
RAIDX: RAID without striping

András Fekete
University of New Hampshire

afekete@wildcats.unh.edu

Elizabeth Varki
University of New Hampshire

varki@cs.unh.edu

Abstract—Each disk of traditional RAID is logically divided
into stripe units, and stripe units at the same location on each
disk form a stripe. Thus, RAID striping forces homogeneity on its
disks. Now, consider a heterogeneous array of hard disks, solid
state disks, and RAM storage devices, with various access speeds
and sizes. If this array is organized as a RAID system, then larger
disks have wasted space and faster disks are under utilized. This
paper proposes RAIDX, a new organization for a heterogeneous
array. RAIDX disks are divided into chunks; larger disks have
more chunks. Chunks from one or more disks are grouped into
bundles, and RAIDX bundles chunks of data across its disks. The
heterogeneity of disks causes unbalanced load distribution with
some under-utilized disks and some bottleneck disks. To balance
load across disks, RAIDX moves most frequently accessed chunks
to under-utilized, faster disks and least frequently used chunks
to larger, slower disks. Chunk remapping is done at the RAIDX
level and does not impact file system to storage addressing.
Experiments comparing local and networked RAIDX against
local RAID show that RAIDX has faster throughput than RAID
when the array is composed of heterogeneous disks: local RAIDX
is 2.5x faster than RAID; networked RAIDX is 1.6x faster than
local RAID.

I. INTRODUCTION

RAID technology transforms an array of small, cheap disks
into a storage system with large capacity, low failure rate, and
high performance. The acronym, RAID, stands for Redundant
Array of Independent/Inexpensive Disks, but it could also
stand for Redundant Array of Identical Disks since RAID
configuration assumes that the disks have identical capacity
and speed. The performance of a parallel system is dependent
on the slowest component, so disk homogeneity allows for the
superior performance of RAID. However, the homogeneous
disk constraint limits the applicability of RAID. With the
emergence of Solid State Disks (SSDs), it would be useful
to put together a RAID consisting of expensive, fast SSDs
and the cheaper, slower disks. Moreover, when an old failed
disk is replaced by a larger disk, it would be advantageous
to incorporate the greater capacity and speed of the new disk.
This paper addresses the problem of integrating heterogeneous
disks into a RAID array.

In RAID, storage data are striped (distributed row-wise)
across all the disks in the array. A stripe unit is the smallest
block of addressable data. A stripe refers to all the stripe
units at the same location on each disk. When a file is stored
sequentially, the file’s data are written on consecutive stripes
spanning all disks. There are several RAID levels, which differ
in how data and redundancy are striped. Two common RAID
levels are RAID5 and RAID10. In RAID5, every stripe has
a parity stripe unit; in case a stripe unit is corrupted, the

corresponding parity stripe unit is used to regenerate the data.
In RAID10, data are striped across all the disks, and every
stripe unit has a copy to protect against single disk failure.

A common feature in all RAID levels is that stripe units
from a stripe are at identical locations on each disk. This
feature facilitates quick mapping from logical to physical
space and ensures load balancing across the disks. However,
when a disk in an array is replaced by a larger disk, the extra
space in the new disk is wasted since the number of stripe units
on this new disk cannot exceed the number of stripe units on
the smallest disk in the set. Another disadvantage of RAID
striping is that faster disks in the array are under-utilized, so
it is wasteful to add fast disks to a RAID array. Thus, RAID
striping is inefficient for an array of heterogeneous disks.

This paper proposes RAIDX, a new RAID technology for
disks with varying capacities and speeds. The design objectives
of RAIDX are to ensure that capacity of larger disks be
included in the array and to ensure that slower disks are not
bottlenecks. RAIDX has no stripe units, and it does not stripe
data across its disks. RAIDX bundles data across its disks.
A bundle need not span all disks of the array. Bundles are
composed of storage blocks called chunks, with at most one
chunk per disk. Chunks from a bundle need not be at identical
locations on each disk. The assignment of chunks to bundles
may be dynamically remapped. This feature of RAIDX is used
to balance the inherent imbalance of RAIDX disks. When a
disk becomes a bottleneck, most frequently used chunks from
the disk are dynamically remapped to an under-utilized, faster
disk. The remapping of bundles does not impact the file system
or its address mapping.

