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Abstract

RAID assumes homegeneous disks. When a disk in
RAID fails, it may be replaced by a larger disk, but the
extra space in the new disk is wasted. To address this
problem, this paper proposes RAIDX, RAID eXtended
for heterogenous disks. Similar to RAID, RAIDX
bundles data across its disks; the stripes of RAID and
RAIDX are constructed differently. In RAID, a stripe is
a row of stripe units, one per disk; the stripe units are at
identical locations on each disk. In RAIDX, a bundles
is a row of chunks, with at most one chunk per disk; the
chunks in a bundle need not be on the same location
on each disk. Chunks of a bundle may be relocated
dynamically when new disks are added to or removed
from RAIDX. RAIDX requires a lookup table to map
block numbers to chunk locations. This table is at worst
only 0.3% of the total array size. The lookup tables add
overhead to RAIDX, however, experiments demonstrate
that RAID and RAIDX have comparable speeds when
the array consists of similar disks. RAIDX supports
arrays that contain a mix of hard disks and solid state
disks. This combination can be used to increase the
access speed of the array by directing traffic to the faster
disks. RAIDX is compared to RAID by experiments
that attempt to exercise similar functionality on the
same hardware. We show that the proposed lookup
table design adds only a little computational overhead
and RAIDX approaches the speed of a traditional RAID
array.

1 Introduction

Redundant Array of Inexpensive Disks (RAID) con-
sists of several disks logically bound together to form a
single storage unit, capable of higher performance than
each individual disk. Hardware RAID uses RAID cards
between the storage devices and the motherboard while
software RAID uses the system CPU and memory to
achieve the same function. Additionally, RAID offers
redundancy to prevent data loss in the event of a drive
failure. While the redundancy causes computational
overhead, there is a net gain to this organization of

storage.

There are several RAID configurations, of which
RAID5, RAID10, and RAID6 are the most popular.
All configurations of RAID assume that the disks are
identical. When disks fail, they are usually replaced
by identical disks. Disks have an increasing Mean
Time to Failure (MTTF), and they are growing in
size. The combination of these two facts makes it
plausible that when a disk fails in an array, it is likely
replaced by a larger disk. Over time, a homogeneous
array gets replaced by a completely new array with the
old hardware discarded, a costly solution. A second
solution is to replace the failed disks by new large
disks, but the additional space in the new disks are not
utilized. A third option is to extend the second solution
by using the additional space as a separate storage unit,
which interferes with the operation of RAID. All these
solutions are ad-hoc, wasteful, and expensive. This
paper addresses this issue by evaluating a RAID con-
figuration called RAIDX [?], for heterogeneous disks.

RAIDX - RAID eXtended for heterogeneous disks -
configures different types of disks into a single array.
For example, SSD and HDD could be combined into
a single RAIDX array. The configuration of RAIDX
ensures that the speed of the array approaches that
of the faster disk in the array. Moreover, when disks
of several sizes are placed in a RAIDX array, the
additional space in the larger disks becomes available.
RAIDX also supports all the traditional RAID levels
(striping, mirroring, and parity). RAIDX, designed
for heterogeneity of disk sizes and speeds, provides
optimal performance regardless of homogeneous or
heterogeneous disks.

This paper describes the RAIDX system architecture.
The traditional, homogeneous RAID organizes storage
data into stripes that span the disks uniformly. Each
stripe (row) consists of stripe units, one per disk; the
stripe units corresponding to a stripe at the same
location on each disk. RAIDX has a completely
different organization since disks vary in size. The
bundles in RAIDX consist of chunks (not stripe units),
which are not necessarily at the same location of each
disk. Moreover, bundles need not span all the disks;



larger disks participate in more bundles than smaller
disks. In traditional RAID, stripes are just rows
of storage data that logically follow each other. In
RAIDX, bundles are organized for maximizing storage
utilization of different sized disks.

Like in traditional RAID, the chunk size is selectable
at initialization. =~ With a smaller chunk size, the
number of bundles increases thus increasing the space
requirements for the lookup table both in memory as
well as on disk. Nevertheless, the size of the lookup
table in the worst case is less than 0.3% percentage of
the array size. If the chunk size increases, the lookup
table size decreases. The lookup table still offers an
O(1) retrieval of chunk addresses. This is because
once the array is assembled, the lookup table no longer
changes.

