Is QUIC Quicker with HTTP/3?
An Empirical Analysis of Quality of Experience
with DASH Video Streaming

Sindhu Chellappa and Radim Bartos
Department of Computer Science
University of New Hampshire
Durham, USA
{sindhu.chellappa, radim.bartos} @unh.edu

Abstract—Video streaming contributes to significant traffic on
the internet. MPEG-DASH is a standard method to deliver video
using short segments served by a content delivery network over
HTTP. The Adaptive Bit Rate (ABR) algorithms used in MPEG-
DASH play a vital role in delivering better Quality of Experience
(QoE) to the users. The ABR algorithms are known to perform
well for HTTP/2 over TCP. To address the need for faster data
delivery and lower connection establishment, a transport layer
protocol QUIC and an application layer protocol HTTP/3 are
being widely deployed. With this transition, it is highly desirable
to revisit the ABR algorithms in terms of QoE they deliver. In this
paper, the QoE/performance of the ABR algorithms are examined
and compared between HTTP/3 over QUIC and HTTP/2 over
TCP. Our results show that among the existing ABR algorithms,
low latency streaming algorithms work in favor of HTTP/3 over
QUIC and outperforms HTTP/2 over TCP in many scenarios.
In lossy network conditions, HTTP/3 over QUIC achieves higher
QoE by taking advantage of higher throughput of QUIC and
downloading media segments faster than HTTP/2 over TCP.

Index Terms—HTTP/3, QUIC, low latency streaming, QoE,
DASH, ABR

I. INTRODUCTION

Video streaming accounts for about 84% traffic on the
internet [1]. Dynamic Adaptive Streaming over HTTP (DASH)
is used by leading streaming services like YouTube, Netflix,
Cloudflare and AWS to deliver on-demand or live streaming
media. ABR algorithms attempt to optimize the bit rate selec-
tion to maximize the Quality of Experience (QoE) depending
on the current network and playback conditions.

In DASH, the data is carried over the application protocol,
HTTP (HyperText Transfer Protocol). In 2015, Internet Engi-
neering Task Force (IETF) standardized HTTP/2. To handle
more data within the same connection, HTTP/2 supports mul-
tiple streams. In the protocol stack, HTTP/2 operates on top of
the transport protocol TCP (Transmission Control Protocol).
TCP sees the data transported as a stream of bytes and it
does not know it is transporting HTTP. When the packets are
delayed or lost, the entire TCP connection has to wait, to
ensure in-order delivery of the packets. Hence, Head of Line
(HoL) blocking exists at the transport [2] in HTTP/2. Also, the
connection establishment latency is higher in TCP by 3-way

handshake and with Transport Layer Security (TLS) it is even
higher.

To establish the connection faster, Google proposed Quick
UDP Internet Connections (QUIC) as an experimental trans-
port protocol in 2013 and standardized by IETF in 2015.
QUIC is a multiplexed, connection oriented, reliable and
encrypted protocol which operates on top of unreliable User
Datagram Protocol (UDP) [3]. QUIC has multiple streams in
the transport layer thus eliminating HoL blocking. The data
is encrypted at the transport level and it does not induce
additional TLS handshake enabling faster connection estab-
lishment. While resuming a connection, the data can be sent
directly in zero round trip time (O-RTT).

Since there is a transition in the protocols and the streaming
experience of the existing ABR algorithms is unexplored with
respect to HTTP/3, we aim to bridge the gap and this motivates
the study of QoE with HTTP/3 over QUIC. This paper aims
to address the following questions:

o What is the impact by switching transport from HTTP/2
to HTTP/3 on ABR performance and QoE?

o Among the existing ABR algorithms, which ABR algo-
rithm is best suited for HTTP/3 over QUIC?

To answer them, an experimental comparison is carried
out between HTTP/3 over QUIC and HTTP/2 over TCP for
different ABR algorithms ranging from traditional throughput
to advanced low-latency algorithms (L2A and LoL+) over the
public internet. In addition to the QoE, we analyze the details
of every segment received to understand the behavior of the
ABR algorithms.

