
Robust Bidirectional Search via Heuristic Improvement

Christopher Wilt and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

{wilt, ruml} atcs.unh.edu

Abstract

Although the heuristic search algorithm A* is well-known to
be optimally efficient, this result explicitly assumes forward
search. Bidirectional search has long held promise for sur-
passing A*’s efficiency, and many varieties have been pro-
posed, but it has proven difficult to achieve robust perfor-
mance across multiple domains in practice. We introduce
a simple bidirectional search technique called Incremental
KKAdd that judiciously performs backward search to im-
prove the accuracy of the forward heuristic function for any
search algorithm. We integrate this technique with A*, assess
its theoretical properties, and empirically evaluate its perfor-
mance across seven benchmark domains. In the best case, it
yields a factor of six reduction in node expansions and CPU
time compared to A*, and in the worst case, its overhead is
provably bounded by a user-supplied parameter, such as 1%.
Viewing performance across all domains, it also surpasses
previously proposed bidirectional search algorithms. These
results indicate that Incremental KKAdd is a robust way to
leverage bidirectional search in practice.

Introduction
It is well known that the A* algorithm is optimally effi-
cient for computing shortest paths in domains with consis-
tent heuristics (Dechter and Pearl 1985), but only among al-
gorithms that expand nodes solely in the forwards direction.
As a result, one way to outperform A* is by searching in
both the forwards and the backwards directions. The general
problem with this approach is that once the search frontiers
meet, proving the optimality of the solution often requires
more expansions than A* would have needed (Kaindl and
Kainz 1997).

Despite this difficulty, there are bidirectional search al-
gorithms that can outperform A*. The “Add method” of
Kaindl and Kainz (1997), which here we will call KKAdd,
uses backwards search to establish a heuristic correction,as
we explain in more detail below. Kaindl and Kainz used the
KKAdd method in conjunction with A*, and the size of the
perimeter was a runtime parameter, set ahead of time. For
reporting results, they simply selected one of the more effec-
tive parameter settings. The central problem in making the

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

KKAdd method practical for general purpose use is deter-
mining how big the perimeter should be without pilot exper-
iments, because in some domains, large values are effective,
and in other domains, large values only serve to introduce
extra overhead without any benefit.

We introduce a technique called Incremental KKAdd that
overcomes this problem by dynamically balancing the work
done in the forwards search and the backwards search. This
has two benefits. First, incrementally growing the set of
backwards expanded nodes allows the algorithm to adjust
the backwards expansions as needed, without manual tun-
ing, and without any a priori knowledge of how difficult the
problem is.

Second, it also has the benefit of keeping the number of
backwards expansions within a constant factor of the num-
ber of forwards expansions. We prove below (Theorem
2) that the only nodes expanded by A* using Incremen-
tal KKAdd that are not expanded by A* are the nodes ex-
panded backwards from the goal. By keeping the number
of backwards expansions at a fixed proportion of all ex-
panded nodes, Incremental KKAdd bounds the overhead of
the search in case the backwards search fails to provide any
benefit.

A* with Incremental KKAdd provides an optimal solu-
tion, with a substantial speedup over A* when the heuris-
tic correction is large. Compared to other bidirectional
searches, A* with Incremental KKAdd is applicable in a
wider variety of heuristic search settings. In addition, A*
with Incremental KKAdd never takes substantially more
time than A*, as other bidirectional algorithms sometimes
do. Viewed across all domains, its performance surpasses
previously proposed bidirectional search algorithms. These
results indicate that Incremental KKAdd is a robust way to
leverage bidirectional search in practice.

Previous Work
The A* algorithm (Hart, Nilsson, and Raphael 1968) per-
forms a forwards search by expanding nodes in order of in-
creasingf(n) = g(n) + h(n), whereg(n) is the cost of the
best known path from the start states to n, andh(n) is a
lower bound on the cost of the best path fromn to a goal.

In domains with a consistent heuristic, the KKAdd
method (Kaindl and Kainz 1997) learns a correction to the
original heuristic by expanding nodes backwards from the



goal, establishing the trueh(n) values (notatedh∗(n)) for
nodes that have been expanded backwards. The simplest ap-
proach is to expand the nodes ingrev order, wheregrev is
the cost of getting to the node starting at a goal using back-
wards expansions (grev = h∗(n)), but any order that ex-
pands nodes with optimalgrev values may be used. Nodes
that have been generated but not yet expanded in the back-
wards direction form a perimeter around the goal region.

