http://www.cs.unh.edu/~ruml/cs758
Ford-Fulkerson

- The Problem
- The Idea
- The Algorithm
- Properties
- Augmentation
- Break

Cuts and Flows
The Problem

Given directed graph, source and sink, find flow of maximum value.

logistics

network design

tasking

flow constraints: edge capacity, conservation at vertices

\[0 \leq f(u, v) \leq c(u, v) \]

\[\forall v \in V - \{s, t\}, \sum_{u \in V} f(v, u) = \sum_{u \in V} f(u, v) \]

details: removing ‘anti-parallel’ edges, multiple sources or sinks
The Idea

Iteratively augment flow until no augmenting path exists.

Find augmentation via ‘residual network’ G_f with costs

$$c_f(u, v) = \begin{cases}
 c(u, v) - f(u, v) & \text{if } (u, v) \in E \\
 f(v, u) & \text{if } (v, u) \in E \\
 0 & \text{otherwise}
\end{cases}$$

residual network has reverse flow edges: not a legal ‘flow network’

to augment (u, v), add $f(u, v)$ and subtract $f(v, u)$
1. for each edge, \((u, v).f \leftarrow 0\)
2. while there exists an \(s \sim t\) path \(p\) in the residual network
3. \(c_f(p) \leftarrow \text{min capacity of edges along } p\)
4. for each edge \((u, v)\) in \(p\)
5. \[\text{if } (u, v) \in E\]
6. \[(u, v).f \leftarrow (u, v).f + c_f(p)\]
7. \[\text{else}\]
8. \[(v, u).f \leftarrow (v, u).f - c_f(p)\]
What is its running time?

Is resulting flow maximum? (ie, ‘no augmenting path’ suffices?)
Augmentation

If capacities are integer, converges in at most $|f^*|$ iterations. Each iteration is $O(V + E) = O(E)$. So $O(|f^*|E)$ overall. Is this polynomial time?
Augmentation

If capacities are integer, converges in at most $|f^*|$ iterations. Each iteration is $O(V + E) = O(E)$. So $O(|f^*| E)$ overall. Is this polynomial time?

Edmonds-Karp: find augmenting path via breadth-first search. Book has proof that this is $O(VE)$ iterations. Each iteration $O(E)$ so $O(VE^2)$ overall. (Fancy alg in book is $O(V^3)$.)

(correctness of FF requires talking about cuts!)
asst 10
Cuts and Flows
consider cuts that separate s and t

$$\text{flow across cut } f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{v \in S} \sum_{u \in T} f(v, u)$$

Theorem: for a given flow, flow across any cut $f(S, T) =$ value of flow $|f|$ (a constant!)

Proof (sketch): flow comes out of s, goes into t, and is conserved everywhere else. As we ‘push out’ equality from s towards cut, each vertex we cross conserves flow when we consider all its edges.
capacity of cut \(c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v) \)

Theorem: value of any flow \(f \leq \) capacity of every cut

Proof:

\[
|f| = f(S, T) \text{ by previous theorem} \\
= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \\
\leq \sum_{u \in S} \sum_{v \in T} f(u, v) \\
\leq \sum_{u \in S} \sum_{v \in T} c(u, v) \text{ by capacity constraint} \\
\leq c(S, T)
\]
value of a flow = flow across any cut

any flow value ≤ capacity of cut

..now...
value of a flow = flow across any cut

any flow value ≤ capacity of cut

..now...

Maximum flow value = minimum cut capacity
Max-Flow Min-Cut Theorem

Theorem: these are the same:

1. f is a maximum flow
2. the residual network G_f contains no augmenting paths
3. there exists a cut whose capacity is the value of f

1+2 would mean FF is correct.

1+3 would mean we can find minimum cuts in graphs using FF!
Proof: \((1 \Rightarrow 2)\) if augmenting path exists, could increase value of flow.

\((2 \Rightarrow 3)\) Define \(S\) to contain all vertices reachable from \(s\) in residual \(G_f\), \(T = V - S\). Consider vertices \(u, v\) where \(u \in S, v \in T\). If edge \((u, v) \in E\), \(f(u, v) = c(u, v)\) (otherwise \(v \in S\)). If \((v, u) \in E\), \(f(v, u) = 0\) (otherwise \(v \in S\)). If neither edge \(\in E\), \(f(u, v) = 0\). So

\[
|f| = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)
\]

\[
= \sum_{u \in S} \sum_{v \in T} c(u, v) - \sum_{u \in S} \sum_{v \in T} 0
\]

\[
= c(S, T)
\]

\((3 \Rightarrow 1)\) \(\forall c, |f| \leq c(S, T)\), so if \(|f| = c(S, T)\) then it’s maximum.
all nodes reachable from s in G_f are on one side

edges crossing cut are at capacity, by definition

no flow back from T to S, also by definition
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!