TCP

- Transport Control Protocol

- Design parameters and objectives

 - used by most popular applications, majority of Internet traffic is transported over TCP

 - significant impact on congestion behavior of the Internet

 - must operate over networks with widely-varying characteristics

 - must be robust and (relatively) simple to implement
TCP Header

<table>
<thead>
<tr>
<th>Offsets Octet</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Bit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>Source port</td>
<td>Destination port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sequence number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Acknowledgment number (if ACK set)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Data offset</td>
<td>Reserved</td>
<td>NS</td>
<td>CWR</td>
</tr>
<tr>
<td>16</td>
<td>Checksum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Options (if Data Offset > 5, padded at the end with "0" bytes if necessary)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Another image appropriated from Wikipedia...
TCP Sliding Window

- Initial sequence #
- Ack’d data, delivered to the application
- Received and ack’d but not yet delivered to the application
- Received but not yet ack’d
- Sent but not yet received
- Receiver buffer size
- Receiver buffer available for data to be sent
- Window size
- Moves as data is sent
- Moves as application reads data
- Moves with ACKs send
- ACKs rec’d
SESSION MANAGEMENT

OPEN

CLIENT "OPEN" SERVER

"OK"

"OK"

TCP

SYN=1
ACK=0

SEQ#={X}
ACK#={2}

SYN=1
ACK=1

SEQ#={Y}
X+1

SYN=∅

ACK=1

SEQ#={X+1}

ACK#={Y+1}

3-WAY HANDSHAKE

SYN - PROPOSING SEQ#

ACK - ACK# FIELD CONT

VALID VALUE
TCP Flow Control

- **Receiver congestion**
 - **Window Size field** - explicitly reported by the receiver
 - **TCP Window Scale Option**

- **Network congestion**
 - **Retransmission timeout** - based on observed RTT
 - **Transmission window** - based on detected packet loss
RECEIVER CONGESTION CONTROL

WRITE(1000) → OS
 Rec. Window: 2000
 Write: 1000
 Ack: 1000

WRITE(1500) → OS
 Ack Window: 1000
 Write: 1500
 Ack: 1500

WRITE(500) → OS
 Ack Window: 0
 Write: 500
 Ack: 500

OS → READ(1500)
 Window Update: 1500

APP
Retransmission Timeout

Initialization:

RTO ← 1 sec

After the first measurement:

SRTT ← R

RTTVAR ← R/2

RTO ← SRTT + max (G, K * RTTVAR)

After subsequent measurements:

RTTVAR ← (1 - beta) * RTTVAR + beta * |SRTT - R'|

SRTT ← (1 - alpha) * SRTT + alpha * R'

RTO ← SRTT + max (G, K * RTTVAR)

Where:

R - first RTT measurement

R' - subsequent RTT measurement

RTTVAR - RTT variance

SRTT - smoothed RTT estimate

RTO - retransmission timeout

G - clock granularity

Recommended values:

alpha=1/8, beta=1/4, K=4

RFC 6298
Network Congestion Control

- No explicit indication of congestion given
- Source observes RTT and packet loss and adjusts transmission rate according to its estimate of the congestion state of the network
- Additive Increase Multiplicative Decrease (AIMD)
 - better safe than sorry