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GPSonflow: Geographic Positioning of Storage for Optimal

Nice Flow

ELIZABETH VARKI, University of New Hampshire

This article evaluates the maximum data flow from a sender to a receiver via the internet when all trans-

missions are scheduled for early morning hours. The significance of early morning hours is that internet

congestion is low while users sleep. When the sender and receiver lie in proximal time zones, a direct trans-

mission from sender to receiver can be scheduled for early morning hours. When the sender and receiver are

separated by several time zones such that their sleep times are non-overlapping, data can still be transmit-

ted during early morning hours with an indirect store-and-forward transfer. The data are transmitted from

the sender to intermediate end networks or data centers that serve as storage hops en route to receiver. The

storage hops are placed in zones that are time proximal to the sender or the receiver so that all transmissions

to and from storage hops occur during low-congestion early morning hours. This article finds the optimal

locations and bandwidth distributions of storage hops for maximum nice internet flow from a sender to a

receiver.
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1 INTRODUCTION

Consider this scenario: A user wants to transfer 1TB of data to another user by a given deadline. The

sender and receiver are at end networks, such as campus networks, and share end network resources

with other users. The sender and receiver have access to 10Gb/s from 1:00 AM to 6:00 AM, and 100Mb/s

for the rest of the day. With 100Mb/s, 1TB is transmitted in 22.23 hours; with 10Gb/s, 1TB is transmitted

in 0.23 hours. Consequently, the transfer should be scheduled between 1:00 AM and 6:00 AM. There’s

just one caveat: The sender is in UK and the receiver is in Japan—the sender is 8 hours behind the

receiver.

There are several programs, such as CERN’s particle collider, SETI, and genomic sequencing (Bot
et al. 2012), that would benefit from a tool for transmitting terabytes of data. Transferring terabyte-
scale data over the internet, however, requires sustained access to large bandwidth, which is chal-
lenging given that bandwidth is a shared resource. The internet’s organization and protocols are
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not designed for terabyte- and petabyte-scale transfers. Therefore, terabyte-scale data are typi-
cally transferred by slow mail on portable storage devices (Azure 2017; Google 2017; Snowball
2017). Amazon’s Snowball (Snowball 2017) allows clients to download their data onto Amazon’s
portable storage devices, which are then shipped. Microsoft’s Azure (Azure 2017) and Google’s
cloud platform (Google 2017) are other examples of shipping services for terabyte-scale data. Cur-
rently, shipping storage devices is the cheapest and fastest method for transferring terabyte-scale
data.

A large number of organizations store their data in the cloud, and data exchanges between client
organizations and data centers are on the rise. The demand on cloud providers to manage their
clients’ big data has led to a need for hardware (i.e., gigabit speed connections) and software (i.e.,
internet protocols and apps) that support terabyte-scale electronic transfers. Both industry and
academia are analyzing and developing hardware/software for large transfers (Date 2016). In the
future, it is expected that, with a wider deployment of gigabit connections, electronic terabyte-
scale transfers will be available to internet users (Date 2016). In the future, what is not expected to
change is the shared nature of the internet and the scarcity of bandwidth. As the number of gigabit
connections increases, both the number of users and the number of bandwidth-greedy internet
applications (such as Netflix streaming) are also expected to increase. Therefore, bandwidth will
continue to be a limited and expensive resource. Since terabyte-scale transfers are bandwidth-
intensive, a bandwidth efficient transfer would be cost-effective.

Let’s assume that large end-to-end transfers are feasible: For example, consider an app that trans-
mits a large data set in small segments by opening several FTP/HTTP connections from various
servers at the sender’s network; the app monitors transmissions, restarts failed transmission, and
reassembles the complete data set once all segments arrive at the receiver. Even with gigabit speed
connections and internet apps for terabyte-scale transfers, there is no avoiding the shared nature
of the internet. The internet traffic pattern at an end network depends on its users. Traffic at end
networks and Internet Exchanges (IXs) increases during the day, peaks around 8:00 PM, and then
drops off around 1:00 AM; network traffic has a wave distribution that mimics users’ sleep–wake
cycle (AMS 2017; DECIX 2017; LINX 2017; Lakhina et al. 2004; Villa and Varki 2011). End networks
purchase fixed internet bandwidth based on peak usage, so there is more unused bandwidth when
traffic tapers off. It is faster, cheaper, and nicer (to other end network users) to schedule greedy,
bandwidth-intensive, sustained transmissions for early morning hours when few users are on the
internet. A focus of this work is a scheduler for terabyte-scale transfer apps; the scheduler en-
sures that all end-to-end transmissions are scheduled during sleep times at the corresponding end
networks.

When the sender and receiver are in different time zones, their low traffic times are out-of-sync.
Reconsider the UK–Japan scenario where both sender and receiver have access to 10Gb/s from
1:00 AM to 6:00 AM and 100Mb/s during other times. A direct file transfer from sender to receiver
has a rate of 100Mb/s at all times and takes 22.23 hours. Even if the users in the UK and Japan
have access to 10Gb/s for 24 hours each day, the transmission rate is lower than 10Gb/s due to
congestion in long-haul networks and IXs. When the sender and receiver are in different time
zones, it is faster to transfer the file indirectly via one or more storage hops. These storage hops
may be data centers or end user clients (similar to a BitTorrent client) that store data temporarily
en route to the receiver. When all end-to-end transmissions are contained within low-traffic time
zones, the bandwidth-intensive transfer is nice to other users. In the UK–Japan example, a nice
indirect transfer is as follows: Select three storage hops where hop1 is 4 hours behind the UK, hop2
is 4 hours behind hop1, hop3 is 4 hours behind hop2 (and 4 hours ahead of Japan). At 5:00 AM, UK
transmits to hop1 (where it is 1:00 AM); at 5:00 AM, each storage hop transmits to the hop that
is 4 hours behind it; when it is 1:00 AM in Japan, hop3 (at 5:00 AM) transmits the file to Japan.
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This indirect transfer consists of four end-to-end transmissions that are all contained within low-
traffic time zones. The file transfer time is 12.23 hours: 11.31 hours for storage plus 0.92-hour
transmissions.

The goal is to select “nice” data centers/clients such that every end-to-end transmission of an
indirect transfer lies in the low-traffic time zones. We refer to the problem of data center/client se-
lection as GPSonflow: Geographic Positioning of Storage for optimal nice flow. The fundamental
difference between data center hops and end network hops is bandwidth availability: Data centers
have ample bandwidth (gigabit-scale), while end network clients have scarce bandwidth (megabit-
scale). This article models both data center-supported and client-supported terabyte-scale flow.

2 GPSONFLOW

GPSonflow deals with the problem of moving a terabyte-scale dataset from a sender’s network to a
receiver’s network via the internet with application-level transmission protocols. Before defining
the GPSonflow problem statement, we explain the system setup. The sender and receiver are end
users and have permission to access available internet uplink/downlink bandwidth at their end
networks. The available bandwidth capacity varies, with more bandwidth available during early
morning hours. The transfer of data from sender to receiver need not be direct; storage hops,
which are end networks or data centers, may be used as store-and-forward hubs. The dataset may
be divided into segments where each segment has its own transfer path from sender to receiver
via zero or more hops. A segment transfer schedule specifies the segment size, the storage hops
on the path, and transmission start time from each hop. For example, suppose the sender is in
Chicago and the receiver is in Japan: The sender may transmit a segment at 12:00 UTC (6:00 AM
Chicago time) to a data center in Alaska (3:00 AM local time); at 15:00 UTC, Alaska (6:00 AM local
time) transmits the segment to New Zealand (3:00 AM local time); at 21:00 UTC, New Zealand
(9:00 AM local time) transmits the segment to the receiver in Japan (6:00 AM local time). This
segment transfer path consists of three end-to-end transmissions: From Chicago to Alaska; from
Alaska to New Zealand; and, finally, from New Zealand to Japan. The end-to-end transmissions
are carried out with application-level protocols such as HTTP, FTP, or gridFTP.

The sender and receiver are bandwidth-constrained but not storage-constrained. The available
bandwidth at the sender and the receiver varies with time of day. At any instant, transmissions
must not exceed the bandwidth limit. GPSonflow is an application-level transfer with no control
of network level packet routing; however, the transfer has control of application-level routing
decisions such as segment sizes, segment transfer paths via zero or more hops, and start time of
each end-to-end transmission along a segment transfer path.

The goal of GPSonflow is to find the best transfer start time, the best global locations for the
hops, and the minimum bandwidth distribution at each hop that will allow maximum flow from
the sender to the receiver. A constraint on hop selection is the following: The storage hops must
all be data centers or they must all be end network clients. In client- supported flow, the segment
sizes are in the megabyte range and are referred to as micro-segments. Data centers have plenty of
storage. Clients have limited storage and limited bandwidth, and a client is permitted to participate
in at most one micro-segment transfer. The terabyte-scale transfer may use any and all of the end
networks of the internet as client hops. Since a client is permitted to participate in the transfer
of at most one micro-segment, a large number of clients may be required for the terabyte-scale
transfer. Consequently, we refer to client-supported flow as crowd- supported flow.

GPSonflow problem statement: Find the maximum number of bytes that can be transmitted from

a sender’s end network to a receiver’s end network via a store-and-forward transfer, given the earliest

transfer start time and the latest transfer completion time (or given the duration of flow). The locations
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and available bandwidth distributions at the sender’s end network and the receiver’s end network are

provided. The sender and receiver have ample storage capacity. For data center-supported flow, the

storage hops are all data centers with ample storage. For crowd-supported flow, the storage hops are

all end network clients, where each client may participate in the transfer of at most one micro-segment;

the micro-segment size is given. Moreover, all transmissions to and from clients are restricted to sleep

times; the allowable client transmission times are provided in the problem statement.

Along with maximum flow, the solution should output the transfer schedule, which includes

segment/micro-segment transfer paths with transmission start times.

The problem statement is open-ended with respect to input data on storage hops: Some problems
may provide locations and bandwidth distributions for every hop, while other problems may only
specify whether the flow is data center-controlled or crowd-controlled.

Example 1. What is the maximum number of bytes that can be transmitted from the UK to Japan
if the earliest start time is midnight in UK and the latest completion time is 7:00 AM Japan’s local
time. Both the UK and Japan have 2Gb/s from midnight until 9:00 AM local time.

