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Abstract

There are many algorithms that are capable of solving the shortest quéth p
lem. Given a specific shortest path problem, it is not clear which of theachy
algorithms should be used. Based upon an empirical evaluation of sthivemk
domains, we create a decision tree that considers domain featurgsaogimate
time/memory budget constraints to decide which algorithm should be uged gi
a domain with known attributes and given time/memory budget. The decigien tr
also helps identify open questions regarding what information is neegeddat
how well a given algorithm will perform.

1 Introduction

This paper builds upon the work in Wilt et al. [2010] and counsts a decision tree that
can be used to decide which algorithm should be used in a giteation. Wilt et al.
[2010] consider the traveling salesman problem [Pearl ang K982], dynamic robot
path finding [Likhachev et al., 2003], the sliding tile puz#Korf, 1985], a derivative
of the pancake puzzle [Holte et al., 2005], and a vacuumirdbmain [Russell and
Norvig, 2010].

Wilt et al. [2010] consider weighted A* [Pohl, 197Q}* [Pearl and Kim, 1982],
Window A* [Aine et al., 2007], multi-state commitment k wéitgd A* [Furcy and
Koenig, 2005b], greedy best-first search [Doran and Mict866], enforced hill climb-
ing [Hoffmann and Nebel, 2001], LSS-LRTA* [Koenig and Suf®08], beam search
[Rich and Knight, 1991, Bisiani, 1992], beam-stack sea#tioli and Hansen, 2005],
and BULB [Furcy and Koenig, 2005a]. They show that the penfmce varies across
the different benchmark domains, but they also point outdahmumber of domain fea-
tures are behind the observed variation. Among the reldgahires are dead ends, cost
function, and whether or not searches with an unbounded ligtezan find solutions
without running out of memory.



These features are important predictors of which algoritithbe the strongest
performer, but they are not the only features that mattere décision tree created
does is not perfect even for the test data, and explainingtigxahy remains an open
question.

1.1 Selectingthe Best Algorithm By Domain

Wilt et al. [2010] show that across all of the domains underséteration, the most suc-
cessful algorithms in aggregate are weighted A*, beam search, and LSS-LRTA*.
For this reason, we shall only consider those algorithmsmnwhaluating algorithms
across the various domains.

The subsequent plots all use the same measurements on éotlatid y axis. On
the x axis is the log of cpu time. On the y axis is an aggregateobftion quality
and success rate. Finding the best solution earns a scoreFariding a solution that
is lower quality earns a score proportional to the solutiaaliy with higher quality
solutions scoring closer to 1. Failing to find any solutiomnsaa score of 0. All
algorithms were terminated after five minutes. An algorittould fail to find a solution
because of inherent incompleteness or a result of timingAllilgorithms were run
on Dell Optiplex 960 Core2 duo E8500 3.16 GHz machines withth8GERAM. The
machines were running 64 bit Linux. On all domains, five masuivas not enough
time to run out of memory, with the exception of 48 puzzle, rehalgorithms were
able to exhaust memory in approximately 1 minute. If an algor ran out of memory,
it was considered to have failed to find a solution.

The lines are constructed by varying the underlying parameft an algorithm.
For beam search, the parameter in question is the beam WAathLSS-LRTA*, the
parameter is the look-ahead expansion budget. LSS-LRTA@@am search were
run with 50000, 10000, 5000, 1000, 500, 100, 50, 10, 5, and pdeameters. For
weighted A* andA}, the parameter is the weight. A* an} were run with parameters
of 100000, 100, 50, 20, 15, 10, 7, 5, 4, 3, 2.5, 2, 1.75, 1.5,18 1.15, 1.1, 1.05,
1.01, 1.001, 1.0005 and 1.

For example, in Figure 1, the green line representing wety#t* shows that
weighted A* initially finds a low quality solution when usirey high weight, and as
the weight decreases, the solution quality increases. &w#ight continues to shrink,
weighted A* starts to fail to find solutions, so the aggregatieition quality decreases
substantially.

