupled and distributed multi-agent path planning.
Existing decoupled algorithms might be possible to adapt to
a distributed framework. In addition, we believe that com-
bining spatial decomposition with unit-centric decomposi-
tion can be taken further, to obtain more scalable solvers.



References
Björnsson, Y., and Halldórsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In Proceedings
of the Conference on Artificial Intelligence and Interactive
Digital Entertainment AIIDE-06, 9–14.
Botea, A.; Müller, M.; and Schaeffer, J. 2002. Using Ab-
straction for Planning in Sokoban. In Schaeffer, J.; Müller,
M.; and Björnsson, Y., eds., Proceedings of the 3rd Interna-
tional Conference on Computers and Games CG-02, volume
2883 of Lecture Notes in Artificial Intelligence, 360–375.
Edmonton, Canada: Springer.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near op-
timal hierarchical path-finding. Journal of Game Develop-
ment 1:7–28.
Bouzy, B. 2013. Monte-Carlo Fork Search for Cooperative
Path-finding. In International Joint Conferences on Artifi-
cial Intelligence (IJCAI) workshop on Computer Games.
De Mot, J.; Kulkarni, V.; Gentry, S.; and Feron, E. 2002.
Spatial Distribution Results for Efficient Multi-Agent Navi-
gation. In Proceedings of the 41st IEEE Conference on De-
cision and Control, 3776–3780.
Harabor, D., and Botea, A. 2008. Hierarchical Path Plan-
ning for Multi-Size Agents in Heterogeneous Environments.
In Proceedings of the IEEE Symposium on Computational
Intelligence and Games CIG-08, 258–265.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhancing
general single-agent search methods using domain knowl-
edge. Artificial Intelligence 129(1-2):219–251.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven plan-
ning algorithm. Journal of Artificial Intelligence Research
12:338–386.
Korf, R. E. 1987. Planning as search: a quantitative ap-
proach. Artificial Intelligence 33(1):65–88.
Kornhauser, D.; Miller, G. L.; and Spirakis, P. G. 1984. Co-
ordinating pebble motion on graphs, the diameter of permu-
tation groups, and applications. In 25th Annual Symposium
on Foundations of Computer Science (FOCS), 241–250.
Lim, S., and Rus, D. 2012. Stochastic distributed multi-
agent planning and applications to traffic. In IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2873–2879.
Luna, R., and Bekris, K. E. 2011. Push and swap: Fast co-
operative path-finding with completeness guarantees. In In-
ternational Joint Conferences on Artificial Intelligence (IJ-
CAI), 294–300.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Recent Advances in AI Planning. 6th European Conference
on Planning (ECP’01), 37–48.
Röger, G., and Helmert, M. 2012. Non-optimal multi-agent
pathfinding is solved (since 1984). In International Sympo-
sium on Combinatorial Search (SOCS).
Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. Journal of Artificial Intelligence
Research (JAIR) 31:497–542.

Sajid, Q.; Luna, R.; and Bekris, K. E. 2012. Multi-
agent pathfinding with simultaneous execution of single-
agent primitives. In International Symposium on Combina-
torial Search (SOCS).
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Conflict-based search for optimal multi-agent path finding.
In Proceedings of the 26th National Conference on Artificial
intelligence (AAAI).
Silver, D. 2005. Cooperative pathfinding. In AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE), 117–122.
Standley, T. S. 2010. Finding optimal solutions to coop-
erative pathfinding problems. In Proceedings of the 24th
National Conference on Artificial Intelligence (AAAI).
Sturtevant, N., and Buro, M. 2005. Partial Pathfinding Using
Map Abstraction and Refinement. In Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI), 47–
52.
Sturtevant, N. R., and Buro, M. 2006. Improving collabora-
tive pathfinding using map abstraction. In AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE), 80–85.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and Artifi-
cial Intelligence in Games 4(2):144 – 148.
Wang, K.-H. C., and Botea, A. 2008. Fast and memory-
efficient multi-agent pathfinding. In Proceedings of the
20th International Conference on Automated Planning and
Scheduling (ICAPS), 380–387.
Wang, K.-H. C., and Botea, A. 2011. Mapp: a scalable
multi-agent path planning algorithm with tractability and
completeness guarantees. Journal of Artificial Intelligence
Research (JAIR) 42:55–90.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9–20.
Yap, P.; Burch, N.; Holte, R. C.; and Schaeffer, J. 2011.
Block A*: Database-Driven Search with Applications in
Any-Angle Path-Planning. In Proceedings of the 25th Na-
tional Conference on Artificial Intelligence AAAI.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms. IEEE Transactions on Knowl-
edge and Data Engineering 10:673–685.
Yu, J., and LaValle, S. M. 2012. Planning optimal paths for
multi-agent systems on graphs. CoRR abs/1204.3830.


