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Abstract—QUIC, a standard internet protocol, was developed

to perform better in high loss and latency networks. HTTP/3

takes the real benefits of QUIC. In this paper, empirical study of

Quality of Experience (QoE) under realistic network scenarios

along with the impact of local connectivity, server locations

and server software is explored between HTTP/3 and HTTP/2

protocols. To explore the QoE, this paper presents the use of

throughput and First Contentful Paint (FCP) metric of the

Lighthouse, an open source automated tool by Google to measure

the user experience and capture performance of the network

protocol. The findings indicate that HTTP/3 performs better than

HTTP/2 in more challenging network conditions. The experi-

ments also show that while throughput strongly correlates with

FCP for HTTP/2, HTTP/3 throughput is not a good predictor of

FCP.

Index Terms—HTTP/3, QUIC, QoE, Lighthouse, Protocol

Performance

I. INTRODUCTION

Everyday internet traffic is increasing exponentially and so
does the need to have a reliable high speed data transfer.
Internet service providers are struggling for low latency and
high throughput networks as even a 100 ms delay can cause
a loss of millions of dollars [1].

Google was preeminent to come up with a new protocol
known as QUIC (Quick UDP internet connections) for pro-
viding fast data transfer in high loss and latency scenarios.
QUIC amalgamates the advantages of both TCP and UDP
into one protocol to perform well in high loss and latency
scenarios. Google’s version of QUIC (gQUIC) was designed
and implemented by Jim Roskind [2] in 2012, it was publicly
announced in 2013 [3]. gQUIC is mainly deployed at Google’s
servers and clients such as YouTube and Google’s Chrome
browser.

IETF recently standardized QUIC in RFC 9000 [4]. Pro-
tocols such as HTTP/3, SSH, DNS can be run on top of
QUIC [5]. HTTP/3, an application layer protocol, gets the
support of streams from within the QUIC protocol [6]. HTTP/3
takes the advantage of QUIC features such as multiple in-
dependent streams, Connection ID, frames and zero RTT
(Round Trip Time) connectivity. HTTP/3 is in the final stage
of standardization by IETF [6]. QUIC was mainly designed to
perform better in poor network conditions and provide the user

a good Quality of Experience (QoE), which measures user’s
satisfaction with a service.

The main goal of this paper is to evaluate the QoE of
HTTP/3 by comparing the throughput and Lighthouse’s First
Contentful Paint (FCP) metric among different HTTP/3 and
HTTP/2 servers in realistic networks. FCP is an important
metric since it indicates how quickly meaningful information
is going to appear on the screen.

II. BACKGROUND

Performance has been an issue since the inception of the
World Wide Web. Recently, there has been an increase in
latency-sensitive applications and web latency needs to be
reduced [7].

HTTP/1 was used for communicating for around 15 years,
however due to the issues encountered with HTTP/1, in 2009,
SPDY a protocol proposed by Google was later integrated into
HTTP/1 and is designated as HTTP/2 [8], which runs on top
of TCP. There are impediments of TCP which makes it a slow
protocol: (i) long connection establishment time as it can take
upto three RTTs with TLS authentication [9] (ii) reliable data
transfer which means that even if a single packet is lost then
all the data needs to wait for retransmission which leads to
Head-of-Line (HOL) blocking. A more efficient protocol was
needed for handling today’s internet traffic which led to the
development of QUIC.

QUIC runs on top of UDP. UDP also known as User
Datagram Protocol is a simple protocol with least overhead
as compared to other transport layer protocols. UDP has
no congestion control of its own. QUIC implements the
congestion control in user space instead of kernel space and
also helps in reducing the latency. QUIC has faster connection
establishment than TCP and can achieve zero RTT connection
establishment in case of a previously established connection.
In QUIC protocol there can be multiple streams active on a
connection at a time. Traffic through QUIC can traverse middle
boxes easily as the information is encrypted end to end and
there is no threat of information leak [7]. QUIC uses a unique
Connection ID, that enables delivery even if there is a change
in the IP address. QUIC, a newly standardized protocol acts
as backbone to HTTP/3.