The original forwardh(n) value for each of the nodes
in the perimeter can be compared to the corresponding
grev(n) values yielding that node’s heuristic errorǫ(n) =
grev(n) − h(n). The heuristic error present for all nodes
that have not been reverse expanded,herr, is defined as
minn∈perimeter(ǫ(n)) . All solutions starting at a node
that was not yet reverse expanded go through this perime-
ter, therefore all outside nodes must have at least as much
heuristic error as the minimum error node in the perime-
ter. An admissible heuristic in the forwards search is con-
structed by first looking up the node in the collection of
reverse expanded nodes. If the node has been reverse ex-
panded, itsh∗(n) value is used. Otherwise the node is as-
signedhKKAdd(n) = h(n)+herr as its admissible heuristic
estimate.

The problem with KKAdd is that it requires a runtime
parameter, the amount of backwards search to do. If this
parameter is set too small, the algorithm is no different
from A*, but if the parameter is set too large, the algorithm
expands a large number of irrelevant nodes in the back-
wards direction, and fails to reap a sufficiently large benefit
when the search is run in the forward direction. Kaindl and
Kainz (1997) report results for A* with the KKAdd heuris-
tic, but they do not say how the size of the backwards search
was set, only mentioning how many nodes each variant used
in the backwards direction. It is, therefore, an open question
how to make the technique practical for general use.

A related algorithm is perimeter search (Dillenburg and
Nelson 1994), which uses multiple heuristic evaluations to
improve theh value of nodes. First, a perimeter is estab-
lished by expanding a predefined number of nodes back-
wards from the goal. Note that when expanding nodes for-
wards, as with the KKAdd method, any solution must pass
through one of the perimeter nodes. Thus, it is possible to
estimate the cost of going through any node in the perimeter
by estimating the distance to that perimeter node and then
adding the known true distance from the perimeter node to a
goal node to that estimate. This algorithm requires a heuris-
tic function that can estimate the distance between two arbi-
trary states which we call a point-to-point heuristic. Since
any solution must pass through a perimeter node, an ad-
missible estimate is the minimum of the estimates over all
perimeter nodes.

This algorithm poses two challenges for general purpose
use. First, it requires an efficient heuristic between any two
states, which not all domains have, and even when it is pos-
sible to compute a point-to-point heuristic, doing so is of-
ten more computationally intensive. The other problem is
that it requires a large number of heuristic evaluations. Each
forwards expansion requires one heuristic evaluation for ev-
ery perimeter node, thus as the perimeter grows, the cost

of computing a node’s heuristic value also grows. These
problems can be ameliorated by using a pattern database
initialized with the perimeter, but this is not always prac-
tical, especially if the goal state is not the same for all in-
stances. Manzini (1995) discusses an algorithm for reduc-
ing the number of heuristic evaluations when the heuristic
is used for pruning but not sorting, as is the case for IDA*
(Korf 1985).

Naturally, a central issue surrounding perimeter search is
how to size the perimeter. López and Junghanns (2002) dis-
cuss how to optimize the size of the perimeter in unit cost
domains, but this analysis does not apply to KKAdd.

More recently, Barker and Korf (2012) describe bidirec-
tional breadth-first iterative deepening A*, which is an al-
gorithm that proceeds as breadth-first iterative deepening
A* would, except that it does so in both the forwards and
the backwards directions. The first search iteration is in
the forwards direction, but subsequent directions are cho-
sen by comparing the total number of nodes expanded in
the most recent forwards search and the most recent back-
wards search, and selecting whichever direction last had
fewer nodes expanded. When a node is generated that has
already been expanded in the opposite direction, this creates
an incumbent solution. When the cost of the incumbent is
the same as the current f-bound, the search can terminate
immediately, because all solutions always have cost greater
than or equal to the current f-bound. If the f-bound is incre-
mented to the cost of the incumbent solution, the algorithm
can terminate, without searching the lastf layer. This can
represent a massive reduction in computation effort, asf
layers tend to grow exponentially.

One limitation of bidirectional breadth-first iterative deep-
ening A* is the fact that the algorithm requires a heuristic
function that can estimate the distance from any node to
both the start state and the goal state, which is sometimes
not straightforward. For example, domains where a pattern
database is the heuristic would require both a forwards and
a backwards pattern database if the start and goal configura-
tions were unrelated. This can be difficult because it would
require a new pattern database for each instance.

A more fundamental limitation of this approach is that it
will not cut off more than the lastf layer. The key advan-
tage of KKAdd heuristic improvement is that it can be used
to eliminate multiplef layers in the forward search. If the
heuristic correctionherr is large, thef value of the head of
the open list will reach that of an incumbent solution in a
much lowerf layer, because of the heuristic correction. For
example, if there is an incumbent solution that costs 100,
and a heuristic correction of 25, A* with the KKAdd heuris-
tic can terminate in thef = 75 layer, because thef value
of the head of the open list will be 100 with the correction.
A* with the original heuristic must complete allf layers less
than 100.