1.2 Traveling Salesman Problem

The results of running the four algorithms in question onttheeling salesman prob-
lem can be seen in Figure 1. For finding solutions quickly, dlgorithm of choice

is A¥, but if the highest quality solutions are desired, beamcéemrthe algorithm of

choice.
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Figure 1: Algorithm performance on the traveling salesnm@ambiem
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Figure 2: Example of grid path planning problems

1.3 Grid Path Planning

For the grid path planning domain, we considered two vasetif grid path planning
problems. The first was basic grid path planning with unitoebere each move costs
the same amount. We also considered a derivative of gridgsatining where the cost
of a move is proportional to the cell's Y coordinate. In thisiation, the shortest path
and the best path are often not the same. Examples of eaclokprdblem can be
seen in Figure 2.

The results of running the four algorithms in question onghid path planning
problem can be seen in Figure 3 and 4. In unit costs, weightdd Better than all of
the alternative algorithms, although beam searches cgenar high quality solutions
slightly faster.

In grid path planning with life costs4? is slightly faster, although it has terrible
scaling behavior as compared to weighted A*. In additiorntt, tthe solution returned
is of poor quality relative to that of weighted A*. Despiteetie drawbacksd! does
provide the fastest solutions. The reastinis so fast stems from the fagf! expands
nodes according téd when the weight is extraordinarily high.

1.4 Vacuum Robot Path Planning

The vacuum robot path planning domain was inspired by RuasdINorvig [2010].
In this domain, there is a robot that inhabits a grid world wehthere are three kinds
of cells: dirty cells, clean cells, and blocked cells. Whea dirty cell, the robot may
clean the dirty cell, turning it into a clean cell. The goalasclean all dirty cells. The
domain contains aspects of grid path planning, since thetroéas to navigate from
one place to another, as well as elements of the travelimgsean problem, since the
dirty cells can be viewed as cities that must be visited inbibst order possible so as
to minimize travel distance.
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Figure 5: Algorithm performance on the vacuum robot patmipiag domain

The results of running the four algorithms in question onwtaeuum robot path
planning problem can be seen in Figure 5. For finding solstourickly, the algorithm
of choice is weighted A*, but if the highest quality solutare desired, beam search
is the algorithm of choice.

1.5 Dynamic Robot Path Planning

In the dynamic robot path planning domain, the goal is toedeivobot from an initial
heading/location/speed to a goal heading/location/sjpgethanipulating the robot's
heading and speed. In addition to driving the robot to theembrconfiguration, there
are obstacles that must be avoided.

In this domain, weighted A* provides the highest qualityuimns, whileA?* finds
solutions faster.
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Figure 7: Algorithm performance on the heavy pancake puzzle

1.6 Heavy Pancake Puzzle

In the heavy pancake puzzle, there is a stack of pancakesitisibe put in the correct
order. The only operation is to take the top k pancakes andh#im. In the standard
pancake puzzle, each flip costs 1. In the heavy pancake pwath pancake is as-
signed an index, the cost of each flip is proportional to the efithe indexes pancakes
that are being flipped.

As can be seen in Figure 7, weighted A* is capable of findingtsmhs before any
other algorithm, and finds higher quality solutions at thmsame.
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Figure 8: Algorithm performance on the 15 puzzle

1.7 Sliding Tile Puzzle

On the sliding tile puzzle, beam search finds both the fastedtthe highest quality
solutions. This is even more pronounced on the 48 puzzlerenthe other algorithms
either fail almost all the time as is the case with weightedsAti A}, or find very low
quality solutions, as is the case with LSS-LRTA*.

10



Solution Quality

0.8

0.6

0.4

0.2

0.0~

48 Puzzle

WA ——

A¥*eps mm——
LSS-LRTA¥* s
Beam Search =

S—

T ‘ T ‘ T
0 1 2

log10(raw cpu time)

Figure 9: Algorithm performance on the 48 puzzle

11



2 Selecting an Algorithm - What M atter s?

2.1 TimeversusQuality

One fact that was apparent from the previous section is thathaalgorithm is best is
a somewhat subjective question. For example, if we aredgriordecide how to route
paper through a printer, we need to have a solution quickly,itis practical to trade
solution quality for a shorter planning time. Converselyyé are trying to figure out
how route ships or trains around the planet, we can affordtiadel computational
time in order to find a higher quality solution.