Many open-source implementations of QUIC and HTTP/3
have emerged since 2016, which help in exploring the func-978-1-7281-8688-7/22/$31.00 ©2022 IEEE
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tioning of the protocol [10]. Due to the advantages QUIC holds
over TCP and its continued wide adoption, resulting in a need
to study and compare the HTTP/3 and HTTP/2 QoE in diverse
realistic network scenarios.

III. RELATED WORK

There have been a handful of QoE studies on QUIC or
HTTP/3 in realistic networks [11]–[14]. Researchers originally
started exploring the performance of QUIC by studying the
Page Load Time (PLT) metric. However, with the advancement
in the internet technology and web-pages the researchers
are now shifting the focus towards QoE. Moreover, there
is an increased focus in analyzing and benchmarking the
performance of HTTP/3.

To the best of our knowledge, the first QUIC performance
study was done in 2014 by R. Das [15] on gQUIC. Das et al.
evaluated the performance of QUIC by exploring the PLT in
QUIC, SPDY and HTTP/1.1 on Alexa’s top 500 websites using
100 different network configurations. Author found that in case
of very low bandwidth links (0.2 Mbps), HTTP/1.1 performs
the best followed by QUIC and SPDY. When the link improves
from very low to low bandwidth (0.3–1.0 Mbps), QUIC fared
better than HTTP/1.1. Furthermore it was observed that QUIC
improved when Round Trip Time increased and fared better
than HTTP/1.1 in case of small objects and HTTPS web-pages.

Biswal et al. [16] focused their study on the synthetic web-
page load times on gQUIC version 23. They orchestrated the
web pages consisting of static objects. Additionally, popular
web-sites from the Alexa rankings were also considered. It
was observed in their experiment that more than 90% of
synthetic web pages loaded faster with QUIC in case of poor
network conditions (low bandwidth, high loss and latency).
The author also reported that QUIC performance improved
with the increase in object size.

Cook et al. [17] performed the experiments in local testbeds
as well as on the internet to evaluate the PLT. They observed
that QUIC performed better in wireless mobile networks,
whereas QUIC’s benefits were not obvious in normal network
conditions.

Seufert et al. [14] conducted a research to compare the QoE
benefits between QUIC and TCP. Video streaming and Web
browsing were used for the comparison. QoE factors like PLT,
initial delay, visual quality and stalling were considered for
observing the QoE to the end user. Authors observed that both
the protocols had a similar QoE.

Trevisan et al. [12] did a QoE study on HTTP/3. While only
controlling the client, a number of different HTTP/3 websites
hosted on the internet were visited. The focus of their study
was on performance gains achieved by QoE-metrics. Authors
found that HTTP/3 had substantial benefit only in case of high
latency and low network bandwidth and HTTP/3 performance
relies on the orchestration of server-side platforms.

Another QoE analysis comes from Saif et al. [18]. The paper
reports a study comparing QoE between HTTP/3 and HTTP/2
in virtual networks with artificially introduced network impair-
ments. In [18], quantitative throughput is measured and Light-

house tool is used for measuring the web-page performance.
Nginx server with an experimental patch (QUICHE) from
Cloudflare was used to provide support for HTTP/3 in their
experiment. The authors state that HTTP/3 performed mostly
poorly than HTTP/2 but had a higher average throughput for
HTTP/3.

The research presented here extends the work [18] to differ-
ent realistic network scenarios and explores the performance
of more HTTP/2 and HTTP/3 servers.

IV. EXPERIMENTAL SETUP

In this paper the experiments were designed to capture typ-
ical deployment scenarios with respect to local connectivity,
server locations and protocols. The following subsections talk
about these three factors in more detail.

A. Local Connectivity
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Fig. 1. Wired Experimental Setup
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Fig. 2. Wireless Experimental Setup

Figure 1 and 2 show the experimental setup. In the wired
setup the client, local server, and the wireless router are
connected using a wired Gigabit Ethernet switch. Whereas



TABLE I
SERVER SPECIFICATIONS

Location State,
Country

Linux
Kernel

RAM

Local LAN Haryana,
India

5.8.0-
53-
generic

32 GB

Regional Central
India-
Azure

Maharashtra,
India

5.4.0-
1043-
azure

8 GB

Global EAST
US-
Azure

Virginia,
USA

5.4.0-
1040-
azure

8 GB

in the case of wireless setup the client and local server are
connected using a wireless router.

