http://www.cs.unh.edu/~ruml/cs758
Backtracking
Hardness

- Backtracking
- Optimization
- Hardness
- Backtracking
- Depth-first Search
- DFS Order
- Problems
- ILDS
- ILDS Order
- Break

Local Search

NPC: SAT, vertex cover, clique, subset sum, ...

greedy: local choice is optimal
DP: poly number of options to track
search: exponential number of options, often combinations
A tree representation of alternatives in a small combinatorial problem.
depth-first search
child ordering
lower bounds
branch-and-bound
Depth-first Search

DFS (node)
1 If is-leaf(node)
2 Visit(node)
3 else
4 For i from 0 to num-children
5 DFS(child(node, i))
Problems Are Hard

13,509 US cities (W. Cook)
Problems Are Hard

Backtracking
- Hardness
- Optimization
- Backtracking
- Depth-first Search
- DFS Order

Problems
- ILDS
- ILDS Order
- Break

Local Search

(S. LaValle)
Improved Discrepancy Search

\[\text{ILDS} \ (\text{node}, \text{allowance}, \text{remaining})\]

1. If is-leaf(\text{node})
2. \quad \text{Visit(\text{node})}
3. Else
4. \quad If \text{allowance} > 0
5. \quad \quad \text{ILDS(child(\text{node}, 1), allowance - 1, remaining - 1)}
6. \quad If \text{remaining} > \text{allowance}
7. \quad \quad \text{ILDS(child(\text{node}, 0), allowance, remaining - 1)}

Start with ILDS(root, iteration, max-depth)
The second pass of ILDS visits all leaves with one discrepancy in their path from the root.
asst 10 recall
asst 13
last year’s final
time for surveys on Thursday: bring device!
Local Search
A graph representing an improvement-based search.
hill climbing
simulated annealing
large neighborhood search
genetic algorithms
particle swarm optimization
Max Cut

maximize weight of edges crossing the cut \(w(A, B) \)

decision version is NP-complete

simple local search:

move vertex \(u \) from \(A \) to \(B \) iff

\[
\sum_{v \neq u \in A} w_{uv} > \sum_{v \in B} w_{uv}
\]

it’s possible to bound suboptimality of local minima under this neighborhood!
for any u in A,

$$\sum_{v \neq u \in A} w_{uv} \leq \sum_{v \in B} w_{uv}$$

summing over all u in A,

$$2 \sum_{(u,v) \in A} w_{uv} \leq \sum_{u \in A, v \in B} w_{uv} = w(A, B)$$

summing over all u in B,

$$2 \sum_{(u,v) \in B} w_{uv} \leq \sum_{u \in A, v \in B} w_{uv} = w(A, B)$$

add:

$$2 \sum_{(u,v) \in A} w_{uv} + 2 \sum_{(u,v) \in B} w_{uv} \leq 2w(A, B)$$
divide by 2:

\[
\sum_{(u,v) \in A} w_{uv} + \sum_{(u,v) \in B} w_{uv} \leq w(A, B)
\]

e.g., more weight crossing than within partitions

let \(W \) be sum of all weight in graph.

add crossing weight to both sides:

\[
W \leq 2w(A, B)
\]

\[
W/2 \leq w(A, B)
\]

note optimal is at most \(W \)
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!