The solution technique should work for all the following scenarios regarding input hop data:

(1) The data centers have x Gb/s from 1:00 AM until 5:00 AM local time and y Gb/s for the
rest of the day. What are the best locations for data centers?

(2) Data centers are located in X, Y, Z; each center’s bandwidth distribution is provided. What
is the maximum flow?

(3) Data centers are located in X, Y, Z. What is the minimum bandwidth requirements for X,
Y, Z that allow maximum flow?

(4) Data centers may participate only from midnight until 6:00 AM local time. What are the
best locations and minimum bandwidth capacities for data centers that allow maximum
flow from sender to receiver?

(5) The flow is crowd-supported with a micro-segment size of 2MB. Clients are allowed to
transmit from 3:00 AM until 6:00 AM local time. Where should clients be placed for max-
imum flow?

2.1 Solution Technique

A maximum flow algorithm is a graph search algorithm that finds all paths from sender to re-
ceiver such that there is maximum transmission of data (Cai et al. 2007; Cormen et al. 2009). The
input model to the algorithm is a directed graph—a flow network—of all flow paths from sender
to receiver. Thus, GPSonflow can be solved by formulating it as a maximum flow problem, which
involves two iterative steps: The first is the construction of the flow network, and the second is the
computation of maximum flow. Varying any input parameter, such as the flow start time, changes
the flow network and the computed maximum flow value. To find the maximum flow from a sender
to a receiver may require several iterations of flow network construction and computation of max-
imum flow.

There are several algorithms that compute maximum flow; we use the Edmonds-Karp algo-
rithm (Edmonds and Karp 1972). The output of the algorithm is only as good as the input flow
network, and this article constructs the flow network for application-controlled terabyte-scale in-
ternet transfers via storage hops. The flow graph of GPSonflow not only models the sender and
receiver nodes but also the storage hop nodes. And this is the knotty issue with GPSonflow: To

find the optimal storage hop locations, the flow graph modeling all the storage hops and all the flow

paths from sender to receiver must be constructed. For data center-supported flow, an open-ended
problem statement may provide insufficient data to construct the flow graph. For crowd-supported
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flow, it is possible to construct a flow graph along the lines of the Global Internet Map (GIG 2017),
but the size of this flow graph makes the solution exorbitantly expensive.

This article is about modeling: How does one construct a feasible flow graph of terabyte-scale,
application-controlled internet transfers when the selection of storage hops is open-ended? Some
problem statements provide all details of hops; others provide none. Also, how does one develop
a model for both data center-supported flows and crowd- supported flows? We want to construct
a flow graph that is general, inclusive, and compact (i.e., has minimum size complexity).

The solution to GPSonflow has to find the start time (and, sometimes, the duration of flow) that
results in maximum flow. However, for each start time, the selection of hops for maximum flow
may be different. To find the best start time, optimal hop placement, and optimal hop bandwidth,
several flow graphs have to be constructed and evaluated. We want to automate the construction
of flow graphs.

The contributions of this article are (i) the construction of an application-level internet flow
graph of terabyte-scale transfers using a minimal set of input parameters that are publicly available
and (ii) the development of an algorithm that automatically constructs the GPSonflow graph. The
flow graph is unbounded since the duration of transfer is unbounded and can last several days. The
defining feature of our algorithm is that it constructs the unbounded GPSonflow network from a
constant number of input parameters.

3 RELATED WORK

We are not the first to identify that unused bandwidth during sleep hours can be used for large
file transfers. Prior papers (Agapi et al. 2009; Feng et al. 2012; Laoutaris et al. 2011, 2013; Shi et al.
2011) have experimentally shown that indirect transfer via storage hops, where each end-to-end
transmission is constrained to sleep hours, is superior to direct transfer when transmitting thou-
sands of gigabytes between two users in different time zones. Thus, these papers have provided
proof of concept for GPSonflow.

Research on terabyte-scale transfers can be broadly classified into application-level transfers
and network-level transfers. The application-level transfers assume no knowledge or control of
network-level packet routing (Cho and Gupta 2011; Feng et al. 2012; Laoutaris et al. 2011, 2013),
unlike the network-level transfers (Agapi et al. 2009; Feng et al. 2016, 2017; Lee and Rhee 2017; Lin
et al. 2016; Maille et al. 2016). The difference between application- and network- level schedulers is
the flow graph input to the maximum flow algorithm. The network-level flow graph incorporates
paths along which packets are routed, so the nodes in the graph include edge servers in long-haul
networks; this graph assumes knowledge and control of routing paths within long-haul networks.
The application-level flow graph assumes no knowledge of the internet beyond publicly available
information; therefore, the nodes in the flow graph represent end networks or data centers whose
internet uplink and downlink capacities are provided.

Prior papers (Agapi et al. 2009; Cho and Gupta 2011; Feng et al. 2012; Laoutaris et al. 2011; Shi
et al. 2011) have used the sleep—wake traffic pattern to identify that the flow model is a dynamic
flow network whose arc capacities vary with time. All prior papers assume complete knowledge of

the locations and bandwidth distributions of the participating storage hops; thus prior papers have all

the information required to construct the flow graph. This article only requires that the bandwidth
distributions of the sender and receiver be provided. If storage hop data are not provided in the
input, then this article generates the minimum bandwidth distribution and the best locations for
storage hops.

While related papers have mentioned the challenge of flow network construction, this is the first
work to address this challenge. We have developed an algorithm to construct the flow network
from a minimal set of system parameters. Earlier papers have used the sleep–wake bandwidth

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 3, Article 12. Publication date: June 2018.



12:6 E. Varki

distribution to identify the model to be a dynamic flow network where bandwidth varies with
time; we have used the sleep–wake bandwidth distribution to construct the model automatically.

We are the first to evaluate client-supported flow. Client machines, unlike data centers, have
limited bandwidth and storage, so segments are smaller and each client machine is constrained to
participate in the transfer of at most one micro-segment. Thus, a crowd of clients must participate
in terabyte-scale flows. The size of the flow network depends on the number of data centers or
clients. Consequently, the model for data center-supported flow is expected to be smaller than the
model for crowd-supported flow. The size complexity of our model is O(T), where T is the flow
duration, so the size of our model does not depend on the number of data centers or clients. Our
model, unlike previous models, generates transfer paths from sender to receiver where the storage
hops are either crowds of client machines or data centers.

4 DIRECT TRANSFER

First, we formulate the simpler scenario of direct transfers from sender to receiver when there are
no storage hops; each transfer consists of one or more end-to-end transmissions from sender to
receiver. There is sufficient information to construct the flow graph since the bandwidth distribu-
tions and the locations of the sender’s and receiver’s networks are provided in the input statement.
The maximum flow is the largest file that can be transmitted directly from the sender’s network
to the receiver’s network in the given duration. There are two possibilities: (i) the available band-
width distributions at the sender/receiver networks are constant, and (ii) the available bandwidth
distributions at the sender/receiver networks vary with time. We construct a system model and
map it to a graph model (the flow network).

The parameters of the system model are the internet uplink and downlink bandwidth capaci-
ties of end networks. End networks pay for 95th percentile backbone bandwidth usage and has
access to paid-for backbone uplink and backbone downlink bandwidth (Laoutaris et al. 2013). The
following assumption follows from the preceding feature:

Assumption 1. For GPSonflow, the end networks are the bottleneck, not the internet.

Constant Bandwidth

The simplest case is direct transfer when the sender and receiver have constant bandwidth for
GPSonflow.

System model: The sender end network is represented by s and the receiver end network by
r . By Assumption 1, the internet is not a bottleneck, and the bandwidth capacity for transfer is
determined by the internet uplink/downlink capacities of the end networks. Let the internet be
represented by eXchange node x : s has uplink bandwidth, bw(s,x), to the internet, and r has down-
link bandwidth, bw(x,r), from the internet. The problem statement provides the values for bw(s,x)
and bw(x,r).

Graph model: The flow network has three nodes, namely, s , r , and x and two arcs: The arc from
s to x is the uplink from the sender and the arc from x to r is the downlink to the receiver. The
flow network is a star graph with internal node x and two leaf nodes s and r . Let c() represent the
capacity function along an arc:

c(s,x ) = bw(s ,x); c(x , r ) = bw(x,r ).

By Assumption 1, the maximum flow from s to r is given by:

| fmax | = minimum{c(s,x ), c(x , r )}.

Example 2. What is the maximum number of bytes that can be transmitted from the UK to
Japan during twelve hours, given that the sender has bandwidth capacity of 10Gb/s and the
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Fig. 1. Star graph corresponding to Example 2: constant bandwidth.

receiver has bandwidth capacity of 20Gb/s. For the example, bw(s,x) = 54TB/12 hours, bw(x,r)
= 108TB/12 hours, so maximum flow = minimum{54, 108} = 54TB/12 hours. Figure 1 depicts the
flow network for this example.

The unit for bandwidth capacity is bits/second; the unit for file size is bytes. The GPSonflow
problem deals with transfer over a period of several hours during which terabytes may be trans-
ferred. Mapping from bits to bytes to terabytes is routine, yet distracting, as seen in the preceding
example. Therefore, we drop units altogether when units are understood from context. With ref-
erence to Example 2, bw(s,x) = 54, bw(x,r) = 108, and the maximum file size is 54.

Variable Bandwidth

Next, we consider direct transfer when the sender and receiver have varying bandwidth by time
of day. The end-to-end transmission from sender to receiver depends on the bandwidth capacities
at the sender and receiver at the same instant. For constant bandwidth, an instant is equal to
the entire duration of transfer. In Example 2, the duration of transfer is 12 hours, and end-to-end
transmission is computed for an instant lasting 12 hours. When bandwidth capacity changes with
time, the end-to-end transmission rate changes over the duration of transfer, and flow computed
at a single instant is incorrect. In the preceding example, if the sender has 10Gb/s in the first 6
hours and 20Gb/s in the last 6 hours of transmission (the receiver has 20Gb/s for 12 hours), then
the maximum flow is greater than 54; in the first 6 hours, flow is 27TB and in the last 6 hours,
flow is 54TB, for a total flow of 81TB. In this updated example, bandwidth varies with time, and
flow is computed by specifying bandwidth at two time instants of 6-hour duration. The model for
constant bandwidth does not specify time. To model the variance in bandwidth distribution, it is
necessary to model time.