The key findings of this paper are,

o With the advent of HTTP/3, a higher QoE is achieved
with most ABR algorithms by utilizing higher throughput
of QUIC and downloading media segments faster than
HTTP/2 over TCP.

o Among the existing ABR algorithms, low latency algo-
rithms (L2A or LoL+) achieve higher bit rate, minimize
bitrate switches, and maximize the average throughput
with HTTP/3 over QUIC under most network conditions.

II. BACKGROUND

Various studies have been done to infer the QoE with respect
to QUIC. A study presented in [4] evaluated the performance
with video streaming and found no improvement in QoE. Sev-
eral studies of ABR algorithms in DASH streaming compared
QUIC and TCP and they find TCP delivers a better QoE
[5]1 [6] [7]. In a follow up work, the authors find that the
average bit rate increases with QUIC retransmissions [8] and
QUIC starts media streams quickly in congested networks [9].
Since all the data that flows over QUIC is encrypted [10]-[12]
propose methodologies to infer QoE from encrypted traffic.
Using HTTP/3 over QUIC, the QoE was evaluated by an open
source auditing tool Lighthouse [13]. In [14], the adaptability
between HTTP/3 over QUIC and DASH video streaming is
proposed.

Adaptive bitrate is the standard approach used by stream-
ing servers to adjust delivered bit rate of the media to the
underlying playback and network conditions. The video is
fragmented into small segments (2 to 10 seconds) and it is
encoded into different bit rates and stored in the server. The
DASH client has a buffer controller, throughput estimator,
ABR controller and scheduler. The buffer controller checks
the buffer occupancy on the player. The throughput estimator
estimates the throughput on the network. The ABR controller
decides the bitrate based on the buffer occupancy and the
throughput estimate. The scheduler makes a HTTP request
for the segment with the corresponding bitrate and the server
sends back the HTTP response for the segment. Several ABR
algorithms were designed with the goal of delivering higher
video quality and minimizing the stalls. The following ABR
algorithms are evaluated as described in Section IV.

Throughput The traditional throughput algorithm estimates
the bandwidth of the network using a sliding window or
Exponential Weighted Moving Average. The playback bit rate
is chosen based on the available bandwidth of the network.

BOLA (Buffer Occupancy based Lyapunov Algorithm) [15]
It is a buffer based algorithm which uses Lyapunov Optimiza-
tion. They derive a utility which aims to provide minimum
rebuffering and maximum average bitrate.

Dynamic [16] Dynamic ABR uses throughput based al-
gorithm and buffer based algorithm for selecting bitrates.
When buffer levels are low (start up state, seek state) it
selects throughput ABR algorithm and when buffer levels are
high (steady state) it switches to BOLA. This is the default
algorithm used by the standard reference player.

L2A (Learn 2 Adapt) [17] Learn to Adapt is a low latency
algorithm which involves Online Convex Optimization for
bitrate adaptation. It does not require throughput estimation
or assumptions of the network. Instead it uses historic values
for bit rate selection.

LoL+ (Low On Latency) [18] The Low on Latency Live
streaming algorithm uses an unsupervised learning mechanism
known as Self Organizing Map (SOM). Weights are assigned
for the SOM module. QoE score, throughput, playback speed
and weight vector are taken into account for bitrate selection.

III. EXPERIMENTAL SETUP

Fig. 1 outlines the setup used to evaluate the performance
of DASH using different ABR algorithms with HTTP/3 over
QUIC and HTTP/2 over TCP. To validate the experiment as
a real life experience, they were conducted over the public
internet with varying network conditions.