In this paper we compare RAIDX performance to
that of traditional RAID. We take into account one
of the simpler RAID types, namely mirroring as a
comparison. While there is a difference between the
speeds achieved by the two implementations, there are
many things that can still improve the speed of RAIDX.
We have shown a 10 times speed increase over an
individual drive in our 7 disk array. Mirroring RAIDX
outperformed traditional RAID in terms of writes, but
fell short on transactions with mostly reads. The
crossover point occurs in transactions where at least
60% of the access is a read. A simple remedy for this
would be to add a cache layer which will keep most
frequently accessed bundles in memory.

2 Related work

RAID [8] calls a piece of data or parity a stripe unit.
Multiple stripe units are organized into stripes. Stripe
units at the same logical location are in the same stripe.
Stripe units are the smallest blocks that a RAID system
can access.

Although other RAID algorithms exist, typically,
RAID10, RAID5 and RAID6 is most commonly used.
RAID10 is a combination of mirroring and striping
across the SUs where RAID5 and RAIDG6 are single
and double parity algorithms respectively. A parity is
calculated by taking the XOR of the data SUs in the
parity. For RAID5, these are the SUs in the stripe other
than the parity stripe unit. In RAIDG6, the first parity
can be the same that of RAID5, where the second is a
myriad of possibilities [5,7,13,14].

The basic rule in making an algorithm redundant is
that each piece of the data and parity must be kept
on a separate disk. The only way this is possible on
differently sized disks is to treat all disks equal to the
size of the smallest disk in the array. One trick that

has been done is to place a second array on top of the
remaining space on the disks. This process repeats until
there are only two disks with free space which is then
combined with a RAID1 array. The trouble this causes
is that if both RAID arrays are accessed simultaneously
there is a steep performance degradation. In any
disk access, it is well known that the throughput is
heavily influenced by the seek time required to access
the data [9]. Therefore, any rotational disk that has
multiple RAIDs on it will suffer from this.

Many solutions to this have revolved around obfus-
cating the underlying storage devices such as Logical
Volume Management [12] (LVM). This divides up a
physical volume (disk) to physical extents which can
be allocated to logical extents in a logical volume.
LVM leads to waste by adding a layer of abstraction
in addition to sub-optimal utilization of hardware by
treating all disks as identical. Others have tried to
create virtual arrays [11] and combine them together
into a single system.

RAIDX combines the layer which creates an abstrac-
tion of the underlying heterogeneous storage with the
layer that provides redundancy and speed improve-
ments over a single drive. Being aware of the low
level storage, RAIDX can make optimizations on the
ordering of how transactions get executed.

3 RAIDX

Our current implementation is done entirely in soft-
ware, but there is no restriction that would prevent a
hardware implementation. Using the Linux network
block device module, it is possible to create a block-
level user space environment called BUSE [3]. This
creates a block-level device that can represent the
RAID array. By avoiding kernel modules, a much
simpler implementation can be accomplished using
object oriented languages. Using direct file access,
we can force the kernel to retrieve data directly to
the userspace memory and avoid unnecessary memory
copies.

3.1 RAIDX Instantiation

In RAIDX there are some additional steps to assem-
bling the RAID. When creating a new RAIDX set, one
must define the number of chunks per bundle. The
smaller the number, the closer to full utilization of
the disks there is, but the larger the lookup table will
be. This is because for a smaller chunks per bundle,
there are more possible ways of spreading the chunks
across the disks to optimize the layout. Each disk
in the array can only store one chunk in a bundle
to maintain redundancy. A disk with more than one



Table 1: RAID level and minimum chunks per bundle

RAID Level 0]1]5]6]10
chunk perbundle | 1 | 2 |3 |4 | 4

chunk out of a bundle would be a weak link in the
array where only a single disk failure is tolerated. If
the chunks per bundle is equal to the number of disks
in the array, then we have a traditional RAID layout
and the number of stripes is determined by the smallest
disk in the array. RAIDX is similar in that once the
RAID is assembled, the chunks per bundle cannot be
easily changed. The difference exists in the number of
bundles. RAIDX allows for bundles to be added as well
as removed based on the number of available chunks
in the array. This means that as the array ages and
transforms, it is possible to further increase the storage
capacity. With modern filesystems, it is possible to
resize the filesystem to follow the size of the underlying
device. Many filesystems also allow to do this change
on a live system.