The client machine was located in Northern India. A Mac-
Book Pro laptop running macOS Catalina version 10.15.7
was used as a client machine. Chrome browser version
91.0.4472.114 and Lighthouse tool version 7.3.0 in the client
machine were used to carry out the measurements for the
throughput and FCP metric of the Lighthouse. Firefox, Safari
and Microsoft Edge also support QUIC protocol, however
Chrome browser was considered due to maturity of it’s QUIC
implementation.

B. Server Locations
The servers were hosted in Local, Regional and Global lo-

cations. Local server was hosted on a local machine. Regional
and Global servers were hosted using Microsoft Azure virtual
machines. Regional server is located in Central India and the
Global server is in the East USA. Combining the three server
locations and two local connectivity options as seen in the
previous subsection, we get a total of six scenarios which are
referred to as Local Wired, Local Wireless, Regional Wired,
Regional Wireless, Global Wired, and Global Wireless.

The Local Wired scenario replicates no impairment sce-
nario. Regional server, which is hosted in Central India, cor-
responds to typical server location for content transfer to the
audience. Global server, which is hosted in the Eastern USA
represents a high latency network. Ping and traceroute utilities
were used to calculate the base latency and hop for Regional
and Global servers from the client machine. The Regional
server exhibited approx. 40 ms latency and 19 hops whereas
the Global server exhibited a latency of approx. 230 ms and
24 hops. Client to server physical distance for Global scenario
is approximately 7.5 times more than Regional scenario. The
choice of these server locations helps in analyzing the protocol
behavior in different network settings. Server specifications are
shown in the Table I.

C. Server Software
Hypercorn, Nginx, AIOQUIC and QUICHE servers were

used in this experiment (see Table II). Hypercorn and Ng-
inx support both HTTP/2 and HTTP/3 protocols, whereas

AIOQUIC and QUICHE are HTTP/3 servers. Hypercorn uses
AIOQUIC to provide HTTP/3 support. Certificates from AIO-
QUIC and QUICHE were used for Hypercorn and Nginx.
Unlike [18], which used QUICHE from Cloudflare to provide
HTTP/3 support to Nginx, this paper uses Nginx’s official
QUIC implementation [19]. Nginx’s own QUIC implemen-
tation was preferred because the preliminary experiments
performed on the Nginx (QUICHE) showed that the server
had stability issues in real networks. When a file was down-
loaded from Nginx (QUICHE) using HTTP/3 protocol, the
file download failed with network error in the browser. A
Wireshark trace was used to further examine the issue and it
seemed to be caused by an unexpected change in Connection
ID. Saif et al. [18] reported results based on Nginx (QUICHE)
from a testbed that utilized virtual networks with artificially
introduced network impairments. We did not experience the
Connection ID issues outlined above in an environment similar
to [18]. However, the cause of change of Connection ID in case
of real networks remains unresolved. Next section talks about
the performance metric used.

TABLE II
SERVER SOFTWARE DETAILS

Server Protocol Version
Iperf3 [20] TCP 3.9
Nginx-H2 [19] HTTP/2 Nginx-1.21.1
Nginx-H3 [19] HTTP/3 Nginx-1.21.1
Hypercorn-H2 [21] HTTP/2 Hypercorn-0.11.2
Hypercorn-H3 [22] HTTP/3 Hypercorn-0.11.2,

AIOQUIC 0.9.11
AIOQUIC-H3 [23] HTTP/3 0.9.11
QUICHE-H3 [24] HTTP/3 0.8.1

V. PERFORMANCE METRICS

Throughput and FCP were used to analyze the QoE ob-
served from different protocols. For the throughput experi-
ments a 50MB file was replicated in each server to maintain
the uniformity. The file was downloaded from HTTP/2 and
HTTP/3 servers to measure the throughput.

While the throughput signifies the amount of data trans-
ferred per unit of time, FCP determines the time it takes for the
initial Document Object Model (DOM) content to be loaded on
the browser screen [25] and is more oriented towards the QoE.
FCP metric was preferred to analyze the QoE of the web-page
since PLT alone does not give comprehensive analysis of the
QoE. It has also been said in [26] that user experience depends
on the overall page load process not just on the precise time
at which the page download is complete.