Felner et al. (2010) describe single-frontier bidirectional
search, which is an algorithm that searches both forwards
and backwards, but only maintains a single open list. At
every node, the algorithm considers searching forwards and
backwards, and proceeds to search in whichever direction
appears to be more promising. Like perimeter search, this



algorithm requires a heuristic that is capable of evaluating
the distance between any two states. Another major draw-
back of this algorithm is that it is brittle. In many of the
experiments reported below, it does not find solutions at all
due to running out of memory.

Tuning the KKAdd Heuristic
When deploying the KKAdd heuristic, the first step is to
figure out exactly how much backwards search should be
done. This is typically done by generating sample instances
and running A* with KKAdd using a variety of backwards
search sizes. The most effective parameter setting is then
chosen and is used for all future instances of the domain.

This approach has two problems. First, it requires the user
to spend time figuring out how much backwards search to do
for each domain. Second, using a single value to determine
how much backwards search to do for any given domain re-
quires making compromises on some instances, because in-
stances vary in how difficult they are. For example, for the
Towers of Hanoi problems discussed below, the best over-
all average solving time results with 100,000 nodes, but this
metric is deceiving. For the less difficult instances, KKAdd
with 100,000 nodes in the backwards search is slower than
A*, whereas KKAdd with 10,000 nodes outperforms A*.

Table 1 shows the result of using KKAdd with a variety of
fixed backwards search sizes. Looking at this table, it is clear
that even when considering only the average solving time,
for all domains, it is still critical to select the proper amount
of backwards search to do, otherwise the performance is un-
acceptably poor, possibly taking orders of magnitude more
time and space than A*. Our objective is to come up with
an algorithm that manages the number of backwards expan-
sions on its own.

A* with Incremental KKAdd
We introduce Incremental KKAdd, a method for correct-
ing the heuristic by incrementally increasing the backwards
perimeter’s size. The approach relies upon the key obser-
vation that the backwards searches can be done at any time
in the search, not just at the beginning, meaning backwards
search can be interleaved with forwards searches. This
means that one way to effectively manage the number of ex-
pansions in the backwards search is to maintain a bounded
proportion relative to the number of expansions done in the
forwards search. This is the approach taken in A* with In-
cremental KKAdd (see Algorithm 1).

Incremental KKAdd requires a single parameter, which is
the desired proportion of backwards expansion. As we shall
see in the empirical results, unlike many other algorithms
with parameters we consider, the parameter used by A* with
Incremental KKAdd is extremely forgiving, producing rea-
sonable results across three orders of magnitude. A* with
Incremental KKAdd initially proceeds in the backwards di-
rection (line 10), expanding a small number of nodes back-
wards (we used 10). Next, the algorithm expands nodes in
the forwards direction (line 12) such that when finished, the
ratio is equal to the proportion of expansions done in the
backwards direction. Last, the algorithm doubles the num-

Algorithm 1 A* with Incremental KKAdd
1: fOpen ={Initial} sorted on basef , breaking ties on base

h (not corrected)
2: bOpen ={All Goal Nodes} sorted onǫn
3: closed ={Initial}
4: herr = 0
5: incumbent = nil
6: function INCR KKA DD A*(ratio, initial, goal)
7: expLimit = 10
8: while !solutionFound()do
9: searchBackwards(expLimit)

10: if !solutionFound()then
11: searchForwards(expLimit· (1−ratio)

ratio
)

12: expLimit = expLimit * 2
13: function SEARCHFORWARDS(count)
14: repeat
15: next = fOpen.pop()
16: for all child : next.expand()do
17: inc, direction = closed.get(child)
18: if inc 6= nil and direction = REVthen
19: makeIncumbent(child, inc)
20: continue
21: else if inc == nil or inc.g< child.g then
22: fOpen.remove(inc)
23: closed.remove(inc)
24: else if inc.g≥ child.g then
25: continue
26: fOpen.add(child)
27: closed.add(child, FWD)
28: until solutionFound() or at most count times
29: function SEARCHBACKWARDS(count)
30: repeat
31: next = bOpen.pop()
32: inc, direction = closed.get(next)
33: if inc 6= nil and direction = REVthen
34: continue
35: else
36: fOpen.remove(inc)
37: makeIncumbent(inc, next)
38: closed.add(next, REV)
39: for all child : next.reverseExpand()do
40: closedInc, dir = closed.get(child)
41: if closedInc6= nil and dir = REVthen
42: continue
43: else if closedInc6= nil and dir = FWDthen
44: makeIncumbent(closedInc, child)
45: revInc = bOpen.get(child)
46: if revInc = nil then
47: bOpen.add(child)
48: goalFrontier.add(child)
49: else if revInc.g> child.g then
50: bOpen.replace(revInc, child)
51: until solutionFound() or at most count times
52: herr = min(ǫ(n) ∈ goalFrontier)



ber of nodes that will be expanded in the backwards direc-
tion, and repeats the process.

fOpen is the forwards open list, and contains all nodes that
have been generated but not yet expanded in the forwards di-
rection, and have not been expanded backwards. bOpen is
the open list for the backwards search. Closed contains all
nodes that have been expanded or generated in the forwards
direction, and all nodes that have been generated in the back-
wards direction.