Prior papers on RAID for heterogeneous disks have con-
sidered various data organization schemes that balance load
and utilize faster disks efficiently. Several papers [1], [2]
have proposed organizing multiple levels of RAID; lower
RAID levels equalize the storage capacity of disks and higher
RAID level perform the redundancy. Some papers [3]–[5] have
proposed striping schemes for dissimilar sized disks. Recent
papers [6]–[9] have studied RAID for arrays consisting of
SSDs and HDDs - RAID is constructed on HDDs and a cache
is constructed on SSDs. Prior papers have all used striping.
We believe that we are the first to propose a non-striping
organization for heterogeneous arrays. In earlier work [10],
we proposed a chunk as the basic organizational block of
a RAIDX array. In this paper, we extend this mechanism
by bundling chunks of data across disks and developing a
dynamic assignment of chunks to bundles. Our experiments
show that RAIDX is faster than RAID when the array consists

1

of SSDs and HDDs.

II. RAIDX ARCHITECTURE

RAIDX disks are divided into equal sized chunks - the basic
storage unit. A RAIDX chunk is equivalent to a RAID stripe
unit. The number of chunks on a disk depends on its capacity.
Figure 1 shows a RAIDX array with 4 disks of unequal sizes;
disk 1 has 7 chunks, disks 2 and 4 have 4 chunks each, and
disk 3 has 5 chunks. Chunks are grouped into bundles. Each
bundle consists of at most 1 chunk from each disk of the array,
and bundles of an array have the same number of chunks. If a
disk has two chunks in a bundle, then the failure of that disk
would mean the loss of multiple pieces in a single-redundancy
bundle. In Figure 1, each bundle consists of 3 chunks; bundle
1 consists of the first chunk (labeled B1 : B1-1, B1-2, B1-
3) from disk 1 (B1-1), disk 3 (B1-2), disk 2 (B1-3); bundle
2 consists of chunks (labeled B2) from disk 1 (B2-1), disk 3
(B2-2), and disk 4 (B2-3), and so on. The label Bx-y represents
the yth chunk from bundle number x. A bundle is similar to a
stripe, but bundles and stripes are fundamentally different. The
number of chunks in a bundle may be less than the number of
disks in the array, chunks of a bundle need not be at identical
locations on each disk, and two bundles may contain chunks
located on different set of disks within the array. Figure 2
shows a RAIDX array with 2 chunks per bundle.

RAIDX allows two types of redundancy, namely, parity
and copy. In RAIDX-parity, each bundle contains a parity
chunk; thus, RAIDX-parity is similar to RAID5. Assume that
the RAIDX array of Figure 1 is RAIDX-parity with 3 chunks
in a bundle: the third chunk of each bundle could be the parity
chunk. In RAIDX-copy, each bundle consists of a chunk and
its mirror; thus, RAIDX-copy is similar to RAID10. Assume
that the RAIDX array of Figure 2 is RAIDX-copy: each bundle
consists of 2 identical chunks - a chunk and its mirror. There is
also RAIDX-zero which offers no redundancy and behaves like
a mixture of RAID0 (horizontal striping) and JBOD (vertical
striping) configurations.

For a RAIDX array, two input parameters are: 1) the size
of a chunk and 2) the number of chunks in a bundle. The
factors that determine the size of a stripe unit are relevant to
determining the size of a chunk. A chunk size could be 4KB,
8KB, 16KB, 64KB, 256KB, or greater (similar to selection of
stripe unit sizes).

The number of chunks in a bundle, bundle length L, could
be a minimum of 1 and a maximum of D, the number of disks
in the array. The allocation of chunks to bundles has more
options when the value of L is small. The smallest L value
depends on the redundancy level: for RAIDX-parity, L=3; for
RAIDX-copy, L=2; for RAIDX-zero, L=1. There are three
cases: L=1, L=D, 1 < L < D. Below, we discuss the three
cases.

The first case is 1 chunk per bundle (L=1). Here, the number
of bundles on each disk is equal to the number of chunks on
the disk (given by the disk’s size divided by chunk size). This
level of RAIDX has maximum capacity and no redundancy;
we call it RAIDX-zero. The number of bundles, B, in the array

is equal to the sum of number of chunks on all the disks. The
bundles may be numbered as follows: bundle 1 (B1-1) consists
of first chunk on disk 1, B2-1 consists of first chunk on disk
2, B3-1 consists of first chunk on disk 3, and so on.