FCP is one of the six performance metrics of the Lighthouse
tool. Lighthouse’s other performance metrics: (i) Speed Index
(SI) (ii) Largest Contentful Paint (LCP) (iii) Time to Interac-
tive (TTI) (iv) Total Blocking Time (TBT) (v) Cumulative
Layout Shift (CLS) were also recorded but FCP is of the
main interest in this article. Detailed description of Lighthouse



TABLE III
WEB PAGE SPECIFICATIONS

Type Total Bytes Number of Files

HTML 9.36 KB 1

CSS Style Sheets 7.89 KB 3

Total Images 1.23 MB 36

JavaScript 364 KB 20

Total 1.60 MB 60

scoring scheme is provided in the performance metric section
of [18]. FCP was given the utmost importance due to the
simplicity of the web-page considered.

In order to measure the FCP time, a simple static web-
page with images and JavaScript was hosted on different
HTTP/2 and HTTP/3 servers. The web-page had no videos or
multimedia content. There were no external scripts or content
loaded from the web-page. The web-page specifications are
given in the Table III. It was preferred to use a static web-page
in our study to maintain consistency between experiments and
to avoid the effect of dynamic content in the production web-
pages. In the next section methodology for the experiment is
explained.

VI. METHODOLOGY

The client machine ran the Chrome browser to download
the file to measure the throughput and the Lighthouse tool was
invoked to measure the FCP metric. Chrome and Lighthouse
both support the HTTP/3 protocol which can be enabled
by using the flag --origin-to-force-quic-on=<host>:<port>
at startup through Command-Line Interface (CLI), this flag
forces the application to connect to a particular host using
QUIC protocol instead of TCP. To avoid having the obser-
vations impacted by caching, Chrome browser was started in
incognito mode. Lighthouse clears caches by default for every
audit.

Lighthouse, when invoked from CLI, uses Chrome Canary
or Chrome to perform its audits depending upon the avail-
ability of the Chrome binary, with the preference for Chrome
Canary if both the binaries are present. Because of this,
Lighthouse used Chrome Canary to perform the FCP audits.

A packet trace was captured for throughput measurement
using tshark. Capinfos was used to obtain the throughput from
the trace. Baseline throughput observation was established by
Iperf3, which was run for 60 seconds for each server.

Lighthouse FCP metric results were generated in JSON
format by passing the output json option while running the
lighthouse audits through CLI. jq is used to parse the JSON
output. The runs were fully automated using the shell scripts.
Ten iterations of each scenario were measured and then the
average value was finally considered to minimize the variance.
Results are discussed in more detail in the next section.

Fig. 3. Throughput for each Scenario

VII. RESULTS

A. Throughput

This section presents the experimental results for the six
scenarios and two performance measures: throughput and FCP.

Figure 3 shows the throughput in six different scenarios
for each server. Iperf3 results show the baseline measure-
ment of all the servers. It was seen that Nginx-H2 had the
highest throughput in Local and Regional scenarios, however
QUICHE-H3 had the highest throughput in the Global Wire-
less scenario. This is consistent with the observation in [16],
which also says that QUIC performs better in high loss and
latency scenarios.

It is interesting to observe how Nginx-H3 throughput
dropped from 376.2 Mbps in Local Wired to 2.5 Mbps
in Global Wireless scenario, whereas throughput of other
HTTP/3 servers did not dip so drastically. We see that HTTP/2
throughput fared better than HTTP/3 in all the scenarios, with
QUICHE being the exception in Global Wireless scenario as
said before. Hypercorn-H3 turns out to be the most under-
performing server.

Furthermore, Figure 4 and 5 show a comprehensive perfor-
mance comparison between the servers. Figure 4 presents the
same results, in this case comparing the performance of each
server for different scenarios. Figure 5 shows throughput of
servers relative to Iperf3.

Though throughput gives us a good idea about data transfer
speed, it does not give us information about the overall user
experience. For better understanding of QoE Lighthouse’s FCP
time is discussed in the next subsection.