The minimum necessary chunks per bundle for tra-
ditional RAIDs are shown in Table 1. The largest tra-
ditional RAID requires 4 chunks. In our experiments,
where we have several different sized disks, we can see
that this still produces a RAID with nearly the full size
of the physical array. With a different set of disk sizes
this same phenomenon occurs. The larger the number
of disks in the array, the better the ability to make use
of the full disk space.

To initialize the array, the number of chunks on each
disk is calculated and these become the number of free
chunks. It is possible to estimate the maximum number
of bundles (see equation 1), but not every configuration
of physical disk sizes allows to have all the disks used.
A simple example is taking an array with a 1TB disk
and two 250GB drives. There is no possible way to
make full use of the 1TB array in a redundant array.
If there were two chunks per bundle, the size of the
array is at most 750GB using equation 1, but because
of the large disparity between disk sizes and the small
number of disks in the array, the array size is going to
be only 500GB. If we added two more 250GB (or one
500GB) disks then we would reach the maximum size
of the array.

total ArraySize

numStripes = 1
p chunksPerStripe x chunkSize (1)

In traditional RAID, a hot spare is a drive that is
put into the array as a backup drive that is normally
unused, but in the event of a disk failure it becomes
activated and the array fails over to that drive. In

RAIDX, the concept of hot spare becomes unnecessary,

because it is better to have the added performance of an
additional disk in parallel. It is possible to put a smaller
filesystem on the RAIDX array, so that if there is a
disk failure, the RAIDX array can reorganize the chunk
locations without needing to modify the filesystem.

3.2 RAIDX lookup table

As all chunks in a bundle can be arbitrarily allocated
on the disk, we must keep a lookup table to later
determine the selected locations. The table on the disk
is much different than what is kept in memory. The
disks store only information about those chunks that
are stored on it. The size of the table on the disk is
constant, because the number of chunks a disk can store
is based on the size of the disk and the size of a chunk.

The size of the lookup table depends linearly on the
size of the chunks in the array. The smaller the chunks,
the more that fit on the disks thus larger the table. This
is true for both on-disk and in-memory tables. The
lookup table only changes when there is a disk added
or removed. Once a table is read from disk, there is no
need to make any updates. The in-memory lookup table
is intended to provide an O(1) lookup for the location
of each chunk. Loss of the in-memory table is not a
problem, because it can always be reconstructed from
the tables stored on the disk.

One of the many advantages of RAIDX is that it is
possible for the array to return to a fully redundant
state after a disk failure but before that disk is replaced.
This is because with a lookup table, the bundles can
get redistributed across the remaining disks. With
most modern filesystems, it is possible to reduce the
filesystem size as long as the new size is greater than
the size of the data stored on the filesystem. Once
the filesystem has been resized, the RAIDX array can
be restructured to remove the additional bundles and
update the lookup table with the new locations of
the chunks of a bundle. After the restructure, the
RAIDX array is now fully redundant and can handle
an additional disk failure. Conversely, when the data
storage on the RAIDX array has become full, it is
possible to add an additional disk to increase the
physical storage capacity. This additional disk can be
incorporated into the array by expanding the lookup
table and reshuffling the chunks across the array.

3.3 RAIDX1

Using RAIDX, we looked at mirroring RAID. With
chunks scattered across the disks, mirroring does not
occur like it does on a traditional RAID. It is more
akin to a RAID10 implementation. Figure 1 shows an
example with two chunks per bundle that would be used
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Figure 1: RAIDX array showing a 2 chunk per bundle
setup

for a mirrored RAID setup. Notice that if bundles 1-4
are requested, all the disks could be utilized. This does
not necessarily mean that they should. Depending on
the speed of the disks, a better solution might be to
use only one disk to access the data. Recall that the
time that takes the longest on any magnetic disk is the
seek time. So if all four disks must seek to the same
location to retrieve a small chunk, then in essence, each
of the slower disks in the set are trying to keep up with
the fastest disk. Disk scheduling methods are nothing
new [10], what is new is how to select the best disk
among a set of different disks. For this, we tested 4
different algorithms. The first (algl), iterates through
all disks, and only considers disks that are either twice
as fast as the selected, or is idle while the selected
is busy, or the distance the disk is estimated to seek
is less than the currently selected one. If any of the
considerations is true, then the disk under consideration
is set as the selected one. The second algorithm (alg2)
considers all disks independent of the speed. The third
algorithm (alg3) is like the second, except it omits the
busy consideration. The fourth algorithm (alg4) only
looks at the seek distances.