The forwards search is similar to A*, with a few differ-
ences. First, the definition of a goal is broader, as now any
state that was reverse expanded can be treated as a goal, be-
cause itsh∗(n) and path to a goal are known. In addition,
goal tests are done at generation, and complete paths are ei-
ther stored as a new incumbent solution or deleted (if worse
than the current incumbent), and in either case, are not put
on the open list (line 20). The solutionFound() function (line
28, 51) tells if an acceptable solution has been found, check-
ing quality of the incumbent against the head of the open
list. If the head of the forward search’s open list ever has a
correctedf value greater than or equal to that of the current
incumbent, the algorithm terminates, returning the incum-
bent, which has now been proven to be optimal. Note that
fOpen is ordered on uncorrectedf values, obviating the need
to resort asherr rises.

The backwards search is also able to generate incumbent
solutions by generating states that have already been discov-
ered by the forwards search (line 37 and 44). Whenever the
backwards search generates an incumbent solution, the qual-
ity of the incumbent is compared to the head of the forward
search’s open list, and if the incumbent’s quality is less than
or equal to thef value of the head of the forward search’s
open list, the algorithm immediately terminates.

The backwards search expandscount nodes in the back-
wards direction in order of increasinggrev(n)−h(n), where
grev(n) is theg value of a node in the reverse direction. The
goal of the backwards search is to provide a large heuristic
correction, and expanding nodes in order of heuristic error
will raise the heuristic correction most quickly. This requires
that thegrev values be optimal, which we now prove.

Theoretical Properties
Lemma 1. (Lemma 5.2 of Kaindl and Kainz (1997)) In
any domain with a consistent heuristic, heuristic error is
non-increasing along any optimal path to a goal.

Theorem 1. In any domain with a consistent heuristic, ex-
panding nodes backwards from the goal ingrev(n) − h(n)
order results in each node being expanded with its optimal
grev value, and therefore thegrev value is the same as the
h∗ value.

Proof. First, let us suppose that a noden1 is the first node
with the smallest value ofgrev(n1)− h(n1) = minerr that
does not havegrev(n1) = g∗rev(n1). This means that there
exists some positiveδ such thatgrev(n1)− δ = g∗rev(n1).

In order to expand thisn1 with its optimal grev value,
there must exist some other noden2 that should instead be
expanded, which will eventually lead ton1 via the optimal

reverse path. Since we assumed thatn1 had the minimum
value ofgrev(n1)− h(n1), we know:

grev(n1)− h(n1) ≤ g∗rev(n2)− h(n2) (1)

Since the optimal path backwards from the goal ton1 goes
throughn2, by Lemma 1 we also know:

g∗rev(n2)− h(n2) ≤ g∗rev(n1)− h(n1) (2)

Adding δ to both sides of Equation 2, and making the sub-
stitutiong∗rev(n1) + δ = grev(n1) on the right side yields:

g∗rev(n2)− h(n2) + δ ≤ grev(n1)− h(n1) (3)

Equations 1 and 3 yield:

g∗rev(n2)− h(n2) + δ ≤ g∗rev(n2)− h(n2) (4)

which is a contradiction.

Thus, the strategy of ordering the backwards search by error
preserves the correctness of the heuristic correction.

A* with Incremental KKAdd relies upon the heuristic cor-
rection to reduce the number of expansions compared to A*.
Although an improved heuristic is generally a good thing,
it is known that, even when one heuristic strictly dominates
another, it is still possible for A* with the weaker heuristic to
terminate sooner than A* with the stronger heuristic (Holte
2010), due to tie breaking in the finalf layer. An important
question to ask is if this can happen with the Incremental
KKAdd heuristic. Theorem 2 tells us this will not happen.

Theorem 2. The forwards search of A* with Incremental
KKAdd will never expand a node that A* would not expand,
if both algorithms are tie breaking in favor of lowh, and any
remaining ties are broken identically.

Proof. A* with Incremental KKAdd sorts nodes on theirf
value, breaking ties in favor of lowh, just as A*. Thus,
A* with Incremental KKAdd will have the same nodes on
the open list as A* with one exception: since nodes that
have been reverse expanded have the optimal path to the goal
known, these nodes are not expanded, so these nodes, and all
of their children, will never be on the open list of A* with
Incremental KKAdd. This pruning may cause other nodes
currently on the open list of A* with Incremental KKAdd
to haveg values that are too large (if the optimalg value is
achieved via a path going through a pruned node), delaying
the node’s expansion in A* with Incremental KKAdd. Since
there is already a path to the goal as good as the path going
through these nodes, A* gains nothing by expanding these
nodes earlier, as A* with Incremental KKAdd already has
an incumbent solution as good as any solution going through
these nodes.