Fig. 4. Throughput for each Server

Fig. 5. Throughput relative to Iperf3

B. First Contentful Paint (FCP)

The FCP measure of the Lighthouse is triggered when any
render is detected in the browser [27]. Less FCP time indicates
that the client starts rendering quickly [28]. FCP time achieved
in six different scenarios for each server is plotted in Figure 6,
it was observed that Nginx-H2 takes the least FCP time in all
scenarios except in case of Global Wireless scenario where

Nginx-H3 outperforms all other servers.
AIOQUIC and QUICHE perform similarly in the case of

the Local and Regional scenarios, however in Global scenarios
their performance is not competitive. Hypercorn-H3 had the
worst FCP time in all the scenarios. Figure 7 shows the same
FCP results, in this case comparing the time each server takes
for different scenarios. It can be easily observed how the FCP
time increases for each server from Local Wired to Global
Wireless scenario.

Other Lighthouse performance metrics were also recorded.
For SI it was observed that Nginx-H2 was always leading,
followed by Hypercorn-H2 in most of the scenarios. HTTP/2
largely outperformed HTTP/3 for SI. Nginx-H2 had the best
LCP score. HTTP/2 performed better than HTTP/3 for LCP
metric. It was seen that TTI scores had a similar trend as FCP
scores. TBT was 0 ms for all servers in all scenarios. CLS
scores less than 0.1 are considered good scores [29] and it
was observed that all the servers had a CLS score of less than
0.1. In the next subsection we compare the HTTP/3 server’s
performance.

Fig. 6. First Contentful Paint time for each Scenario

C. HTTP/3 Performance Comparison
Four different HTTP/3 servers were considered in this study.

It was found that most HTTP/3 servers performed poorly in
Local and Regional scenarios. Nginx-H3 performed the best
in the Local Wired scenario whereas QUICHE-H3 performed
best in the Global Wireless scenario. QUICHE-H3 had a stable
throughput as compared to other HTTP/3 servers. AIOQUIC-
H3 follows QUICHE-H3 in terms of throughput. Hypercorn-
H3 had a poor performance as compared to other HTTP/3
Servers. Nginx-H3 performed well in Local Wired scenario
but its throughput sinks in Regional and Global scenarios.



Fig. 7. First Contentful Paint time for each Server

There is a considerable difference in the FCP time among
the HTTP/3 servers when it comes to the Global Wired
and Wireless scenarios. Nginx-H3 takes the least FCP time,
followed by QUICHE-H3 in Global scenarios. However,
Hypercorn-H3 and AIOQUIC-H3 do not perform well.

VIII. CONCLUSION

To understand the performance of HTTP/3 and HTTP/2 pro-
tocols, we measured throughput and FCP in diverse scenarios
and observed that for HTTP/2 protocol, the servers with high
throughput also had high FCP score (low FCP time). Hence,
throughput and FCP for HTTP/2 correlate with each other,
whereas in case of HTTP/3 protocol no discernible pattern is
found. The only exception was found in the case of the Global
Wireless scenario where a correlation is observed between
throughput and FCP for QUICHE-H3.

It is seen that HTTP/3, which runs on top of QUIC protocol
fared better than HTTP/2 protocol in Global Wireless scenario
but in Local and Regional scenarios HTTP/2 outperformed
HTTP/3.

Though HTTP/2 performed better than HTTP/3 in Local
and Regional scenarios, it is also to be noted that HTTP/3
and QUIC implementations are experimental and still getting
fine tuned. Whereas, HTTP/2 implementations are highly
optimized and are production ready implementations.

Performance gain in HTTP/3 in more challenging network
conditions in the Global Wireless scenario seemed to be due
to the advanced QUIC protocol design and features, such as
improved stream multiplexing to prevent the head of line
blocking and optimized congestion control implemented in
user space which allows faster handshakes.

To extend the present work more detailed analysis tools will
be added so that the root cause of low throughput and FCP
scores can be identified. More complex web-pages with videos
will be integrated to test the performance of HTTP/2 and
HTTP/3 servers. Specifically for HTTP/3, qlog [30] integration
is planned so that the functioning of various streams can
be studied in more detail. Our future research will include
QoE analysis of HTTP/3 and HTTP/2 servers in mobile
networks and devices, experiments with different browsers
as the HTTP/3 protocol, and whether HTTP/3 performance
can be further improved by changing the congestion control
mechanism of the protocol or by integrating the QUIC protocol
into the kernel.
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