| Wireshark |
Browser

Player

=

QoE Monitoring

Dash.js

Network Link Conditioner

ceoe |:||:||:|

ya

Fig. 1: Experiment Network

NGINX Server

A. Experiments

In our experiments, NGINX server (nginx/1.18.0) is used.
QUICHE, an implementation of HTTP/3 over QUIC, is in-
tegrated into NGINX with an unofficial patch. The NGINX
server runs on a Linux 5.10.7 kernel on a Intel (R) Core
(TM) i5-6400 CPU @ 2.70GHz processor with 8 GB RAM.
NGINX provides support for HTTP/3 and HTTP/2. For the
video source a multi codec dash dataset is used [19]. The
segments are 2 seconds in length and they are encoded into
19 different bitrates (0.1, 0.2, 0.24, 0.375, 0.55, 0.75, 1, 1.5,
2.3,3,4.3,58,6.5,7,7.5, 8, 12, 17, 20 Mbps) and they are
stored in the server.

The client runs on macOS BigSur version 11.5 which runs
on a 2.2 GHz 6-core Intel core i7 processor with 16 GB
RAM. Google Chrome Canary (Version 93.0.4574.0) supports
QUIC and HTTP/3 by enabling the flags —enable-quic and
—quic-version=h3-29 respectively. After each run the caches
are cleared as QUIC uses the information from the cache for
0-RTT. We make sure the connection is terminated as HTTP/3
may send a request over an existing connection without closing
them. To switch between various ABR algorithms and to
extract video playback metrics like buffer occupancy, segment
download time, current playback position and state of the
player, we modify dash.js v3.2.0. version. The modifications
are not significant and should not have an impact on the
performance of dash.js.

The network traffic is captured using Wireshark. Since the
traffic is encrypted in QUIC, the application layer details are
not visible. The Secure Sockets Layer (SSL) session keys are
obtained to decrypt the traffic to ensure that the traffic goes
over HTTP/3 or HTTP/2. Network Link Conditioner is used
to throttle the network.

B. Measures

This section outlines the metrics used for obtaining the
segment statistics and QoE. To explore the behavior of the
ABR algorithms with respect to HTTP/3 and HTTP/2, it

is critical to extract the details about the segment (segment
statistics). In the following text we assume that the video is
fragmented into n segments and the size of each segment is
S;.

We observe a range of segment statistics by obtaining the
details about the segment requested to the server and the
segment delivered to the client. The buffer occupancy of the
player is measured in the client-side by querying the player
every 500 ms. The parameter used for analyzing the segment
statistics in the client-side, is discussed below

e Buffer Occupancy: The buffer occupancy of the player is
the difference between the video buffered time and the
current playback position. If the buffer is full, the ABR
algorithm can request a segment with higher bitrate. If
the player’s buffer is nearly empty, the ABR algorithm
requests for a lower bitrate segment to prevent stalling.

While a segment is requested, the server records the details
about the segment in the access log. The following segment
statistics metrics are obtained on the server-side by extracting
the details from the access log.

o Segment Download Time (D;): The segment download
time D; is calculated as the difference between the HTTP
response time of the segment and the HTTP request time
of the segment.

o Segment Download Throughput (t;): The segment down-
load throughput is calculated as the ratio between seg-
ment size S; and the segment download time D;

ti= = (1)

o Requested Segment Data Rate: It represents the bit rate of
the segment r requested by the client. The dataset [19] has
segments stored in 19 different bitrates. The request for
the segment for a particular bitrate is denoted as requested
segment data rate.

o Effective Segment Data Rate (b,): After the client sends
a request for the segment r, the server sends the segment
r as the response. The bitrate of the segment perceived
by the end user is denoted as effective segment data rate.

After collecting the details of the segment statistics, the QoE
metrics are calculated, analyzed and discussed below.

o Average bitrate (B): The average bitrate B during the
entire playback is calculated as the sum of the individual
bitrate of the segments divided by the total number of
segments.