Corollary 1. The only nodes expanded by A* with Incre-
mental KKAdd that A* might not also expand are the nodes
expanded backwards from the goal.

Proof. Direct consequence of Theorem 2.



The ratio of backwards expanded nodes to forwards ex-
panded nodes is bounded after the first iteration of forwards
search by three times the ratio. When the backwards search
begins the perimeter’s size isratio · forwardExp, and af-
ter the backwards search terminates, the perimeter’s size is
ratio · forwardExp+ 2 · ratio · forwardExp. Thus, the
size of the perimeter is never more than three times the ratio
times the number of forward expanded nodes.

A* with Adaptive Incremental KKAdd
Incremental KKAdd requires the user to decide what por-
tion of effort should be dedicated to searching backwards.
This raises two issues. First, while specifying a ratio is more
robust than an absolute number, the ratio does make a dif-
ference, and the user might not know an ideal value, and
second, the algorithm is unable to adjust to the domain or
instance: sometimes backwards search is extremely helpful
and more would provide further benefit, other times back-
wards search is not helpful at all and should be stopped. In-
cremental KKAdd commits to a specific ratio, which while
it bounds the worst case, may not be the best ratio.

A* with Adaptive Incremental KKAdd eliminates the ra-
tio parameter and uses experience during search to decide if
it should expand nodes forwards or backwards. Intuitively,
the algorithm must answer the question “will the overall
search progress faster expanding backwards or forwards?”.
To answer this question, we begin with the observation that
the termination condition of the search is when the incum-
bent solution’s cost is less than or equal to thef value of the
head of the open list. Thef value of the head of the open
list can be split into two independent components: the base
f in the forwards direction (without the heuristic correction)
and the heuristic correction from the backwards direction.
The goal, therefore, is to increase the sum of these quan-
tities using the fewest expansions possible. The algorithm
must figure out which quantity is rising faster per expan-
sion: the minimumf from the forward search’s open list, or
theherr correction from the backwards search.

To do this, the algorithm begins by using a fixed ratio (we
used 1:10) and doing three backwards/forwards iterations of
A* with Incremental KKAdd using this ratio. After each
forward search, it records the minimumf and number of
forwards expansions done in the forwards search andherr

and the number of backwards expansions done in the back-
wards search. After three backwards/forwards iterations,we
have three data points that can be fit using linear regression
to predict how future expansions can be expected to mod-
ify herr and thef value of the head of the open list. We
selected the number three because the minimum number of
points needed for linear regression is two, and three provides
additional robustness to the estimate, while four can give
too much overhead. In most domains, the number of nodes
with anf value below a given threshold increases exponen-
tially with f (This is also known as the heuristic branching
factor (Korf, Reid, and Edelkamp 2001)). Thus, it is not
unreasonable to assume that log(expansions) is linearly pro-
portional to thef value of the head of the open list. Our
experiments have also shown that the relationship between
the log(backwards expansions) is also linearly proportional

to herr, as the correlation coefficients are reasonable (all are
above .83).

Once A* with Adaptive Incremental KKAdd has com-
pleted three forwards/backwards iterations, it considers
doubling the size of either the forwards search or the back-
wards search. In order to decide which is a better invest-
ment, it calculates the expected increase inf per expansion
if the forward open list’s size is doubled, and compares that
to the expected increase inherr per expansion if the back-
wards search’s expansions are doubled. Once it figures out
which direction looks more promising, it doubles the size of
the search in that direction, adding an additional data point
informing the next prediction.

IDA* with Incremental KKAdd
Iterative Deepening A* (Korf 1985) can also be augmented
using Incremental KKAdd. For large problems where dupli-
cate states are rare, IDA*, rather than A*, is the state of the
art algorithm. In IDA* with Incremental KKAdd, the for-
wards IDA* search is identical to an ordinary IDA* search,
except it evaluates nodes using the KKAdd heuristic, and
whenever the forwards search finds a node that has been re-
verse expanded, that node is turned into an incumbent so-
lution and not expanded. The backwards search is unmod-
ified, except it no longer needs to look for nodes that have
been expanded in the forwards direction, since the forwards
search is no longer storing nodes. In order to meet its time
complexity bound, IDA* doubles the amount of work done
in each iteration. IDA* with Incremental KKAdd can take
advantage of this property by doing backwards expansions
between forwards IDA* iterations, expanding enough nodes
to achieve the desired ratio. Note that the backwards search
may change the heuristic correction, and this may interfere
with the forward search’s ability to double. The overall per-
formance will still be superior to that of IDA* without the
improved heuristic, because each iteration will be smaller
than the corresponding uncorrected IDA* iteration.