4.1 Modeling Time

The goal is to construct the flow graph enumerating the sender’s uplink and the receiver’s down-
link during each instant from start time until end time. First, we have to define an instant of time.
Second, we have to define start time instant and duration of flow T (or end time instant). Next,
the flow graph must enumerate network bandwidth at all flow instants, t , from start instant until
end instant, t = 0, 1, 2, . . . T − 1. To refer to bandwidth at flow instants, we modify the notation c()

by adding the parameter t; for example, c(s,x,t ) refers to sender’s uplink capacity (along arc −→sx) at
flow instant t .

Another issue is that flow instant t ranges from t = 0 to t = T − 1, but the problem statement
specifies an earliest start time with reference to time of day (or clock time). Therefore, the flow
instant t must be mapped to time of day. There are two specifications of time of day: Local time
λ and coordinated universal time (UTC) τ . The local time is always in the context of geographic
positioning; if the sender and receiver are in different time zones, then the local time instant at a
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transmission instant is different for the sender and for the receiver. The universal time, however,
is the same in every location. For example, at 00:00 UTC, it is 9:00 AM local time in Japan (ahead
by 9 hours, same day), it is 7:00 PM local time in Boston (behind by 5 hours, previous day), and it
is 12:00 AM midnight in the UK (GMT zone 0 in winter).

The flow network enumerates bandwidth capacities from sender to receiver during transmis-
sion instants. The problem statement, however, provides bandwidth capacities by time of day. A
transmission instant t equates to different local time instants, λ, at the sender and receiver, but a
transmission instant t equates to the same UTC instant τ at the sender and the receiver. Thus, the
model must have notation to specify bandwidth at end networks during UTC instants; we refer
to bandwidth at UTC instants by U(). For example U(s,x,τ ) refers to a sender’s uplink capacity at
UTC instant τ . In this section, we explain how U() is mapped to c().

The available bandwidth at a network depends on the sleep–wake cycle, which is in the context
of local time. Therefore, the input bandwidth distributions provided in the problem statement are
specified by local time. We specify bandwidth at local time instants by the notation L(). For example
L(s,x,λ) refers to a sender’s uplink capacity at local time instant λ; L(λ) refers to bandwidth capacity
at local time instant λ when the network (sender or receiver) is inferred from context. To construct
the flow graph, L() is mapped to c().

We refer to local time λ and UTC τ as system time and flow time t as graph time. System time is
cyclical and bounded by the length of day, while flow time is unbounded (since it depends on flow
duration). Therefore, bandwidth by system time—U() and L()—are functions of finite and bounded
domain; bandwidth by graph time—c()—is a function of unbounded domain. To construct the flow
graph, we map graph time t to system time and then map bandwidth by system time (L, U) to
bandwidth by graph time c(). The essence of automating the construction of the GPSonflow model

is the mapping of unbounded graph time instants to bounded system time instants and then mapping

the periodic bandwidth functions L(), U() to graph bandwidth function c(). In this section, we develop
the mappings. The notation is summarized in Table 1.

4.1.1 Time Instant δ . We parameterize time as a discrete variable. When time is discrete, the
24-hour day is divided into discrete time instants each of length δ . The number of time instants
in a day, Γ, depends on the time unit δ : If δ is 60 minutes, then the day is divided into 24 time
instants (Γ = 24); if δ is 1 minute, then the day is divided into 1440 time instants (Γ = 1440); if δ
is 180 minutes, then the day is divided into 8 time instants (Γ = 8). Each time instant represents a
time period of one time unit.

The selection of time unit δ must allow the division of the hour/day into equal time periods; for
example, a time unit of 7 minutes is unsuitable. The bandwidth is constant during a time instant.
The modeler may choose the time unit based on the variance of bandwidth. If available bandwidth
changes every few milliseconds, then δ of 1 second balances accuracy and speed; if the bandwidth
changes gradually with time, then δ of 1 or more minutes is appropriate. A time unit of 3 to
5 minutes captures the variance in available bandwidth (Laoutaris et al. 2013). The bandwidth
capacity at a time instant is the total bandwidth capacity for the time period represented by this
time instant. Without loss of generality, in this article, δ is specified in minutes, and 1 ≤ δ ≤ 60.
Note that in this article, due to space constraints, examples use δ = 180 minutes (so a day only has
8 time instants as opposed to 24 time instants with δ = 60 minutes). The time instants are specified
by 0, 1, 2, 3, . . . , where each instant specifies a duration of δ minutes.

4.1.2 Graph Time - Flow Instant t . The graph specifies arc capacities c() (i.e., bandwidth at end
networks) from flow start time t= 0 until flow end time t= T− 1, where T is the flow duration. Each
flow instant, t = 0, 1, 2, . . . ,T − 1, represents a time duration of length δ . For example, suppose δ is
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Table 1. Summary of Notation

Notation Meaning

δ time unit: the duration of a time instant (in minutes)
Γ system parameter: total number of δ time instants in a day
T graph parameter: total number of δ flow instants during data transfer
τ system parameter: UTC time instant τ = 0, 1, . . . , Γ − 1

τ = 0 maps to duration starting at 00:00 UTC to (00:00+δ ) UTC
τ = 1 maps to duration starting at (00:00+δ ) UTC to (00:00+2δ ) UTC
τ = Γ − 1 maps to duration starting at (00:00-δ ) UTC to 00:00 UTC

λ system parameter: Local time instant λ = 0, 1, . . . , Γ − 1
λ = 0 maps to duration starting at 12:00 AM (midnight) to (12:00+δ ) AM
λ = 1 maps to duration starting at (12:00+δ ) AM to (12:00+2δ ) AM
λ = Γ − 1 maps to clock duration starting at (12:00-δ ) PM to midnight

θ system parameter: UTC instant when flow starts from the sender
t graph parameter: flow time instant t = 0, 1, . . . ,T − 1

t = 0 maps to UTC instant θ when flow starts
t = 1 maps to UTC instant θ + 1 modulo Γ
t = T − 1 maps to UTC instant θ + t modulo Γ when flow completes

bw(u,v ) system parameter: constant bandwidth from u to v
c(u,v ) graph parameter: constant capacity along edge (u,v)
U(u,v,τ ) system parameter: bandwidth from network u to v at UTC instant τ
L(u,v, λ) system parameter: bandwidth from network u to v at local time instant λ
c(u,v, t ) graph parameter: capacity along edge (u,v) of dynamic flow graph at flow

instant t
c(ut ,vt ) graph parameter: capacity along edge (u,v) of time expandedflow graph at flow

instant t
z(v ) number of hours separating local time in v from UTC

time
d(v ) number of time instants (of length δ ) separating the local time in v from UTC

time

60 minutes and t = 0 starts at 8:00 AM; t = 0 is [8:00-9:00), t = 1 is [9:00-10:00), t = 2 is [10:00-11:00),
and so on.

4.1.3 System Time - UTC Instant τ . Let parameter τ refer to a universal time instant: The UTC
instants range from τ = 0, 1, 2, . . . , Γ − 1, where Γ is the number of time instants in a day. Discrete
time steps 0, 1, 2, 3, . . . map to clock time intervals; time instant τ = 0 maps to time interval of
duration δ starting at 00:00 UTC, and τ = Γ − 1 refers to the last UTC time interval ending at 00:00
UTC. For example, if time unit δ is 60 minutes, then Γ = 24 and link capacities are defined for each
hour in [00:00-23:00] UTC; τ = 0 represents [00:00-01:00) UTC, τ = 1 represents [01:00-02:00) UTC,
. . . , and τ = 23 represents [23:00-00:00) UTC. If time unit δ is 5 minutes, Γ = 288, τ = 0 represents
[00:00-00:05) UTC, τ = 1 represents [00:05-00:10) UTC, . . . , and τ = 287 represents [23:55-00:00)
UTC.

4.1.4 Mapping Graph Time t to UTC Instant τ with UTC Start Instant θ . Let θ represent the UTC
instant at which transfer is initiated from the sender. Suppose δ = 180 minutes; τ = 0 at [00:00-
03:00) UTC, τ = 1 at [03:00-06:00) UTC, . . . τ = 7 at [21:00-00:00) UTC. If transfer is initiated at
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09:00 UTC (τ = 3) then θ = 3. Suppose transfer duration is 6 time instants (i.e., t = 0, 1, 2, 3, 4, 5);
the UTC instants relating to transfer duration are τ = θ = 3,τ = θ + 1 = 4, τ = θ + 2 = 5, τ = θ + 3
= 6, τ = θ + 4 = 7, τ = θ + 5 = 0. Thus, transfer runs from 09:00 UTC to 03:00 UTC the next day.

Each flow instant t corresponds to a time of day UTC instant τ . The flow instants t =
0, 1, 2, . . . ,T − 1 correspond to UTC instants τ = θ ,θ + 1, . . . ,θ +T − 1. When flow starts at τ = θ ,
the UTC instant τ corresponding to flow instant t is given by:

τ = (θ + t ) modulo Γ (1)

4.1.5 Mapping U() to c():. The flow graph consists of nodes and arcs that model the bandwidth
capacity of s and r at every flow instant from t = 0 to t = T – 1. The number of input parameters for
model construction is proportional to the length of the array c(): c(0), c(1), . . . c(T – 1). The array
U() is different from the array c() even though they both represent available bandwidth capacity.
The length of array U() is capped by the number of time instants in a day, Γ, while the length of
array c() is dependent on the duration of flow T. The parameter U(s,x,0) is the sender’s uplink flow
capacity at 00:00 UTC. The parameter c(s,x,0) is the sender’s uplink flow capacity at the start of
flow (t = 0). The start of flow could be at any time: For example, flow could start at 08:00 UTC;
thus, U(0) is not equal to c(0) when start of flow is not 00:00 UTC. The system parameter U(i) refers
to capacity at UTC instant i, while graph parameter c(i) refers to capacity at flow instant i . The
relationship between arc capacity c() and network bandwidth capacity U() is given by:

c(v,x , t ) = U(v,x ,θ + t )

c(x ,v, t ) = U(x ,v,θ + t ), (2)

where 0 ≤ θ < Γ is the UTC instant when flow is initiated and τ = (θ + t ) modulo Γ from Equa-
tion (1).