Since the definition of “best” fundamentally varies, we ddesthe two extreme
ends of the time-solution quality trade-off. In one sitaatiwe value time over quality,
and place the most importance on finding solutions quickiythe other situation, we
value solution quality over time, only considering time wieo or more algorithms
ultimately find solutions of the same quality.

2.2 Dead Ends

Wilt et al. [2010] show that dead ends cause problems for bg@anch due to the
nature of inadmissible pruning. Since there is no way a priotell whether pruning
a given node will cause the search to be unable to find sokjtiseam searches often
fail when run with small beam width on problems with dead erdsis the case with
the vacuum robot navigation, grid path planning, and dycambot path planning
domains. Although dead ends cause problems for beam ssangtiesmall beam
width, beam searches can eventually find solutions if thenbe@th is made large
enough, as can be seen in dynamic robot path planning (Fguggid path planning
(Figures 4 and 3), and vacuum robot planning (Figure 5), eitter beam searches with
wide beams do manage to find solutions.

In domains with dead ends, beam searches take longer to finibss due to the
fact that the small beams fail to find a solution. In generahr searches rely upon
small beams to find solutions quickly, and large beams to figh buality solutions.
If the small beams are failing, then beam searches are goifigd solutions later.

2.3 Unit versus Non-Unit Cost

Beam searches perform significantly better in domains with aost as compared to
domains with non-unit cost. For example, changing the casttion on grid path
planning from unit to life causes a substantial decreas@eanperformance of beam
searches. In addition to that, changing the cost functighersliding tile puzzle from
unit to the square root of the tile moved also causes a majoictmn in the effective-
ness of beam search, as shown in Figure 10. Just as beamesearelable to overcome
problems with dead ends by using a sufficiently large beaambsearches are able to
overcome non-unit cost if the beam width is set sufficientghhas is the case in the
square root 15 puzzle and the heavy pancake puzzle (Figure 7)

12



Solution Quality

Square Root 15 Tile Puzzle

0.8
0.6
0.4
0.2 Beam Search =—
WA* ——
T T T T T
-1 0 1

log10(raw cpu time)

Figure 10: Beam search and weighted A* on the square roqgititzle

13



24 |IsdtheSameash?

d(n) is a heuristic that estimates how many nodes are betweenotfernand the
nearest (or possibly cheapest) goal.

The first and most important thing to consider here is whethere is any funda-
mental difference betweehandh. If the domain is a unit cost domain, estimating how
many nodes there are on the path to the nearest solution améaiisg the cost of the
path to the nearest solution produce the same resultpsovides no additional infor-
mation, with one possible exception. THédweuristic does not have to be admissible,
S0 in some domains we can use a more accurate, but not adenigdileuristic.

A relies upon the heuristic estimatéo ascertain how many nodes there are along
the optimal path to the goal from that node. As one might réifuexpect, domains
in which thed heuristic provides additional information are much betigted toA?*,
and A} performs much better in domains with highly accurétesuristics.

In some domains, it is trivial to find out how far away a goal kar example, in
the traveling salesman problem, this number can be caémlilaith perfect accuracy
by counting the number of cities that have not yet been wdsite other domains, thé
function makes the same abstraction assumptiohsssd is no more informed thah
is. In grid path planning, both andd make the free space assumption, optimistically
assuming all of the cells are empty. Despite this similatitg d heuristic is much
more accurate in unit cost grids as opposed to in life cosisgriVe can observe this
empirically if we calculate the average percent error intthe heuristics. 2 has an
average percent error of 27, whifehas an average percent error of 18. In the pancake
puzzle, bothh andd come from pattern databases, which abstract away some of the
pancakes. In this domairm, has an average percent error of eight, whildas an
average percent error of 38.

Since the vacuum robot path planning domain is a unit costadlonrd andh func-
tions we used always return the same value. The sliding tiizlp is unit cost, s@
andd return the same number in this domain as well.