One possible complication with integrating the Incremen-
tal KKAdd heuristic into IDA* is the fact that calculating the
KKAdd heuristic for a node requires looking up that node in
a hash table. When doing A*, this hash table lookup is al-
ready done as a part of duplicate detection, but many imple-
mentations of IDA* omit cycle detection. In many domains,
looking up a state in a hash table is substantially more expen-
sive than expanding the state, which can cut into the overall
savings.

Empirical Evaluation
We compare A* with Incremental KKAdd and Adaptive
Incremental KKAdd A* against A*, A* with the KKAdd
heuristic, single frontier bidirectional search, and perime-
ter search on seven different popular heuristic search bench-
marks. We used a Java implementation of all the domains
and algorithms, running on a Core2 duo E8500 3.16 GHz
with 8GB RAM under 64 bit Linux.

For A* with Incremental KKAdd we selected three val-
ues for the ratio: 0.1, 0.01, and 0.001. If the ratio gets larger
than 0.1, in many domains, the overhead becomes exces-



sive. Values smaller than 0.001 would have resulted in only
a handfull of backwards expansions. For perimeter search,
we ran with a variety of perimeters ranging from 1 to 50, and
only consider the best setting for each domain. For A* with
the KKAdd heuristic, we considered backwards searches
varying in size from 10 to 1,000,000. For single frontier
bidirectional search, we implemented the enhancements de-
scribed by Lippi, Ernandes, and Felner (2012) and tried
both enhanced single frontier bidirectional search (eSBS)
and enhanced single frontier bidirectional search lite (eSBS-
l), using the always jump (A) jumping policy. Our imple-
mentation of eSBS produces comparable node and expan-
sion counts to those reported by Lippi, Ernandes, and Fel-
ner (2012), but our times are sometimes substantially slower
for the grid and tiles domains, although on pancakes, both
the times and node counts roughly align. To ensure that
we don’t discount an algorithm for which implementation
tuning would provide an important advantage, we provide
data on three metrics: runtime using our implementation,
the number of times either a forwards or reverse expansion
was requested, and the number of times the domain’s base
heuristic function was called. Sometimes, one or more of
these algorithms ran out of either memory (7.5GB) or time
(10 minutes) for one or more instances, and when that oc-
curred, results for that configuration were marked as DNF.

The results of this comparison are shown in Table 1. The
first domain we consider is dynamic robot path planning
(Likhachev, Gordon, and Thrun 2003). We used a 50x50
world, with 32 headings and 16 speeds. The heuristic is
the larger of two values. The first value estimates time to
goal if the robot was able to move along the shortest path at
maximum speed, which the real robot cannot do due to re-
strictions on its turn rate and acceleration. The second value
makes the free space assumption, and estimates time to goal
given the robot’s current speed and the need to decelerate to
zero at the goal. These worlds are unusually small, which
was necessary to accommodate the algorithms that required
a point-to-point heuristic (all pairs shortest paths) in this do-
main. To compensate for the easiness associated with having
a small map, 35% of the cells were blocked randomly. All
nodes in the space have a certain amount of heuristic error
due to the fact that neither of these heuristics is a particularly
accurate measure of the true cost of bringing the robot into
the goal. As a result, the backwards search is extremely ef-
fective, correcting significant error in the heuristic. A* with
all varieties of Incremental KKAdd are able to handily out-
perform A* in this domain. Here, perimeter search is not
particularly effective, being slower than A*. The lite vari-
eties of single frontier bidirectional search did not terminate.
Across all instances, eSBS(A) averaged 123 seconds, which
is substantially slower than any of the other algorithms.

The next domain is city navigation, a domain which is de-
signed to simulate a hub and spoke transportation network
(Wilt and Ruml 2012). We used 1500 cities and 1500 places
in each city, with each city connected to its 5 nearest neigh-
bors, and each place connected to its 5 nearest neighbors. In
this domain, the heuristic is euclidean distance, which as-
sumes it is possible to move directly from one location to
another. The backwards search is able to correct some of

the heuristic error, which makes the A* with Incremental
KKAdd variants faster than A*. Perimeter search, with its
additional heuristic evaluations and lack of heuristic correc-
tion, was naturally slower. All varieties of eSBS did not
terminate on this domain.

The third domain we consider is the Towers of Hanoi. We
considered a 14 disk 4 peg problem with two disjoint pat-
tern databases (Korf and Felner 2002) tracking the bottom
12 disks and the top two disks respectively. In this domain,
the backwards search is able to identify the fact that some
of the states have substantial heuristic error, due to the fact
that the disjoint pattern databases do not accurately trackthe
relationship between the top two disks and the bottom 12
disks. Thus, error correction is extremely helpful, and al-
lows the A* with Incremental KKAdd variants to terminate
much faster than basic A*. Since it is not clear how to adapt
the informative pattern database heuristic to give point-to-
point information, we could not run either perimeter search
or eSBS on this domain (N/A in Table 1).