The input bandwidth distribution is by local time, not UTC. Therefore, we develop the relation-
ship between c() and L() by mapping L() to U().

4.1.6 System Time - Local Time Instant λ. Let λ represent a local time instant of length δ ;
λ = 0, 1, 2, . . . , Γ − 1, where Γ is the number of time instants in a day. Discrete time intervals
0, 1, 2, 3, . . . map to clock time intervals; time instant λ = 0 maps to time interval of duration δ
starting at midnight, and τ = Γ − 1 refers to the last local time interval ending at midnight. For
example, if time unit δ is 60 minutes, then Γ = 24, and link capacities are defined for each hour
in a day [12:00 AM-12:00 AM); λ = 0 represents [12:00 AM-1:00 AM), λ = 1 represents [1:00 AM-
2:00 AM), . . . , and τ = 23 represents [11:00 PM-12:00 AM). If time unit, δ , is 5 minutes, Γ = 288,
τ = 0 represents [12:00 AM-12:05 AM), λ = 1 represents [12:05 AM-12:10 AM), . . . , and λ = 287
represents [11:55 PM-12:00 AM).

4.1.7 Mapping UTC τ to Local Time λ with Time Zone z(). Note that λ = 0 starts at midnight
while τ = 0 starts at 00:00 UTC. We map UTC instants to local time instants by using the time
zones of the sender and receiver. Without loss of generality, we classify the globe into 24 time
zones 0, 1, . . . , 23; all cities fall in exactly one time zone. Let z(v) refer to the time zone of an end
network v . (We use v to refer to an end network, either the sender or receiver.) If z(v) = i , then
local time of v is i hours away from its UTC time (in the clockwise direction): in time zone 0, the
UTC instant is equal to the local time instant; in time zone 1, the local time is 1 hour away from
UTC (i.e., 1:00 AM is 00:00 UTC); in time zone 23, the local time is 23 hours away from UTC (i.e.,
11:00 PM is 00:00 UTC). In this article, the UK is the country synonymous with time zone 0: The
UK is in time zone 0, Japan is in time zone 9 (9 hours ahead of UK) and New York is in time zone
19 (5 hours behind the UK).
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At any UTC time, the local time at a network can be computed from its time zone. Let d(v) refer
to the number of time instants (of length δ ) separating the local time instant in v from the UTC
instant:

d(v ) = z(v ) × 60

δ
. (3)

Note that δ is the length of a time instant in minutes, so 60
δ

gives the number of time instants in
an hour. In the UK to Japan example, when δ = 180 minutes: z(UK) = 0 so d(s) = 0 and z(Japan) =
9 so d(r) = 3; if v is in zone 21 (or 22 or 23), then d(v) is 7. If time unit δ is 1 minute, then d(r) =
540. For a given UTC instant τ , the local time instant λ of v is given by:

λ = (d(v ) + τ ) modulo Γ. (4)

4.1.8 Mapping L() to U(). The array L(λ), λ = 0, 1, 2, . . . , Γ − 1 represents bandwidth by local
time; the array U(τ ), τ = 0, 1, 2, . . . , Γ − 1 represents bandwidth by UTC. The length of each array
is Γ, the number of time instants in a day. The parameter L(v,x,0) represents node v’s uplink band-
width during duration [12:00 AM-12:00 AM+δ ); the parameter U(v,x,0) represents node v’s uplink
bandwidth duration UTC [00:00-00:00+δ ). The two arrays are identical only for networks in time
zone 0 where λ = τ . For example, suppose δ is 60 minutes: If the downlink for receiver Japan is
10 Gb/s from 12:00 PM to 1:00 PM (i.e., [03:00-04:00) UTC), then L(x,r,12) = U(x,r,3) = 4500 GB; for
the UK in time zone 0, if the uplink is 10 Gb/s from 12:00 PM to 1:00 PM (i.e., [12:00-13:00) UTC),
then L(s,x,12) = U(s,x,12) = 4500 GB. For a given τ ,

U(v,x ,τ ) = L(v,x , d(v ) + τ )

U(x ,v,τ ) = L(x ,v, d(v ) + τ ), (5)

where d() is computed by Equation (3), and λ is set to (d(v)+ τ ) modulo Γ from Equation (4).

4.1.9 Mapping L() to c(). From Equation (5) mapping L() to U() and from Equation (2) mapping
U() to c():

c(v,x , t ) = L(v,x , d(v ) + θ + t )

c(x ,v, t ) = L(x ,v, d(v ) + θ + t ), (6)

where λ is set to (d(v) +θ + t) modulo Γ from Equations (1) and (4).

Example 3. Suppose the sender’s network in the UK and the receiver’s network in Japan permit
large transfers from local time midnight to noon [12:00 AM-12:00 PM). Let a time instant represent
a 3-hour duration; so δ = 180 minutes and Γ = 8. (For brevity, we use time units >60 minutes in
examples.) The sender and receiver have identical bandwidth distribution by local time, L():

from [12:00 AM-3:00 AM), L(0) = 10, from [3:00 AM-6:00 AM), L(1) = 20,
from [6:00 AM-9:00 AM), L(2) = 18, from [9:00 AM-12:00 PM), L(3) = 8,
from [12:00 PM-12:00 AM), L(4) = L(5) = L(6) = L(7) = 0.

Example 4 (Mapping L() to U()). In Example 3, the sender and receiver have identical distribution
by local time, but they are in different time zones, so their bandwidth distribution by UTC differs.

The UK is in time zone 0 where local time equals UTC time. Therefore, its distribution by local
time equals its distribution by UTC. The uplink, U(s,x,τ ), from the UK is given by:

U(s,x,0) = L(s,x,0) = 10; U(s,x,1) = L(s,x,0) = 20; U(s,x,2) = L(s,x,0) = 18; U(s,x,3) = L(s,x,0) = 8;
U(s,x,4) = L(s,x,0) = 0; U(s,x,5) = L(s,x,0) = 0; U(s,x,6) = L(s,x,0) = 0; U(s,x,7) = L(s,x,0) = 0.

Japan is in time zone 9, so the local time is 9 hours ahead of UTC time (i.e., 3 time units ahead).
Therefore the downlink, U(x,r,τ ), to Japan is given by:
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Fig. 2. Time-expanded flow network for Example 6 when UTC start instant θ= 6 (t = 0). Four subgraphs

represent bandwidth at sender and receiver at flow instants t = 0, 1, 2, 3. The dashed lines represent storage

capacity of end networks; what is not transmitted at t is stored and available for transmission at t = t+1.

U(x,r,0) = L(x,r,3) = 8; U(x,r,1) = L(x,r,4) = 0; U(x,r,2) = L(x,r,5) = 0; U(x,r,3) = L(x,r,6) = 0;
U(x,r,4) = L(x,r,7) = 0; U(x,r,5) = L(x,r,0) = 10; U(x,r,6) = L(x,r,1) = 20; U(x,r,7) = L(x,r,2) = 18.

Example 5 (Mapping U() to graph arc capacity c()). Suppose transfer is initiated from the UK to
Japan for four time instants (t = 0, 1, 2, 3), and the transfer starts at 18:00 UTC. Thus, θ = 6 and
τ = 6, 7, 0, 1.

c(s,x,0) = U(s,x,6) = 0, c(s,x,1) = U(s,x,7) = 0, c(s,x,2) = U(s,x,0) = 10, c(s,x,3) = U(s,x,1) = 20;
c(x,r,0) = U(x,r,6) = 20, c(x,r,1) = U(x,r,7) = 18, c(x,r,2) = U(x,r,0) = 8, c(x,r,3) = U(x,r,1) = 0.

Next, suppose the transfer is started at 3:00 UTC for four time instants. Thus, θ = 1 and τ =
1, 2, 3, 4.

c(s,x,0) = U(s,x,1) = 20, c(s,x,1) = U(s,x,2) = 18, c(s,x,2) = U(s,x,3) = 8, c(s,x,3) = U(s,x,4) = 0;
c(x,r,0) = U(x,r,1) = 0, c(x,r,1) = U(x,r,2) = 0, c(x,r,2) = U(x,r,3) = 0, c(x,r,3) = U(x,r,4) = 0.

4.2 Computing Maximum Flow

Unbounded graph model: The maximum flow from s to r during time duration T is given by
| fmax | =

∑
T−1
t=0 minimum{c(s,x ,t), c(x , r ,t)}

System model: The maximum flow from s to r in a day is given by
| fmax | =

∑Γ−1
τ=0 minimum{U(s,x ,τ ), U(x , r ,τ )}

System-graph model: When flow starts at UTC instant θ for T time units:
| fmax | =

∑
T−1
t=0 minimum{U(s,x ,θ+t), U(x , r ,θ+t)}, where θ+t is computed in modulo Γ arith-

metic.

In the preceding equation, c() is equated to U(). The arc capacity c() can be equated to L() (in-
stead of U) using Equation (6). The flow network is still unbounded insofar as duration T, but the
flow network can be constructed with Γ inputs. Appendix A presents the system-graph theoretic
definition of the flow network.

Example 6 (Reconsider Example 5). When transfer is initiated from the UK to Japan at UTC time
instant θ = 6 for 4 time instants:

max flow at t = 0 is minimum{c(s,x,0), c(x,r,0)} = 0, max flow at t = 1 is minimum{c(s,x,1), c(x,r,1)}
= 0,
max flow at t = 2 is minimum{c(s,x,2), c(x,r,2)} = 8, max flow at t = 3 is minimum{c(s,x,3), c(x,r,3)}
= 0.
The total flow from the UK to Japan is 8. Figure 2 shows the time-expanded flow network. (Refer
to Appendix A for time-expanded flow network.)
When θ = 1 (3:00 UTC) and T = 4, maximum flow is 0. Figure 3 shows the time-expanded flow
network.
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Fig. 3. Time-expanded flow network for Example 6 when θ=1.

As Examples 5 and 6 show, a consequence of including variable bandwidth distribution in the
GPSonflow model is that start instant θ becomes significant to the maximum file size computation.
With each start time, a new flow network must be constructed since arc capacities c() change (see
Figures 2, 3).