Data access is treated as an individual chunk being
the smallest block of data accessible. If a transaction
requires multiple chunks, the best disk is decided on
a per-chunk basis starting with the chunk on the first
logical bundle. In our tests, we always had the bundles
organized in ascending order. When disks have been
added and removed from the array, this may not always
be the case. It depends on how the algorithm that
adds in new disks to a previously degraded array places
the chunks. For the present experiments, we need not
concern about this scenario.

4 Experimental setup

To test the speed of the array implementations, the
standard testing tool called flexible I/O tester (fio) [1]
was used. Fio is a tool for any arbitrary I/O throughput
testing. It is commonly used as a comparison tool
by many researchers [2, 6] for arbitrary I1/O traffic
generation. It is possible to generate random reads and
writes with a desired percentage being reads. The main
drawback is that it takes a long time to get the results
as the transactions have to be executed on the given
hardware.

In our tests we use fio to issue random reads and
writes, starting with all writes and incrementing by
10% reads to 100% reads. This can show how the
RAID performs with different types of loads. In initial
tests, the size of each read or write is a constant 10MB.
Subsequent tests were done with a random size ranging
from 1KB to 10MB. Each test iteration was run for
approximately 60 seconds. An iteration consisted of
creating constant transactions at a set reads to writes
ratio from 4 separate thread sources. This produced a
very large number of transactions to exhaust any kind
of system buffer or cache device and produce a reliable
average transaction rate. The speed of the disk was
recorded as the amount of data transferred in the actual
amount of time.

A decision regarding the chunk size needs to be made
when allocating a RAID storage device. A multiple of
the disk block size is used for an optimal disk interface.
In 2011, sector sizes have been defined to be 4096
bytes on all commercial drives [4]. In prior years, the
sector size has been 512 bytes, but the increase in
drive capacity allowed for a block size increase to make
transactions more efficient.

In the RAIDX instance, the size of a chunk was varied
across tests. The tested sizes included: 16K, 32K, 64K,
128K, 256K and 512K bytes. These are all the typical
stripe unit sizes for traditional RAID.

Our control in this experiment was using the standard
Linux MD RAID implementation on the same drives.
For both the control as well as RAIDX1, we used the
same 7 drives that were described in section 3.1. All the
drives were magnetic platter disks. The speeds of the
disks ranged from 10.7MB/s to 21MB/s for reads and
2.2MB/s to 21.6MB/s for writes. The average speed
was 16.6MB/s for reads and 10.25MB/s for writes.

Our experiments had four 148.5GB, one 139.2GB, one
297.5GB and one 74GB drives for a total of 1104GB.
When the chunks per bundle equals the number of
disks, this forces the total available space to be a
multiple of the smallest disk in the array. In our case,
that makes seven 74GB drives for a total of 518GB.



Had there been a traditional RAID on this set of drives,
over half of the physical storage would be unattainable
to the array. Using a chunk size of one, two or three
yields a total of 1104GB storage space for this set of
drives. Therefore, a RAID1 or RAID5 can be easily
placed on these disks and have the total capacity of
the array while also being redundant. Using a double
disk redundancy technique where there are four chunks
per bundle like RAID6 would allow 1076GB of storage
space. In RAIDX, a double disk redundancy becomes
unnecessary. The reason for this is the possibility of
dynamic array resizing discussed in section 3.2.

5 Results

This section describes the results of the experiments
run with both RAIDX and traditional RAID. First,
an analysis of the base structure of the RAID is
examined. Many attributes that apply to traditional
RAID also applies to RAIDX. Subsequent sections show
how RAIDX compares to traditional RAID.

It is important to examine the trade-offs in chunks
per bundle and chunk size selection. We can easily
determine that the chunk size has a linear correlation
with the amount of memory the lookup table will
consume and the allocation time of the lookup table.
This is because the smaller the chunk size, the more
bundles that fit on a disk. Smaller chunk sizes result in
more efficient transfers of small files, but would cause
slowdowns in larger files.