=1 (2)

e Number of bitrate switches: The number of quality
switches is calculated based on the different bitrates
rendered with the underlying network conditions. A lower
value indicates the steadiness in playback quality.

o Average Throughput (T'): Average throughput during the
entire playback is calculated by averaging the throughput
of individual segments.

n
> b
=i
n
IV. RESULTS

T= 3)

This section presents the segment statistics and QoE / Per-
formance measures for various ABR algorithms under varying
network conditions and application protocols. In addition to
the normal network conditions, the behavior of the ABR algo-
rithms is studied under different congested network conditions
by inducing loss and latency. The network is throttled to
100 Mbps with loss 2% and an additional 10 ms latency
is selectively introduced. This leads to three scenarios: BW
(bandwidth 100 Mbps), BW-loss (bandwidth 100 Mbps, loss
2%), BW-loss-latency (bandwidth 100 Mbps, loss 2%, latency
10 ms). By varying the network conditions, ABR algorithms
and application protocols we run about 30 experiments. For
every experiment conducted, we analyze the segment statistics
and compare it between different ABR algorithms and network
conditions.

124 === HTTP/2
HTTP/3 TATA
g 10 p,'l‘\ n,'l\\\
> 101
2 i ‘\: \\
© ,“' vy
S 8- 1 \
9] 1
8 A A Y \
e ARV] \
o 64 [v \
'dg 1Y A,' \\
) AN \

o LAY Rt
] INNNIY \
i 44 LS AVAVAY \
o Aa o ne oy \
> HY Y K'RY \
© uy YN \
& 5, R ‘\" \

i \

0 T T T T T
0 10 20 30 40 50 60
Time (s)

Fig. 2: Client-side measurement - Buffer Occupancy of the player for LoL+
ABR algorithm under the network scenario BW-loss.

A. Segment Statistics

We extract as much as possible information from the client
and the server to understand the behavior of the ABR algo-
rithms and the protocols. The segment statistics are collected
and compared for all the experiments. Due to the page
limitation, we provide the results for LoL+ ABR algorithm
under BW-loss. From the client, the buffer occupancy of the
player is recorded and represented in Fig. 2. Knowing the
buffer occupancy is crucial while deciding the bitrate. If the
player has more data in its buffer it can request to switch to
higher bitrates. In Fig. 2, HTTP/3 has more buffer occupancy
than HTTP/2.

w
o

N
&)
L

g
o

Segment Download Time (s)
= =
o w

o
[

| === HTTP2
HTTP/3
—— Threshold

10 20 30 40 50
Time (s)

g
o

o

(a) Segment Download Time

3500 A

1000

Requested Data rate (Kbps)

0 T T T T
0 10 20 30 40 50

Time (s)

(c) Requested Segment Data Rate

o

% ——- HTTP2
2‘5 HTTP/3
g A

4 1 1
g\4 N Il“ Ill I,\.'/‘| A
o e oy 1Yy ! A
< /N 1 -7 Y ! HR
[VoS VoS ! /
-3 \II \ \ .~ [o v
© (Wi v \, \ / \ 7/
K= ! v \ / v/
c ‘I’ \—"~/ v
g 21
s}
-
g
£ 19
o
[}
(9]
0 T T T T
0 10 20 30 40 50
Time (s)
(b) Segment Download Throughput
1.2
-—- HTTP2
10 HTTP/3

L

Q

Qo

208 .

[} e Sy

T I\ ,I N \\\ _‘I’\ A l'\\

8 0.6 ” (] ’ \ | \\

2 1 Sams=-

)]

2044

o i

(9

&

w
0.2
0.0 T T T T

0 10 20 30 40 50
Time (s)

(d) Effective Segment Data Rate

Fig. 3: Server-side measurements - Detailed experimental results for LoL+ ABR algorithm under the network BW-loss.

The measurements taken from the server are represented in
Fig. 3. The time taken by a segment to download is recorded in
Fig. 3(a). The segment duration is represented as a threshold.
The segments are of 2 seconds duration, so the threshold is 2
seconds. We find that HTTP/3 downloads the segments faster
than HTTP/2. Thus, QUIC media streams are downloaded
faster. A correspondence is noted between the time taken to
download a segment and the segment download throughput.