5 INDIRECT TRANSFER

When the sender and receiver are in different time zones, their high-capacity time instants are
asynchronous. With reference to Example 6, maximum flow from the UK to Japan is 8 even though
each end network has a total bandwidth capacity of 56 per day. A maximum of 56 flow units can
be transmitted from the UK to Japan if a suitable storage hop is found. Suppose a data center in
Germany has uplink and downlink capacity of 20 flow units per time instant for the entire day.
The UK starts transmitting at UTC instant 0 when the UK has an uplink capacity 10 and Japan has
a downlink capacity 8. At UTC 0, the UK transmits 8 flow units to Japan and the remaining 2 flow
units to Germany. During the next three instants, the UK transmits to Germany since Japan has
no bandwidth capacity for large transfers. When bandwidth becomes available in Japan, Germany
transmits to Japan. In this section, we develop the indirect transfer flow model.

For direct flow, the star graph models two end networks—the sender and the receiver—as leaf
nodes and the internet as the internal node; therefore, the size of a subgraph modeling network’s
capacity at a time instant is constant. The size (i.e., number of subgraphs) of the time-expanded
graph is determined by T, the unbounded flow duration. For indirect flow, the size of the graph
is dependent not only on the flow duration but also on the number of data centers/clients. The
number of data centers/clients is unbounded and can be a very large number: For crowd-supported
flow, every end network of the internet can potentially participate in the flow. If the number of
data centers/clients is n, then the size of the graph is O(nT).

We develop a model for data center/crowd-supported flow where the size of the graph is O(T).
We do not restrict the number of data centers/clients participating in the flow. However, we restrict
the number of hops in the model to a maximum of 24.

System model: In addition to the sender node s , receiver node r , and eXchange node x , the indirect

flow model has at most 24 hop nodes, where each hop node represents all the data centers/clients located

in its time zone. A hop node u has two parameters, zone number z(u) and bandwidth distribution

by local time L(u); the bandwidth of a hop is equal to the sum of the bandwidth of all the data

centers/clients in z(u). For two hop nodes u and v, z(u) � z(v ) when u � v .

Figure 4 shows the indirect model when there are 24 storage hops, one in each zone. The sender
node has uplink and the receiver has downlink; all the other nodes have uplink and downlink
edges. (In the figure, the two edges are not shown explicitly, but are implicitly represented by a
single edge with no arrows.) The capacities along arcs vary with time of day.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 3, Article 12. Publication date: June 2018.



12:14 E. Varki

Fig. 4. System model: Two nodes representing sender and receiver, and 24 storage hops, one in each UTC

zone. Each node has three labels: The outer number represents zone number; the country/city label adds

meaning by signifying global positioning of the node; the inner number represents local time (time instant

is 60 minutes) at each node during the flow instant.

5.1 Data Center-Supported Flow

Our model specifies at most one hop in each of the 24 UTC zones 0, 1, . . . , 23; the hop is defined by
two parameters: The zone number, z(), and the bandwidth distribution by local time, L(). For the
sender and receiver, the problem statement provides the locations and the bandwidth distributions
by local time. For data centers, however, the problem statement is open-ended: The distributions
and locations of all, some, or none of the data centers may be provided. If the problem statement
does not provide information on the placements and bandwidth distributions of all or some of the
data centers, we have to fill in the blanks to construct the flow graph.

It is reasonable to assume that information on data centers is not provided when there are
no constraints or restrictions on the data centers. Thus, when the problem statement states
nothing about data centers, the flow graph models a hop with unlimited bandwidth in every time
zone. The maximum flow algorithm outputs the transfer paths and maximum flow, and, from
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this output, the best placement and minimum bandwidth for data centers are determined. For
example, consider a model with 24 hops, each having large (unlimited) bandwidth; suppose the
maximum flow algorithm outputs only two transfer paths: A segment of size 10 transmitted via
hops in zones 2 and 5, and a segment of size 6 transmitted via a hop in zone 21. From this output,
we determine that data centers should be placed in zones 2, 5, and 21; the minimum bandwidth
distribution of hops is determined by the segment size (10 for hops in zone 2, 5; 6 for hop in zone
21) and hop transmission times. A comprehensive example is provided in Section 7.

Assumption 2. When the locations of data centers are not provided, the flow graph models a hop

in each of the 24 time zones.

When the bandwidth of a data center is not provided, the flow graph assumes that the hop corre-

sponding to the data center has unlimited bandwidth (i.e., the hop’s bandwidth is not a bottleneck).

For data center-supported flow, we explain the model for different scenarios allowed by the
open-ended problem statement (refer to Example 1 in Section 2):

(1) the locations and bandwidth distributions of all data centers are given: The model will
have at most 24 hops, one for each zone; and the bandwidth of a hop, L(), is the sum of
the bandwidth of all data centers in the zone.

(2) no information on data centers is provided: The model constructs one hop in every zone,
and each hop has unlimited (large) constant bandwidth.

(3) the locations of all data centers are provided: Construct one hop node in each of the zones
where data centers are located, and each hop has unlimited bandwidth.

(4) the times during which data centers may transmit are provided: The model constructs
one hop in each of the 24 zones; each hop has unlimited constant bandwidth during the
transmission times and zero bandwidth during other times.

(5) the bandwidth distribution by local time, L(), of a data center is provided, but the loca-
tions of the data centers are not provided: The model constructs one hop node in every
zone; all hops have identical bandwidth distribution by local time L() (provided in problem
statement).

(6) the locations of all data centers are provided, but bandwidth distribution by local time
of only a single data center is provided: The model constructs one hop in each of the
specified zones; all hops have identical bandwidth distribution by local time L() (provided
in problem statement).

Example 7 (Reconsider Example 3). Suppose data centers (hops) h0, h1, h2, . . . , h7, are placed in
zones 0, 3, 6, 9, 12, 15, 18, and 21. Thus, z(h0) = 0, z(h1) = 3, z(h2) = 6, z(h3) = 9, z(h4) = 12, z(h5) =
15, z(h6) = 18, z(h7) = 21. Suppose bandwidth distribution by local time of hops is identical to that
of the end networks in the UK and Japan.

Storage hop 1 is in zone 3, so local time is 3 hours ahead of UTC time (i.e., 1 time unit ahead).
Using Equation (5) to map L() to U():

U(h1,x,0) = L(h1,x,1) = 20; U(h1,x,1) = L(h1,x,2) = 18; U(h1,x,2) = L(h1,x,3) = 8; U(h1,x,3) = L(h1,x,4) = 0;

U(h1,x,4) = L(h1,x,5) = 0; U(h1,x,5) = L(h1,x,6) = 0; U(h1,x,6) = L(h1,x,7) = 0; U(h1,x,7) = L(h1,x,0) = 10.

Storage hop 2 is in zone 6, so local time is 6 hours ahead of UTC time (i.e., 2 time units ahead).

U(h2,x,0) = L(h2,x,2) = 18; U(h2,x,1) = L(h2,x,3) = 8; U(h2,x,2) = L(h2,x,4) = 0; U(h2,x,3) = L(h2,x,5) = 0;

U(h2,x,4) = L(h2,x,6) = 0; U(h2,x,5) = L(h2,x,7) = 0; U(h2,x,6) = L(h2,x,0) = 10; U(h2,x,7) = L(h2,x,1) = 20.

The uplink/downlink capacities of other storage hops are similarly computed.
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5.2 Crowd-Supported Flow

In crowd-supported flow, clients have limited bandwidth and limited storage, and each client may
participate in the transfer of at most one micro-segment. The problem statement gives the size
of the micro-segment and the times during which clients may participate in transmissions. The
problem statement may limit the number of clients in each zone that may participate in a flow.
If the problem statement does not provide information on the number of clients in a zone, then,
given the scale of the internet and its large user base, it is reasonable to assume that the number
of clients in each zone is unlimited (i.e., a large number).

Assumption 3. When the number of clients in a zone is not specified, the flow model assumes that

the sum of bandwidth of all clients in the zone, during the times that clients are permitted to transmit,

is not a bottleneck.

Next, we explain how this assumption results in the crowd-supported flow model being equiv-
alent to the data center -supported flow model with at most 24 hops, one in each zone. The single
hop in each zone represents all the clients in the zone. Since a client may transmit at most one
micro-segment, the bandwidth of a hop is equal to the number of clients (in the zone) times the
micro-segment size. If the number of clients in a zone is not provided, then the hop corresponding
to the zone has unlimited bandwidth during the transmission times (by Assumption 3).

There is one issue: Namely, when this model is input to a maximum flow algorithm, the outputs
are segment transfer paths, not micro-segment transfer paths. For example, suppose the model of
Example 7 is input to a maximum flow algorithm, the output of the algorithm would be segment
transfer paths (e.g., segment of size 5 along path UK to h2 to h4 to Japan). We map from segments
to micro-segments by multiplexing each segment transfer path into micro-segment transfer paths.
Reconsidering the example: Suppose the micro-segment size is 2, then the segment (of size 5) is
divided into three micro-segments—two of size 2, and one of size 1. All three micro-segments
travel along the same path UK to h2 to h4 to Japan. Each micro-segment uses a unique client in
the zone; referring to the example, there would be three clients in zone 2 and three clients in zone
4. Thus, the transfer satisfies the constraint that each client participates in the transfer of at most
one micro-segment.

Instead of multiplexing segments into micro-segments, one could also set time instant δ to be
so small that the maximum segment size that can be transmitted in an instant does not exceed
the size of a micro-segment. For example, suppose the micro-segment size is 3 and δ is set to a
minute; suppose a maximum of 2 units of data can be transmitted from the sender in a minute
(or received by the receiver in a minute). Every transfer path from the sender to the receiver via
zero or more hops would transmit at most 2 units. Therefore, the output of the algorithm would
be micro-segment transfer paths.

Example 8. Referring to Example 3, where a time instant is 3 hours: suppose a micro-segment
size is 7. If the time instant is reduced to 1 hour, the sender/receiver’s bandwidth distribution would
be

L(0) = L(1) = L(2) = 10
3 ; L(3) = L(4) = L(5) = 20

3 ; L(6) = L(7) = L(8) = 18
3 ;

L(9) = L(10) = L(11) = 8
3 ; L(12) = L(13) =...L(23) = 0.