To understand the how RAIDX performs, it is im-
portant to have a baseline comparison. This test used
the Linux multi-disk module to create the RAID1 array
with the parameters all set to the default. The RAID1
was constructed to use all the available space on the
disks (see Figure 2). The total space available on the
RAID was equal to the smallest disk. After the RAID
was assembled, we ran the test routine to determine the
baseline speed. This scenario would never be realized
in a system as it would be too cost prohibitive. The
reason for this test was to provide a baseline for what
kinds of results we should be expecting with existing
methods.

5.1 RAIDX performance

RAIDX also provides a set of write buffers to increase
the bandwidth of the disks by keeping the disks contin-
uously active during burst writes. These write buffers
have been observed to increase the write intensive
workload speeds by up to 40% in our experiments. The
concept is that in a hardware implementation, these
write buffers would be placed in a non-volatile RAM so
even in the case of power loss, the data will have been
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Figure 2: Using traditional RAID1 on a 7 disk array

written to the RAID device and can resume writing
when started up again.

Without the write buffers, the disk speeds suffer.
Larger chunk size arrays have the largest impact.
In these cases, what happens is that when a write
transaction is taking place, it is blocking any future
write transactions. The larger the chunk size, the larger
the minimum size that a transaction must be to be split
across multiple disks.

With smaller sequential transactions (1KB to 10MB
versus a constant 10MB size), it is natural that the
throughput shrinks on magnetic disks. Even still, the
RAID array performs better than an individual disk due
to the parallelism that is available. The transactions
are likely to be carried out by only a single disk which
leaves the rest of the disks idle.

When the same experiment was run with write
buffers, the transaction speeds gained a 30% boost for
512KB chunk sizes, but only a 7.7% gain for 16KB
chunk sizes. The buffers allowed more disks to be
processing writes at the same time, but since the
16KB chunk size already split the transactions across
more disks, it didn’t see as much of an improvement.
Consider that if a transaction is 64KB and chunk size
is 16KB, then the transaction will likely be split across
4 separate disks, whereas if the chunk size was 512KB,
then the transaction will fall on a single disk unless it
is on a chunk boundary where it will be split across
two disks. For this reason is why write buffers help the
array with larger chunk sizes.

RAIDX1 on a set of heterogeneous disks is able to
store more data than a traditional RAID1 because of
the different layout. Traditionally, in RAID1, each two
disks form a mirrored set. Thus, if the data being
requested is largely in a certain logical location, then



only two drives will have that data. The other disks in
the array would be sitting idle. With RAIDX1, there
wouldn’t be any mirrored sets, as the bundles would
be distributed evenly across all of the disks. Therefore,
there is greater parallelism in a RAIDX1 set.

We find that the best algorithm is algd where we
strictly look at the distance between where the head of
the disk was last and where the next transaction needs
to be.

6 Conclusions

RAIDX, a new type of heterogeneous RAID was
developed and tested on a simple striping and mirroring
RAID. RAIDX is different in that it uses bundles which
are arranged on the disks in a fashion that is determined
by the sizes of the disks. While this requires the use
of lookup tables to keep track of where the bundles
are, it does perform on par with traditional RAID
and allows for additional features (such as RAID size
extension) that can’t be done with traditional RAID.
We have shown that write speeds 10 times the speed
of an individual drive in the array are attainable and
sustainable. While read speeds are not as fast, it is
possible to add a cache and prefetch layer to improve
it, like it is done on most systems. To also help enhance
reads on disks, we looked into how RAID1 will perform
on a simplified implementation treating unequal sized
disks as equal, but different speeds. We then took this
and created a RAIDX1 implementation using a subset
of these algorithms and compared it to the traditional
RAID1.

In this work, the main concentration was to ensure
fast writes to an array of heterogeneous disks. In the
current implementation of the algorithm, when several
bundles are requested, each chunk is requested on
the disk individually. Combining physically sequential
chunk requests to disks have been shown to give
significant improvements in our simplified tests.

In the future we will also consider RAIDX5, with the
added advantage, that it may be possible to use the
parity blocks on faster disks rather than data blocks to
optimize the throughput. For example, given a bundles
with chunks on various speed disks, it may be better to
retrieve only those chunks that are on the faster disks
and calculate the parity than to always retrieve the data
blocks.
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