If the segment download time exceeds the threshold, a drop
in throughput is noticed in Fig. 3(b). The quicker the segment
downloads the higher the throughput is. The segment down-
load throughput is calculated from Eq. (1). In the Fig. 3(b)
HTTP/3 has higher throughput over HTTP/2 as the segments
were downloaded faster.

Likewise, when a segment takes more time to download
and when the player’s buffer occupancy is low, a lower data
rate is requested for the next segment as in Fig. 3(c). A lower
data rate is observed during playback in HTTP/2 as shown

in Fig. 3(d). After analyzing the segment statistics we notice
that HTTP/3 over QUIC downloads the segments faster than
HTTP/2 over TCP in lossy network conditions. In addition to
the segment statistics, the QoE parameters are analyzed in the
next section.

B. QoE / Performance Metrics

After collecting the details about the segments, the results
are consolidated and represented per network scenario in
Fig. 4. This helps in finding the best suited ABR algorithm
for HTTP/3 over QUIC.

1) Average bitrate: The average bitrate corresponds to the
quality of the video streamed. When the network has ample
bandwidth and when the playback buffer is almost full, the
ABR algorithm requests for a segment with higher bitrate. A
higher average bitrate represents that a higher quality video
is delivered. The average bitrate B is calculated from Eq. (2)
and it is represented in Fig. 4(a).

(Bola, HTTP/2)

(Bola, HTTP/3)
(Dynamic, HTTP/2)
(Dynamic, HTTP/3)
(L2A, HTTP/2)

(L2A, HTTP/3)

(LoL+, HTTP/2)
(LoL+, HTTP/3)
(Throughput, HTTP/2)
(Throughput, HTTP/3)

w w
=) wn
!

N
w

I0B00RIEN]

Average bitrate (Mbps)
N
o

g
o
L

0.0 M
BW BW-loss BW-loss-latency
(a) Average Bitrate
17.5 [(Bola, HTTP/2)
EE (Bola, HTTP/3)

15.0 2 (Dynamic, HTTP/2)
. Em (Dynamic, HTTP/3)
é‘_ 12.5 73 (L2A, HTTP/2)
= EEE (L2A, HTTP/3)
£ 10.0 Z3 (LoL+, HTTP/2)

2 B (LoL+, HTTP/3)
g’ 7.5 1 1 (Throughput, HTTP/2)
< B (Throughput, HTTP/3)
F 5.0

25 - m

BW BW-loss BW-loss-latency

(c) Average Throughput

-
N
L
N
]

=
(=}
L

Number of bitrate switches

8
6 -
4
2
0

BW

BW-loss BW-loss-latency

(b) Number of Bitrate Switches

1

BW-loss BW-loss-latency
(d) Average Buffer Occupancy

S [=)] [e¢}

N

Average Buffer Occupancy (s)

Fig. 4: QoE / Performance metrics under various network conditions, ABR algorithms between HTTP/3 over QUIC and HTTP/2 over TCP.

HTTP/3 over QUIC achieves the maximum average bit
rate when L2A algorithm operates under the BW scenario.
LoL+ algorithm attains the maximum average bitrate when it
operates under BW-loss scenario for HTTP/3 over QUIC and
BW-loss-latency scenario for HTTP/2 over TCP.

2) Number of bitrate switches: When the bandwidth of
the network is lower or when the playback buffer is about
to deplete, the client requests for a lower bitrate to prevent
stalling and continue the playback. A fluctuation in the bitrate
will decrease the QoE. Fig. 4(b) represents the number of
bitrate switches.

In the BW scenario, L2A has minimum bitrate switches
while operating under HTTP/3 over QUIC and BOLA, LoL+
have the least bitrate switches while operating under HTTP/2
over TCP. In BW-loss and BW-loss-latency scenarios, L2A
has the least bitrate switches with HTTP/3 over QUIC.

On all network conditions, L2A has the least quality fluc-
tuation with HTTP/3 over QUIC.