Since the maximum data that can be transmitted in an instant is less than 7 units, the maximum
flow algorithm would output micro-segment transfer paths.

5.3 System-Graph Model

The dynamic model is a star graph with at most 26 leaf nodes (sender, receiver, and at most 24
storage hop nodes). The arc capacities vary with time of flow, which is mapped to system time via
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Fig. 5. Time-expanded star graph corresponding to system model of Figure 4: Three subgraphs representing

flow instants t = 0, 1, 2. At t = 0, 1, and 2, local time instant in the UK is 5, 6, and 7, respectively; so UTC

instant (at all nodes) is also 5, 6, and 7.

UTC start instant. The dynamic flow network has to be transformed to the static time-expanded
network for flow computation by maximum flow algorithms. Figure 5 presents the time-expanded
flow network of Figure 4 when the duration is three time instants. Appendix B presents the system-
graph theoretic definitions.

6 MODEL CONSTRUCTION WITH GCLOCK

A contribution of this article is that our model bounds the number of nodes in a subgraph regardless
of the unbounded number of data center or clients participating in the flow. Our model divides the
globe into a maximum of 24 longitudinal time zones and places at most one hop in each zone. For
finer-grained modeling, each time zone could be further divided into a fixed number of latitudinal
regions; each region could be assigned at most one hop representing all the data centers/clients in
the region. This effect could be achieved by two methods:

(1) Leave the model unchanged but multiplex the transfer paths so that hops refer to data
centers/clients in different latitudinal regions. For example, a transfer path for segment of
size 10 via a hop in zone 19 could be assigned to data centers in different regions of zone
19, say Boston and Panama; a segment of size 5 could be transferred via a data center in
Boston, and a segment of size 5 could be transferred via a data center in Panama.

(2) Explicitly model hops in latitudinal regions within a zone. For example, the model could
have two hops in zone 19, one corresponding to Boston and another corresponding to
Panama.

In either case, the size complexity of the model remains O(T), so the size of the flow network
is dependent on the flow duration. With δ of 5 minutes and duration of 24 hours, there are 288
subgraphs in the time-expanded flow network for a total of 14400 arcs (without accounting for
holdover arcs). With a time unit of 1 minute and a duration of 24 hours, there are 72000 arcs in the
time-expanded graph. Thus, manual construction of the graph is error prone and tedious.

Often, the only invariants in the GPSonflow problem statement are the sender’s and receiver’s
bandwidth distributions L(); the optimal start time and the duration of flow have to be determined.
To determine the optimal start time, maximum flow at each start time must be computed. Changing
the start time changes the flow network because c() is dependent on the start time: For example,
if flow starts at 8:00 AM, then c(s,x,0) specifies bandwidth during instant starting at 8:00 AM; on
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the other hand, if flow starts at 9:00 PM, then c(s,x,0) specifies bandwidth during instant starting
at 9:00 PM. Changing the flow duration also changes the flow network because the length of array
c() depends on T (c(0), c(1), . . . , c(T – 1)). Thus, solving GPSonflow often requires the construction
of several flow networks.

For each start instant θ and for each duration T, a new flow network must be constructed since
c() is dependent on θ and T. We develop an algorithm to construct a flow graph automatically from
a fixed set of input parameters, namely, the zone numbers z() and the bandwidth by local time, L(),
for the sender, receiver, and hop nodes. The basis of the algorithm is the following: The input L() is

independent of both θ and T. Therefore, ∀ θ and T, c() can be generated from L() by Equation (6) (in
Section 4.1.9).

We develop a data structure, Graph clock (Gclock), for mapping from the unbounded
flow instant t to the bounded local time instant for every node. Gclock follows from Equa-
tions (1), (3), and (4).

Definition 1. Gclock C(δ ,θ ,T) tracks the local time instant λ = 0, 1, . . . , Γ – 1, in every UTC time
zone μ = 0, 1, . . . , 23, at each flow instant t = 0, 1, . . . ,T − 1 of a flow graph.

Let lt(μ,t) represent the local time instant in zone μ at flow instant t. The initial configuration of
Gclock C at t = 0 when UTC instant τ = θ is given by

lt(μ, 0) =
(
μ × 60

δ
+ θ
)

mod Γ,∀μ ∈ [0, 24)

At each clock tick, t = t + 1 and

lt(μ, t ) = (lt(μ, t − 1) + 1) mod Γ,∀μ ∈ [0, 24).

With Gclock, the local time in a zone, μ, at any flow instant, t, is given by
lt(μ,t) = (lt(μ,0) + t) mod Γ.

From Equation (6), the bandwidth capacity at any node, v , at any flow instant, t, is given by
c(v,x,t) = c(vt ,xt ) = L(v,x,lt(z(v),t)).
Gclock maps graph flow instant t to local time of nodes in any time expanded flow graph once

the flow start time t = 0 is mapped to the UTC start instant θ (the local time in zone 0). The graph
clock is not specific to GPSonflow, so the data structure would be useful for other applications that
are modeled by dynamic flow networks where graph parameters are functions of system time. The
next example illustrates graph construction with Gclock.

Example 9. Reconsider Example 7. Suppose flow starts at θ = 6; at θ= 6, t = 0 so c(0) = U(6):

c(s0,x0) = U(s,x,6) = L(s,x,6) = 0 since z(s) = 0; c(x0, r0) = U(x,r,6) = L(x,r,1) = 20 since z(r) = 9;
c(h10,x0) = U(h1,x,6) = L(h1,x,7) = 0 since z(h1) = 3; c(h20,x0)= U(h2,x,6) = L(h2,x,0) = 10

since z(h2) = 6
At t = 1, 2, . . . T − 1, the arc capacities are computed similarly by mapping t to system time

(c(1) = U(7); c(2) = U(0); c(3) = U(1)...).

If the start time is changed to θ = 2, then a new graph has to be generated since c(0) = U(2).

Figures 6 and 7 present a visual representation of Gclock. The first clock in Figure 6 depicts
Gclock at t = 0 when δ is 60 minutes. Each colored point on the circle represents a zone: The
zone numbers are shown outside the circle and the local time instants are shown inside the circle.
Each zone is also labeled by the name of a country/city within the time zone. As the figure shows,
Gclock tracks the local time instant in all zones at a flow instant. The value of UTC instant is given
by the local time in zone 0 (UK); in the first clock, the UTC instant is 5. At each clock tick, t is
incremented to t + 1, the UTC instant τ is incremented to τ + 1 mod Γ, and the local time instant
for each zone is also incremented by 1. Referring to the figure, at each clock tick, the zones move
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Fig. 6. Gclock where δ = 60 minutes. There are 24 zones. The numbers outside the circle represent the zone

number; the numbers inside the circle represent local time at the zones. Each zone is also referred to by the

name of a country/city in the UTC zone. The UTC clock instant τ = 5, the local time in zone 0 (UK). The zone

numbers rotate clockwise while the circle remains fixed. The zones have shifted 4 positions to the right in

the second figure, so τ = 9.

Fig. 7. Gclock where time unit δ = 30 minutes.

one local time instant in the clockwise direction, while the clock itself—the circle, the local time
instants—stays fixed. The second clock in Figure 6 shows the local time in all zones when t = 4,
four clock ticks after initialization; the UTC instant is 9. Figure 7 depicts Gclock, where δ is 30
minutes.

Algorithm 1 shows the construction of the GPSonflow time-expanded graph using Gclock.
When an input parameter, say start time θ , is changed, the flow network can be constructed by
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changing the initial configuration of Gclock. Thus, Gclock automates model construction. The mo-
tivating example of Section 7 illustrates the practicality and usefulness of Gclock and the algorithm.

ALGORITHM 1: Constructing the time-expanded flow graph

Input: Gclock C(δ ,θ ,T);

Input: ∀ u ∈ V, z(u);

Input: ∀ u ∈ V, L(u,x,λ), L(x,u,λ), λ = 0, 1, . . . , Γ-1;

for t=0 to T-1 do

for ∀ u ∈ V do
c(ut ,xt ) = L(u,x,lt(z(u),t));

c(xt ,ut ) = L(x,u,lt(z(u),t));

if t<T-1 then
c(ut ,ut+1) =∞;

end

end

end

7 EVALUATION

Here, we demonstrate the usefulness of Gclock and Algorithm 1 with a simple example: The objec-
tive is maximal flow from Chicago (Ch) to Japan (Jp) when the sender in Chicago and the receiver
in Japan are end networks with identical bandwidth distribution by local time. In the problem
statement, it is given that data centers are placed in zones 0, 3, 6, 12, 15, and 21 (zones 9 and 18
have the receiver and the sender). Starting from Chicago, the zones where data centers are placed
are Argentina (Ag), United Kingdom (UK), Jordan (Jd), Bhutan (Bh), New Zealand (NZ), and Alaska
(Ak). The problem statement provides two possible bandwidth distributions:

Bandwidth distribution 1: The bandwidth distribution by local time at Chicago and Japan:
[12:00 AM-3:00 AM): L(0) = 10; [3:00 AM-6:00 AM): L(1) = 20; [6:00 AM-9:00 AM): L(2) = 18;
[9:00 AM-12:00 PM): L(3) = 8; [12:00 PM-3:00 PM): L(4) = 3; [3:00 PM-6:00 PM): L(5) = 1; [6:00 PM-
9:00 PM): L(6) = 2; [9:00 PM-12:00 AM): L(7) = 4.

Bandwidth distribution of data centers: [12:00 AM-3:00 AM: L(0) = 5; [3:00 AM-6:00 AM):
L(1) = 5; [6:00 AM-9:00 AM): L(2) = 5; [9:00 AM-12:00 PM): L(3) = 5; [12:00 PM-12:00 AM): L(4) =
L(5) = L(6) = L(7) = 0.

Thus, data centers have far less bandwidth than either the sender or the receiver. (The upload
and download distributions are identical.)

Bandwidth distribution 2: The sender, receiver, and data centers have identical bandwidth dis-
tribution by local time. All nodes are only allowed to transmit from midnight until noon: L(0) =
10, L(1) = 20, L(2) = 18, L(3) = 8, L(4) = L(5) = L(6) = L(7) = 0;

Both bandwidth distributions model the sleep–wake diurnal cycle with more bandwidth avail-
able during the early morning hours. The fundamental difference between the two distributions
is that in distribution 1, the data centers have less bandwidth than the sender/receiver. Also, in
distribution 1 (unlike distribution 2), the sender and receiver are permitted to transmit during
high-traffic times (with lower bandwidth).