The fourth domain is a TopSpin puzzle with 14 disks and a
turnstile that swaps the orientation of 4 disks. For a heuris-
tic, we used a pattern database that contained information
about 7 disks. In this domain, the backwards searches were
never able to find a correction to the heuristic, because there
were a large number of nodes where the heuristic is per-
fect. Since the backwards searches were never able to find
a heuristic correction, the investment A* with Incremental
KKAdd variants make in the backwards search turns out to
be unnecessary. The amount of investment in the unneeded
backwards search is bounded, so the overall performance of
A* with Incremental KKAdd is only slightly slower than A*.

The fifth domain is the sliding tile puzzle (15). We filtered
out instances that any algorithm failed to solve. The A* with
Incremental KKAdd variants are actually able to solve more
instances (90) than A* (83), although not as many instances
as Perimeter search (94). In the sliding tile puzzles, back-
wards search failed to derive a heuristic error correction.In
this domain, like in TopSpin, without the benefit of a heuris-
tic error correction the A* with Incremental KKAdd variants
are not able to terminate early, but once again, we see that
the overhead compared to A* is bounded.

A similar phenomenon can be observed in the 40 pancake
problem. We used the gap heuristic (Helmert 2010). which
is extremely accurate. None of the A* with Incremental
KKAdd variants were able to get a heuristic correction, and
their tie breaking was not much more effective than the tie
breaking inherited from A*. Thus, without any benefit from
the additional overhead, the A* with Incremental KKAdd
variants performed marginally worse than A* on this prob-
lem as well. eSBSA(l) is extremely effective in this domain,
and its counterpart eSBSA is competitive with A*. Perime-
ter search took longer than A* to find solutions.

The seventh and last domain we consider is grid path plan-
ning. The grid path planning problems we considered were
2000x1200, with 35% of the grid cells blocked. We used
a 4 way motion model and the Manhattan distance heuris-
tic. The A* with Incremental KKAdd variants were able to
get a heuristic correction, and this correction allowed them
to terminate the forwards search earlier than A*. Unfortu-



Domain A* KKAdd A* with Incremental KKAdd Peri- SBS SBS
10 10

2
10

3
10

4
10

5
10

6 Adpt 10
−1

10
−2

10
−3 meter (A) (A)-l

T 1.06 1.02 0.62 0.47 0.67 4.13 34.64 0.82 0.45 0.54 0.82 2.00 123
Robot E 53.1 40.2 21.3 11.8 17.9 101.0 683 11.8 12.6 18.4 31.1 67.3 25.8 DNF

H 2,475 1,745 787 383 340 2,061 30e3 380 410 693 1,305 3,257 1,087
T 0.89 1.05 0.96 0.82 0.78 0.90 8.32 0.70 0.72 0.77 0.94 1.04

CityNav E 192 175 157 140 100 134 1,000 108 92.5 119 151 176 DNF DNF
H 1,184 1,056 947 845 604 826 6,005 656 561 716 908 6,345
T 23.2 21.3 16.9 10.6 5.3 3.91 18.4 4.79 4.33 6.27 10.88

Hanoi E 1,457 1,457 1,185 769 389 272 1,051 310 266 413 694 N/A N/A N/A
H 5,583 5,583 4,542 2,951 1,513 1,259 6,1941,251 1,094 1,599 2,665
T 4.88 4.88 4.90 3.50 3.80 6.89 42.79 5.27 5.27 5.13 4.97 3.71 7.99

TopSpin E 94 93 94 94 103 197 1,089 94 108 108 94 93 21 DNF
H 1,319 1,315 1,316 1,329 1,452 2,718 15e31,329 1,516 1,330 1,317 1,313 306
T 17.47 18.45 18.45 18.58 18.63 19.56 25.0318.45 18.40 19.65 19.01 10.11 36.56 31.26

Tiles E 2,922 2,918 2,919 2,920 2,926 3,019 3,8852,919 2,920 3,004 2,929 1,082 98 98
H 5,790 5,786 5,786 5,789 5,813 6,112 9,0265,786 8,424 6,066 5,816 32e3 202 202
T 1.88 1.93 1.86 2.04 2.18 2.13 2.62 1.96 1.89 2.15 1.88 1.19

Pancake E 19 19 19 20 29 DNF DNF 21 25 20 19 19 3 3
H 771 772 775 810 1,161 825 990 793 774 771 132 133
T 1.24 1.27 1.28 1.26 1.49 1.49 4.25 1.28 1.30 1.27 1.34 1.31

Grid E 382 382 381 376 370 429 1,183 373 385 371 378 382 DNF DNF
H 638 638 636 629 628 819 2,977 638 686 624 632 638

Table 1: CPU seconds (T), expansions (E), and heuristic evaluations (H) (both in thousands) required to find optimal solutions.

nately, the backwards search required to get the correction
required approximately the same number of nodes as the
forwards search was able to save, resulting in no net per-
formance gain.

