http://www.cs.unh.edu/~ruml/cs758
Topological Sorting

- The Problem
- Break
- Union-Find
The Problem

Given a set of pairwise orderings $a < b$, find an ordering of all the elements that respects them or detect that no such ordering is possible.

How long does this take?
Topological Sorting

- The Problem
- Break

Union-Find

- asst 8
- midterm
Union-Find
Problem: find components in an undirected graph and answer membership queries

Two cases: static vs dynamic

How can we identify components in the static case?
Union-Find ADT

- **Make-Set**(x) makes new set containing x
- **Union**(x, y) combine the set containing x with the set containing y
- **Find-Set**(x) return a representative of the set containing x
find-components
1. foreach vertex \(v \)
2. \text{MAKE-SET}(v)
3. for each edge \((u, v)\)
4. \text{UNION}(u,v)

\text{in-same-component?}(u,v)
5. is \text{FIND-SET}(u) = \text{FIND-SET}(v)?
set is a tree rooted at representative

How to implement make, union, find?
union by rank track approximate height, put shorter under taller
path compression after FIND-SET, ensure touched nodes point directly to root
Make-Set(x)
1. x.p ← x
2. x.rank ← 0
3. Union(x, y)
4. x ← Find-Set(x)
5. y ← Find-Set(y)
6. if x.rank > y.rank
7. y.p ← x
8. else
9. x.p ← y
10. if x.rank = y.rank
11. increment y.rank
More Pseudo-code

Find-Set

1. if \(x \neq x.p \)
2. \(x.p \leftarrow \text{Find-Set}(x.p) \)
3. return \(x.p \)

For \(m \) operations on \(n \) sets, worst-case time is \(O(m\alpha(n)) \).

\(\alpha(n) \) is inverse of Ackermann’s function. It is \(\leq 4 \) if
\(n \leq 2^{2048} = 16^{512} \).
Strongly-Connected Components

$G^T = G$ but with reversed arcs

- DFS(G^T), starting from vertices with higher finishing times first (in outer loop)
- each tree in second DFS is a SCC

let $f(C')$ be max of any finishing time in C

1. G and G^T have same SSCs.
2. When there is an arc in G from $u \in C_i$ to $v \in C_j$, G^T cannot contain any arc from C_j to C_i.
3. If there is an arc in G^T from C_i to C_j, then according to first DFS, $f(C_i) < f(C_j)$.
4. second DFS strips off connected components one after the other
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!