Objective: Find the maximum flow from Chicago to Japan when flow duration is 24 hours.
To find the maximal flow, the best start time with respect to both distributions must be found.

Once the best start time is found, the best location and minimal bandwidth distribution for each
hop is identified from the detailed transfer schedule.
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Fig. 8. The numbers outside the circle represent zone numbers while the numbers just inside the circle

represent the local time instant at the corresponding zone. (The time instant δ = 180 minutes and Γ = 8.)

Model shows local time instants in zones when UTC instant τ = 2, the local time in UK (zone 0). The numbers

along the links represent bandwidth capacity of the node at the modeled instant (based on distribution 1).

The circle is an abstract representation of GPS positioning.

Evaluating the effect of data center placement on size of a single subgraph of a flow

graph: The problem statement provides data center locations; the data centers lie in six unique
zones. Therefore, a dynamic flow network has a total of nine nodes: a sender node, a receiver node,
an internal exchange node, and the six hop nodes. The problem statement provides two different
bandwidth distributions, so two scenarios have to be evaluated, where each scenario is represented
by a dynamic flow graph with nine nodes. Figure 8 shows a star subgraph of GPSonflow with
distribution 1 at a single time instant.

Evaluating the effect of bandwidth variance and flow duration on size of a single flow

graph: The problem statement provides total bandwidth during 3-hour periods; thus, bandwidth
variance is modeled by setting time instant δ = 180 minutes. (Number of time instants in a day
Γ = 8.) Since flow duration is 24 hours, T = 8 and there are eight star subgraphs (each representing
flow time t, 0 ≤t< 8) in every flow graph. If flow duration is changed to 36 hours, T = 12 and there
would be 12 subgraphs.

If the time instant is set to a more realistic 3 minutes, then the input bandwidth array L() would
have length 480. A single flow graph would have 480 subgraphs for a flow duration of 24 hours,
and 720 subgraphs for a duration of 36 hours. If the time instant is set to 1 minute, a single flow
graph would have 1440 subgraphs for a flow duration of 24 hours.

Evaluating the effect of bandwidth variance on number of flow graphs that must be eval-

uated: For a given duration, the maximal flow may vary with each start instant. For a duration
of 24 hours and a time instant of 3 hours, there are eight possible start time instants. For each
start time, a flow graph has to be constructed before maximum flow is computed. For the two
distributions, a total of 16 flow graphs have to be constructed and solved for maximum flow.

If the time instant is 3 minutes, then there are 480 start instants in 24 hours, which implies
that 480 flow graphs must be evaluated for each distribution. (Note that each flow graph has
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Fig. 9. Impact of start time on size of transmitted file over duration of at most 24 hours (0 ≤ t < 8). The

marked points on the plots correspond to total flow shown in the last row, first column of Tables 2 and 3.

480 subgraphs for a 24-hour duration.) For both distributions, a total of 960 flow graphs, each
with 480 subgraphs, must be evaluated.

Figure 9 plots the maximum flow over a duration of 24 hours at each start instant: The first graph
corresponds to distribution 1 and the second graph corresponds to distribution 2. The solid line
plots the Chicago to Japan flow, and the dashed line plots the Japan to Chicago flow. (The Japan to
Chicago flow is not required for solving the problem,r but is shown for comparison. These plots
required construction of an additional 16 graphs.)

From the graphs, the maximum flow with distribution 1 is 50 units and occurs at flow start
instant θ = 1; the maximum flow with distribution 2 is 56 units and occurs at flow start instants
θ = 1 and θ = 2. The time θ = 2 corresponds to 06:00 UTC (midnight in Chicago). At θ = 2, the
maximum flow of 56 units takes 21 hours, while at θ = 1 the maximum flow of 56 units takes
24 hours. The shorter duration of 21 hours is not indicated in the graph, but from the transfer
schedule output by the maximum flow algorithm (Table 2). From the graphs, we conclude that

the best option is distribution 2: 56 units can flow from Chicago to Japan over a duration

of 21 hours; the optimum start time is midnight in Chicago.

Evaluating Table 2 to find best placement and minimum bandwidth of data centers: The
transfer schedule for each se gment is shown in the table. From the transfer schedule, the minimum
bandwidth distribution of the data centers is:

Alaska: U(3) = 10; U(4) = 12; U(5) = 14; U(6) = 8; U(0) = U(1) = U(2) = U(7) = 0
Argentina: U(3) = 4; U(4) = 4; U(0) = U(1) = U(2) = U(5) = U(6) = U(7) = 0
UK: U(0) = 8; U(2) = 2; U(3) = 6; U(1) = U(4) = U(5) = U(6) = U(7) = 0
Jordan: U(2) = 8; U(7) = 8; U(0) = U(1) = U(3) = U(4) = U(5) = U(6) = 0
Bhutan: U(6) = 2; U(7) = 2; U(0) = U(1) = U(2) = U(3) = U(4) = U(5) = 0
NZ: U(4) = 10; U(5) = 12; U(6) = 14; U(7) = 8; U(0) = U(1) = U(2) = U(3) = 0

For comparison purposes, in Table 3, we show the transfer schedule with distribution 1 and a max-
imum flow of 49. Data centers in Argentina and Bhutan do not appear on the schedule. Thus, the
optimum placement of data centers with respect to this transfer schedule are in zones correspond-
ing to the UK, Jordan, New Zealand, and Alaska. The optimum bandwidth for data center in the UK
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Table 2. Bandwidth Distribution 2: Maximum Flow from Chicago to Japan with Start Instant

at UTC 06:00 and Flow Duration of 21 Hours

Segment UTC 06:00 UTC 09:00 UTC 12:00 UTC 15:00 UTC 18:00 UTC 21:00 UTC 00:00

size (τ=2,t=0) (τ=3,t=1) (τ=4,t=2) (τ=5,t=3) (τ=6,t=4) (τ=7,t=5) (τ=0,t=6)

8 Ch-to-Jp

2 Ch-to-Ak Ak-to-Jp

8 Ch-to-Ak Ak-to-Jp

10 Ch-to-NZ NZ-to-Jp

8 Ch-to-Jd Jd-to-Jp

2 Ch-to-Ak Ak-to-NZ NZ-to-Jp

2 Ch-to-UK UK-to-Jp

6 Ch-to-UK UK-to-Jp

6 Ch-to-Ak Ak-to-NZ NZ-to-Jp

2 Ch-to-Ag Ag-to-Ak Ak-to-NZ NZ-to-Jp

2 Ch-to-Ag Ag-to-Ak Ak-to-NZ NZ-to-Bh Bh-to-Jp

56* 0 0 0 10 20 18 8

Each row represents a segment flow path from sender to receiver via one or more hops. The first column of the last row

presents the total units transferred from t = 0 until t = 6; other columns in the last row present the units transferred to

Japan at the corresponding time instant.

Table 3. Bandwidth Distribution 1: Maximum Flow Output for Chicago to Japan Transfer with Start

Time UTC 06:00 (Local Time in Chicago 12:00 AM) and Flow Duration of 24 Hours

Segment UTC 06:00 UTC 09:00 UTC 12:00 UTC 15:00 UTC 18:00 UTC 21:00 UTC 00:00 UTC 03:00

size (τ=2,t=0) (τ=3,t=1) (τ=4,t=2) (τ=5,t=3) (τ=6,t=4) (τ=7,t=5) (τ=0,t=6) (τ=1,t=7)

1 Ch-to-Jp

2 Ch-to-Jp

4 Ch-to-Jp

8 Ch-to-Jp

2 Ch-to-Ak Ak-to-Jp

3 Ch-to-Jp

3 Ch-to-Ak Ak-to-Jp

5 Ch-to-NZ NZ-to-Jp

2 Ch-to-Ak Ak-to-Jp

1 Ch-to-Jp

5 Ch-to-Jd Jd-to-Jp

2 Ch-to-Jp

4 Ch-to-UK UK-to-Jp

1 Ch-to-UK UK-to-Jp

3 Ch-to-Ak Ak-to-NZ NZ-to-Jp

3 Ch-to-Jp

49* 1 2 4 10 13 9 7 3

Each row presents a segment flow path from Chicago to Japan via one or more storage hops.
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Fig. 10. Impact of positioning of storage hops on size of transmitted file. All: With all zones; –UK/Ak: minus

either UK or Alaska; –Ag,Bh: minus both Argentina and Bhutan; –Ag,Bh,Jr: minus Ag, Bh, and Jordan; –NZ:

minus NZ; None: no hops, direct sender to receiver.

is: 4 from [6:00-9:00), 1 from [9:00-12:00), 5 from [00:00-3:00). Similarly, the minimum bandwidth
requirements for data centers in other zones can be computed.

Evaluating the impact of hops on maximum flow: In the problem statement, both distribu-
tions 1 and 2 place storage hops in zones 0, 3, 6, 12, 15, and 21. With distribution 2, a maximum
flow of 56 units occurs over a duration of 21 hours (or 24 hours). Next, we evaluate the impact of
hop placement on maximum flow. Figure 10 shows the impact of removing hops from one or more
zones. The removal of the hop in New Zealand has a major negative impact on maximum flow.
Removing one or more of the other hops also affects maximum flow. When the flow is direct (with
no hops), the start time has no effect on maximum flow since 8 units are transmitted over 24 hours
with each start instant.

Evalu ating the impact of sender/receiver on maximum flow: Figure 9 plots maximum flow
from Chicago to Japan and from Japan to Chicago. The flow from Chicago to Japan is almost
(anti)symmetrical to the flow from Japan to Chicago. This need not be true for other cases as we
show in Figure 11, which plots the flow from Chicago to Argentina and from Argentina to Chicago
for various start times with distribution 2. (A hop is placed in Japan and the hop in Argentina is
removed.) The maximum flow from Argentina to Chicago is only 44 units, while the maximum
flow from Chicago to Argentina is 56 units.