3) Average throughput: The average throughput is calcu-
lated from Eq. (3) for varying network conditions and it is
represented in Fig. 4(c). Under the BW scenario, Throughput

and L2A algorithms have the maximum average throughput
with HTTP/3 over QUIC. Under the BW-loss scenario, LoL+
and L2A attain the highest average throughput with HTTP/3
over QUIC. While operating with a BW-loss-latency scenario,
LoL+ and L2A algorithms achieve the maximum average
throughput with HTTP/2 over TCP. Predominantly, the low
latency algorithms achieve higher average throughput.

4) Average Buffer Occupancy: The average buffer occu-
pancy of the player for various ABR algorithms is represented
in Fig. 4(d). When the player’s buffer depletes, the risk of stall
is higher. Whereas when the player’s buffer is full it can switch
to a higher bitrate. In the BW scenario, BOLA and Throughput
ABR algorithms have the highest average buffer occupancy
while operating under HTTP/3 over QUIC. In the BW-loss
scenario, Throughput ABR algorithm has the highest average
buffer occupancy with HTTP/3 over QUIC. BOLA has the
highest average buffer occupancy while operating under the
BW-loss-latency scenario with HTTP/3 over QUIC.

TABLE I: The best performing ABR algorithm

H Network Impairments | Average bitrate ~ Number of bitrate switches Average throughput

Average buffer occupancy H

BW L2A L2A, BOLA, LoL+ Throughput, L2A BOLA, Throughput
BW-loss LoL+ L2A LoL+, L2A Throughput
BW-loss-latency LoL+ L2A LoL+, L2A BOLA

ABR algorithms running over HTTP/3 are represented in bold red. ABR algorithms running over HTTP/2 are represented in black.

C. The best performing ABR algorithms

Table I consolidates the ABR algorithms that outperform,
under different network conditions. It can be observed that
the low latency algorithms have higher average bitrate, lesser
quality fluctuations, higher throughput and lower buffer oc-
cupancy with HTTP/3 over QUIC in most scenarios. With
respect to different QoE parameters, we notice that the low
latency algorithms (L2A and LoL+) work in favor of HTTP/3
over QUIC.

D. Application Layer Protocol

In the existing literature [5]-[7], QUIC exhibits lower QoE
when compared to TCP with different ABR algorithms. But
with the advent of HTTP/3, our experiments show that HTTP/3
over QUIC achieves higher QoE in many scenarios. As ob-
served in [9] [20], we also notice that HTTP/3 over QUIC has
better QoE than HTTP/2 over TCP in lossy network (BW-loss
scenario) conditions. We find that, HTTP/3 over QUIC fetches
media streams faster and that leads to improved QoE.

V. CONCLUSIONS

The advent of HTTP/3 over QUIC imposes a need in revisit-
ing the ABR algorithms in terms of QoE. The ABR algorithms
are sensitive to the underlying transport protocol and behave
differently when operating over HTTP/3 vs HTTP/2. In this
paper, we find that most ABR algorithms achieve higher
QoE with HTTP/3 over QUIC in lossy network conditions
by quickly downloading the media streams. The low latency
algorithms achieve higher bitrate, higher throughput and mini-
mize the number of quality switches with HTTP/3 over QUIC
at different network scenarios in majority of the experiments.
Among the existing ABR algorithms, we find that the low
latency algorithms (L2A and LoL+) have a greater scope with
HTTP/3 over QUIC. We conclude that, while streaming with
HTTP/3 over QUIC, low latency algorithms could lead to
improvement in QoE.

REFERENCES

[1] CISCO, “Global - 2021 forecast highlights.” [Online]. Avail-
able: https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/
vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf

[2] R. Marx, “Head-of-line blocking in quic and http/3: The
details,” 2020. [Online]. Available: https://calendar.perfplanet.com/
2020/head- of-line-blocking-in-quic-and-http- 3-the-details/#sec_what

[3] A. Langley et al., “The QUIC transport protocol: Design and internet-
scale deployment,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM °17.
Association for Computing Machinery, 2017, p. 183-196.