Overall, we can see that in domains like dynamic robot
navigation, Towers of Hanoi, and City Navigation, where
there is a large heuristic error correction, the A* with Incre-
mental KKAdd searches are all able to find optimal solutions
faster than A* by a sizable margin. In domains like TopSpin,
sliding tiles, and the pancake puzzle, in which the backwards
search failed to derive a heuristic correction, the overallper-
formance was comparable to A*, with only a small amount
of overhead lost to the backwards search. In domains like
grid path planning, the backwards search is able to correct
the forwards heuristic, but the cost of the correction is ap-
proximately equal to the savings in the forward search, so
there is no net gain. In every situation, the A* with Incre-
mental KKAdd searches are competitive with A*, due to the
fact that the amount of work they do above and beyond A*
is, in the worst case, bounded by a constant factor, and in
the best case, there is a substantial speedup over A*. Al-
though the other bidirectional searches are sometimes able
to outperform both A* and the A* with Incremental KKAdd
variants, they are plagued by brittleness: on some domains,
both SBS and Perimeter Search are substantially slower than
A*, or are not able to find solutions at all.

We can also see that the A* with Incremental KKAdd
variants do a reasonable job of capturing the potential of the
KKAdd heuristic without the tedium of having to manually
tune the size of the backwards search, and without the risk
of sometimes getting extremely poor performance, as some-
times happens if the KKAdd heuristic is used with too much
or too little backwards search.

Conclusion

We have introduced a significantly improved incremental
variant of the KKAdd procedure of Kaindl and Kainz (1997)
that preserves its benefits while provably bounding its over-
head. A* with Incremental KKAdd is empirically an effec-
tive way to speed up optimal heuristic search in a variety
of domains. We have also shown that, in the worst case,
the amount of additional work done is bounded by a con-
stant factor selected at runtime, and that numbers ranging
from 0.1 to 0.001 all result in reasonable performance, pro-
ducing an algorithm that is extremely effective in the best
case, and only induces a minimal constant factor additional
work in the worst case. We also introduce A* with Adaptive
Incremental KKAdd, which manages the ratio of forwards
expansions to backwards expansions on its own and reliably
yields good performance.

Both A* with Incremental KKAdd and A* with Adaptive
Incremental KKAdd are able to provide substantial speedup
as compared to A*. Unlike other bidirectional search algo-
rithms that are sometimes much slower than A* or unable
to find solutions at all, in the worst case, the A* with Incre-
mental KKAdd varieties always return a solution in compa-
rable time to A*, making Incremental KKAdd a robust and
practical alternative to previous state-of-the-art bidirectional
searches and A*.

Acknowledgements

Our thanks to Michael Leighton, who played a significant
role early in the development of this paper. We also grate-
fully acknowledge support from NSF (grants 0812141 and
1150068) and DARPA (grant N10AP20029).



References
Barker, J. K., and Korf, R. E. 2012. Solving peg solitaire
with bidirectional BFIDA. InAAAI.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*.Journal of the Associa-
tion for Computing Machinery32(3):505–536.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
Artificial Intelligence65(1):165–178.
Felner, A.; Moldenhauer, C.; Sturtevant, N. R.; and Schaef-
fer, J. 2010. Single-frontier bidirectional search. InAAAI.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
neticsSSC-4(2):100–107.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. InProceedings of the Third Symposium on Com-
binatorial Search.
Holte, R. C. 2010. Common misconceptions concerning
heuristic search. InProceedings of the Third Annual Sym-
posium on Combinatorial Search, 46–51.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered.Journal of Artificial Intelligence Re-
search7:283–317.
Korf, R., and Felner, A. 2002. Disjoint pattern database
heuristics.Artificial Intelligence134:9–22.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*.Artificial Intelligence
129:199–218.
Korf, R. E. 1985. Iterative-deepening-A*: An optimal
admissible tree search. InProceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, 1034–
1036.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Proceedings of the Seventeenth Annual Conference on Neu-
ral Information Processing Systems.
Lippi, M.; Ernandes, M.; and Felner, A. 2012. Efficient
single frontier bidirectional search. InProceedings of the
Fifth Symposium on Combinatorial Search.
López, C. L., and Junghanns, A. 2002. Perimeter search
performance. InComputers and Games, 345–359.
Manzini, G. 1995. BIDA: An improved perimeter search
algorithm.Artificial Intelligence75(2):347–360.
Wilt, C., and Ruml, W. 2012. When does weighted A*
fail? In Proceedings of the Fifth Symposium on Combinato-
rial Search.