Evaluating Table 2 with reference to crowd-supported flow: Suppose the problem statement
specifies crowd- supported flow with a micro-segment size of 2. To map from data center- to crowd-
supported flow, segments must be transformed to micro-segments. Therefore, the segment of size
10 transferred from Chicago to Japan via New Zealand would be divided into five micro-segments.
There would be five clients in New Zealand. All other segments of sizes greater than 2 would be
similarly mapped to micro-segments, and hops would be mapped to clients.

7.1 GPSonflow App

This article has developed an application-level flow model for transfer of terabyte-scale data using
standard file transfer protocols such as FTP, gridFTP, and HTTP. We expect terabyte-scale transfers
will be handled by corporations (internet providers or cloud players) rather than by individual
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Fig. 11. Impact of start time on size of transmitted file over duration ≤ = 24 hours (0 ≤ t < 8).

users since there are several issues to be managed. First, the GPSonflow app has to monitor segment
transfers and restart failed transmissions. Next, the app has to handle tasks such as division of a
dataset into segments, encryption and compression at the sender, decryption and decompression at
the receiver, and verification and recombination of segments into the original dataset. In addition
to managing segment transfers, the GPSonflow app has to determine the inputs to Algorithm 1:
For a given start time, duration of flow, and input bandwidth distribution, Algorithm 1 generates
a flow graph, which is input to a maximum flow algorithm that generates the maximum flow and
transfer schedule. To find the best transfer schedule for a sender and receiver, another program,
supervisor, has to generate inputs to Algorithm 1 (value of time instant, start times, duration of flow,
possible hop locations and bandwidths); the supervisor then evaluates the outputs and selects the
best option.

The corporation (e.g., Amazon, Google or Microsoft) would run the supervisor program (and,
therefore, Algorithm 1 and maximum flow algorithms) to determine the best transfer schedule
for their sender and receiver clients. The sender’s client program would handle file-to-segment
division, encryption, compression, segment transmission at the appropriate times, and monitoring
and retransmissions of failed transmissions. The receiver’s client program would receive segments,
decompress and decrypt, verify correctness, and recombine segments into the original dataset.
Each of the data centers would also have programs that receive segments, verify correctness, and
transmit on schedule.

If several users from the same end network want to transmit terabyte-scale data at the same
time, there would be congestion even during the sleep cycle. Note that transfer schedules in both
tables (of Section 7) have slack in some segment paths, where a slack refers to the time difference
between segment arrival and segment transmission from storage hops. At a slack, it is possible
for a segment to arrive later than its scheduled arrival time without impacting the maximal flow
duration. The output of GPSonflow is a schedule, which could be input to a PERT/CPM algorithm
to estimate latest arrival times of segments at hops. Thus, if terabyte-scale transfers at an end
network are coordinated by the same organization, it may be possible to reduce congestion even
when there are several terabyte-scale transfers.
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8 CONCLUSION

This article evaluates GPSonflow, which is the problem of cheaply transmitting thousands of gi-
gabytes from one end network to another end network via the internet. We extend prior work by
focusing on model construction: We are the first to identify that the flow network for GPSonflow
routing is a star graph, not a complete graph that mimics the dense, mesh architecture of the in-
ternet. Our insight has reduced the number of edges in the flow network from O (n2T ) to O (nT )
where n is the number of storage hops and T is the duration of flow. Further, we model all data
centers/clients in a zone by a single storage hop node, thereby bounding the number of hops to
24, the number of global time zones. Therefore, our flow network has a size complexity of O(T).
Our flow network models both crowd- and data center-supported terabyte-scale transfers using
bandwidth parameter values that are publicly available.

The flow network’s parameters, such as arc capacities, are functions not only of graph time
(i.e., flow instants) but also of time of day; this is the first work to formalize the mapping from
graph time to system time. We have developed a data structure, Gclock, that outputs the local
time instants of all nodes at every flow instant. Since arc capacities are functions of local time—a
bounded domain—Gclock facilitates the automatic construction of the graph from a fixed number
of arc capacities. We have developed an algorithm that constructs the O(T) flow network from
K × Γ input parameters, where Γ is the number of time instants in a day and 2 ≤ K ≤ 26 is the
number of modeled nodes (sender + receiver + at most 24 hops).

To our knowledge, no previous papers have explicitly integrated the mapping from graph time
to system time into graph construction and graph searching algorithms. Gclock is not specific to
GPSonflow, so this is a useful tool for other applications where the graph parameter values vary
with system parameter values.

Since arc capacities are function of time of day, the GPSonflow graph is periodic: The subgraph
at t is identical to the subgraphs at Γ + t , 2Γ + t , 3Γ + t . . . The complexity of a maximum flow
algorithm is dependent on the size of the graph. It might be possible to use graph periodicity to
lower search complexity; such an algorithm might be useful for applications other than GPSonflow.

APPENDIXES

A FLOW NETWORK FOR DIRECT TRANSFER

The flow network for constant bandwidth is represented by a single star graph with two leaf nodes.
The flow network for variable bandwidth is also represented by a single star graph with two leaf
nodes, with one major difference: The capacities along the arcs (s,x ), (x , r ) vary with time. The
leaf nodes s and r have storage capacity; the hub node has no storage capacity. This ensures that
the flow network models end-to-end flow; a flow initiated from leaf node s at time t will arrive at a
leaf node r at time t (or it could stay in node s until next flow instant t + 1). When flow is initiated
from leaf node s to leaf node r , the flow cannot exceed the minimum of c(s,x,t) and c(x,r,t).

Dynamic flow model: For a flow duration t = 0 until t = T – 1 (UTC instants τ = θ until τ = θ +
T – 1 mod Γ), the flow network G�=(V∪x , E,T) where

• V is the set of 2 nodes representing the the sender s and the receiver r
• x represents a single hub node; and
• E is the set of arcs {(s,x ), (x , r )}.

G� is a star network where the leaves are in node set V and the hub is node x . The nodes in
V have infinite storage capacity, and the node x has zero storage capacity. The arcs in E have
bandwidth capacity:
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c(s,x , t ) = U(s ,x,τ )
c(x , r , t ) = U(x,r ,τ )
∀t = 0, 1, . . . ,T − 1 where τ = θ + t in modulo Γ arithmetic.
The majority of maximum flow algorithms ignore time by assuming instantaneous flow from

sender to receiver; the corresponding flow network is static. The flow network for GPSonflow
has arc capacities that vary with time; such a flow network is dynamic (Cai et al. 2007). Ford and
Fulkerson (1958)) proposed the following solution for dynamic flows: Convert a dynamic flow to
a static flow using a time-expanded flow network. The time- expanded flow network is a static
network in which there is a copy of the graph for each time instant 0 ≤ t < T. Figures 2 and 3
show the time-expanded version of Figure 1 when bandwidth varies with time, and duration is 4
time units. In these figures, there are 4 subgraphs, each representing an instant of time. The dashed
lines are called holdover arcs and they represent storage capacity at leaf nodes. The holdover arc
(st , st+1), models s at t storing data for transmission at t + 1. Storage capacity at end networks is
not a bottleneck, so the capacity of holdover arcs is set to infinity.

Static (time-expanded) flow model: The dynamic flow network G�=(V ∪x ,E,T) transforms to the
static flow network G=(VT ∪ XT , ET ∪ HT ) where

• VT is the set of end nodes st , rt , t = 0, 1, . . . ,T − 1;
• XT is the set of hub nodes xt , t = 0, 1, . . . ,T − 1;
• ET is the set of arcs (st ,xt ), (xt , rt ), t = 0, 1, . . . ,T − 1;
• HT is the set of holdover arcs (st , st+1), (rt , rt+1) t = 0, 1, . . . ,T − 2.

The arcs have capacity:

c(st ,xt ) = c(s,x , t ), c(xt , rt ) = c(x , r , t ),
c(st , st+1) = c(rt , rt+1) =∞.

The dynamic flow from s to r is equivalent to a corresponding static flow from s0 to rT− 1 (Ford
and Fulkerson 1958). Therefore, finding maximum flow in the dynamic network can be solved by
finding maximum flow in the corresponding static time-expanded network.

A flow in time-expanded G is a function
f: (VT ∪ XT )× (VT ∪ XT )−→ N0 satisfying the properties of capacity constraint, skew symmetry,

and flow conservation (Cormen et al. 2009). The value | fmax | of the maximum flow f in G is
| fmax | = f(s0,x0) + f(s0, s1) = f(xT−1, rT−1) + f(rT−2, rT−1) =

∑
T−1
t=0 minimum{c(st ,xt ), c(xt , rt )}.

B FLOW NETWORK FOR INDIRECT TRANSFER

Dynamic flow network: For a flow duration t = 0 until t = T – 1 (UTC instants τ = θ until τ = θ +
T – 1, 0 ≤ τ ,θ < Γ), G�=(V∪x , E,T) where

• V is the set of 26 nodes representing the sender s , the receiver r , and the storage hops in 24
time zones.

• x represents a single hub node; and
• E is the set of arcs {(s,x ), (x , r )} ∪ {(v,x ), (x ,v ) | ∀v ∈ V-s-r }.

G� is a star network where the leaves are in node set V and the hub is node x . The nodes in
V have infinite storage capacity, and the node x has zero storage capacity. The arcs in E have
bandwidth capacity:

c(v,x , t ) = U(v,x ,θ + t ) ∀(v,x ) ∈ E
c(x ,v, t ) = U(x ,v,θ + t ) ∀(x ,v ) ∈ E

∀t = 0, 1, . . . ,T − 1 and θ + t is in modulo Γ arithmetic.
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Static (time-expanded) flow network: The dynamic flow network G�=(V ∪x ,E,T) transforms to
the time-expanded flow network G=(VT ∪ XT , ET ∪ HT ) where

• VT is the set of end nodes ut , ∀u ∈ V and t = 0, 1, . . . ,T − 1;
• XT is the set of hub nodes xt , t = 0, 1, . . . ,T − 1;
• ET is the set of arcs (ut ,xt ), (xt ,ut ), ∀ (u,x ), (x ,u) ∈ E and t = 0, 1, . . . ,T − 1;
• HT is the set of holdover arcs (ut ,ut+1), ∀ u ∈ V and t = 0, 1, . . . ,T − 2.

The arcs have capacity:
c(ut ,xt ) = c(u,x , t ), c(xt ,ut ) = c(x ,u, t ), and c(ut ,ut+1) =∞
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