[4] M. Seufert, R. Schatz, N. Wehner, and P. Casas, “QUICker or not?
-an empirical analysis of QUIC vs TCP for video streaming QoE
provisioning,” in 2019 22nd Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN), 2019, pp. 7-12.

[5] D. Bhat, A. Rizk, and M. Zink, “Not so QUIC: A performance study of
DASH over QUIC,” in Proceedings of the 27th Workshop on Network
and Operating Systems Support for Digital Audio and Video, ser.
NOSSDAV’17. Association for Computing Machinery, 2017, p. 13-18.

[6] A. Mondal and S. Chakraborty, “Does QUIC suit well with modern
adaptive bitrate streaming techniques?” IEEE Networking Letters, vol. 2,
no. 2, pp. 85-89, 2020.

[71 S. Arisu et al., “Game of protocols: Is QUIC ready for prime time
streaming?” Int. J. Netw. Manag., vol. 30, no. 3, May 2020.

[8] D. Bhat, R. Deshmukh, and M. Zink, “Improving QoE of ABR streaming
sessions through QUIC retransmissions,” in Proceedings of the 26th
ACM International Conference on Multimedia, ser. MM ’18. Asso-
ciation for Computing Machinery, 2018, p. 1616-1624.

[9] S. Arisu and A. C. Begen, “Quickly starting media streams using
QUIC,” in Proceedings of the 23rd Packet Video Workshop, ser. PV
’18. Association for Computing Machinery, 2018, p. 1-6.

[10] Tisa-Selma, A. Bentaleb, and S. Harous, “Inferring quality of experience
for adaptive video streaming over HTTPS and QUIC,” in 2020 Inter-
national Wireless Communications and Mobile Computing (IWCMC),
2020, pp. 81-87.

[11] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience
monitoring for HTTPS and QUIC,” in I[EEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 1331-1339.

[12] S. Xu, S. Sen, and Z. M. Mao, “CSI: Inferring mobile ABR video
adaptation behavior under HTTPS and QUIC,” in Proceedings of the
Fifteenth European Conference on Computer Systems, ser. EuroSys ’20.
Association for Computing Machinery, 2020.

[13] D. Saif, C.-H. Lung, and A. Matrawy, “An early benchmark of quality
of experience between HTTP/2 and HTTP/3 using lighthouse,” 2020.

[14] S. Chellappa and R. Bartos, “Adaptability between abr algorithms
in dash video streaming and http/3 over quic: Research proposal,”
in Proceedings of the 13th ACM Multimedia Systems Conference,
ser. MMSys ’22. Association for Computing Machinery, 2022, p.
388-392. [Online]. Available: https://doi.org/10.1145/3524273.3533932

[15] K. Spiteri et al., “BOLA: near-optimal bitrate adaptation for online
videos,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, 2016, pp. 1-9.

, “From theory to practice: Improving bitrate adaptation in the
DASH reference player,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 15, no. 2s, Jul. 2019.

[17] T. Karagkioules et al., “Online learning for low-latency adaptive stream-
ing,” in Proceedings of the 11th ACM Multimedia Systems Conference,
ser. MMSys ’20. Association for Computing Machinery, 2020, p.
315-320.

[18] M. Lim et al., “When they go high, we go low: Low-latency
live streaming in dash.js with lol,” in Proceedings of the 1Ith
ACM Multimedia Systems Conference, ser. MMSys °20. Association
for Computing Machinery, 2020, p. 321-326. [Online]. Available:
https://doi.org/10.1145/3339825.3397043

[19] A. Zabrovskiy et.al, “Multi-codec DASH dataset,” in Proceedings of the
9th ACM Multimedia Systems Conference, ser. MMSys *18. Association
for Computing Machinery, 2018, p. 438-443.

[20] A. Kakhkiet al., “Taking a long look at quic: An approach for rigorous
evaluation of rapidly evolving transport protocols,” in Proceedings of
the 2017 Internet Measurement Conference, ser. IMC 17. Association
for Computing Machinery, 2017, p. 290-303. [Online]. Available:
https://doi.org/10.1145/3131365.3131368

[16]