Domains where there is a substantial difference betweandd are the traveling
salesman problem, dynamic robot path planning, and gridanning with life costs,
as well as the heavy pancake problem. In the traveling salegmoblem, comes
from a minimum spanning tree of the remaining cities, whertaan be calculated
with perfect accuracy by counting the unvisited cities ia #tate. In dynamic robot
path planningh assumes that the robot can accelerate and deceleratdlipstanvell
as drive in a circle with an infinitely small radius, so it idef impossible to follow
the path suggested by d points to a legal (albeit suboptimal) path in dynamic robot
path planning, and is therefore more accurate. In grid life lreavy pancake, we used
empirical analysis to show that there was a quantitatiierdince betweeh andd.

2.5 DoesWeighted A* Fail?

In some of our benchmark domains, weighted A* fails if it i; mith a weight that is
too small. For example, if we use a weight that is too small Ah’t solve traveling
salesman problems or vacuum robot navigation problems s@ime phenomenon can
also be observed on the dynamic robot navigation problethg ifveight is sufficiently
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small, although there does not appear to be any reason toaighed A* with a weight
that small, since the medium weights find the best solutibasdan be found by any
algorithm under consideration.

Unfortunately, predicting whether or not weighted A* isdlig to fail remains an
open question.

2.6 Domain Summary

Table 1 shows the different domains under considerations fBble also shows what
value each domain takes for the attributes under considerat

Domain | Dead | Unit Unique | WA* h  more
Ends | Cost | States fail? accurate?

TSP No No 6 x 103 | Yes Yes

Grid Unit | Yes Yes 2x10% | No No

Vacuum | Yes Yes 6 x 101 | Yes No

Grid Life | Yes No 2x10% | No Yes

Pancake | No No 3x10% | No Yes

Robot Yes No 2 x 10 | No Yes

15 Puzzle| No Yes 6 x 101 | Yes No

48 Puzzle| No Yes 3 x 102 | Yes No

Table 1: Domain Attributes by Domain

3 Selecting an Algorithm

3.1 Decision Tree

Figure 11 shows a decision tree for selecting an algorithime flrst branch point is
selecting to prefer quality tie breaking on time, or to stlige tie breaking on quality.
As was evident from the plots, it was possible to trade timmeyfality, and depending
which is preferred, the algorithm of choice varied.

The next branch points are domain features. The first is teefaaction, since
beam searches perform much better on domains with unit cospared to domains
with non-unit cost. The next branch point is whether or netdomain has dead ends.
Domains with dead ends also cause problems for beam seal€llee domains has
no dead ends and unit cost, beam search is the algorithm afecfar both finding
solutions quickly and finding high quality solutions.

If we value solution quality over solving time and have eithen-unit costs or a
domain with dead ends, the last branch point to consider &thven or not weighted
A* with a low weight will fail. If weighted A* is a reasonablepion, then we should
use weighted A*. If weighted A* fails, then we would be bettdirusing beam search,
since beam searches offer better scaling behavior.

If we value time over solution quality and have a domain wigad ends or non-
unit cost, we have to decide whether we should use weightedrAt?. To that end,
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we consider whether or not thifunction provides a more accurate estimate thal
d is more accurate thaf, as is the case in some domains, then we should sdlgct
otherwise we would be better off using weighted A*. Of the @ams considered, this
rule correctly predicts what to do with grid world with lifests the dynamic robot path
planning, but incorrectly select4? over weighted A* for the heavy pancake puzzle.
Determining exactly when to usetf over weighted A* remains an open question.
Under no circumstances was LSS-LRTA* the algorithm of choi€his is hardly
surprising, since the algorithm was not designed to sosltiortest path problem with
the real-time constraint on actions removed.

4 Conclusion

We analyzed the performance of four effective greedy seagirithms, weighted A*,
A?, beam search, and LSS-LRTA*. Our results showed that whigbrighm could
be considered “best” depended on user preferences basadvalpe placed on time
and solution quality, as well as domain features. We alsemiesl that which algorithm
worked the best depended on what kind of hardware was aigikibce more powerful
machines can use weighted A* which may not be a reasonabitsapt a less powerful
machine due to either time or memory.

We compile these results into a decision tree, and use #atdrhelp us decide
which algorithm should be run in a given situation.
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