The next case is D chunks per bundle (L=D) where D is the
number of disks in the array. Here, the number of bundles in
the array, B, is equal to the number of chunks on the smallest
disk. Each bundle consists of 1 chunk from each disk. If each
bundle consists of chunks at an identical location on each disk,
then RAIDX is similar to RAID.

The final, most common case is 1 < L < D: when the
bundle length is greater than 1 but less than the number
of disks in the array. There may be different strategies for
assigning chunks to bundles. A simple allocation strategy
that maximizes utilization of all disks is as follows: calculate
the maximum number of chunks for each disk (disk size
divided by chunk size). Initially, all chunks are unassigned
to any bundle. Bundle to chunk assignment: B1 is assigned
chunks from the L disks with greatest number of non-assigned
chunks; next B2 is assigned chunks from the L disks with
the greatest number of remaining unassigned chunks, and
so on, until there is no space for further complete bundle
assignment. For example, consider Figure 1 where L=3, and
Figure 2 where L=2. In Figure 1: B1 consists of chunks
from the three disks (D1, D2, D3) with maximum unassigned
chunks; B2 consists of chunks from the three disks (D1, D3,
D4) with the maximum remaining unassigned chunks, and so
on. In Figure 2: B1 consists of chunks from the disks with
the maximum number of unassigned chunks (D1, D3); B2
consists of chunks from the disks with the maximum number
of remaining unassigned chunks (D1, D2), and so on.

The number of bundles in an array, B, is inversely propor-
tional to the bundle length L. In Figure 1, B=6; in Figure 2,
B=10. Intuitively, the degree of parallelism seems directly pro-
portional to the bundle length, and L=D results in maximum
parallelism. Reconsider Figures 1 and 2: L=4 with chunks
bundled across all disks has parallelism of 4. However, L=2,
can also result in maximum parallelism depending on how
bundles are assigned to chunks. For example, suppose B1 is
assigned to chunks from D1, D2, and B2 is assigned to chunks
from D3, D4, and assignment continues in this manner. Thus,
the degree of parallelism is determined both by the bundle
length and the bundle allocation policy.

III. RAIDX LOOKUP TABLE

In RAID, stripe numbers are assigned to stripe units im-
plicitly: stripe 1 consists of the first stripe unit from each
disk, stripe 2 consists of the second stripe unit from each
disk, and stripe i consists of the ith stripe unit from each
disk. In RAIDX, bundle numbers are assigned to chunks by
a bundle allocation strategy, so a data structure that explicitly
maps bundle numbers to chunks is required. The chunks in
bundle i (Bi) are found by using a lookup table that maps
bundle numbers to disk numbers and to the chunk number
within the disk.

2

Fig. 1: Sample allocation of a 3 chunk per bundle array

Fig. 2: Sample allocation of 2 chunk per bundle array

Each disk has an associated array that maps chunk numbers
to bundle numbers. In Figure 1, disk 1’s lookup array, D1-
lookup is as follows: c[1]=1, c[2]=2, c[3]=3, c[4]=4, c[5]=5,
c[6]=6, c[7]=0. The last chunk of D1 is not assigned to
any bundle, so c[7] is set to 0. Disk 2’s lookup array, D2-
lookup, is as follows: c[1]=1, c[2]=3, c[3]=4, c[4]=6. Disk
3’s lookup array, D3-lookup, is as follows: c[1]=1, c[2]=2,
c[3]=3, c[4]=5, C[5]=6. Disk 4’s lookup array, D4-lookup, is
as follows: c[1]=2, c[2]=4, c[3]=5, c[4]=0.

At boot time, a bundle-lookup table (or RAIDX-lookup
table) is constructed from the disk-lookup arrays; a RAIDX-
lookup maps bundle numbers to chunk addresses. The
RAIDX-lookup associated with Figure 1 is explained here.
Bundle 1 is mapped to the first chunk in disks 1, 3, 2, so it
may be written as: b[1]=[(1,1),(3,1),(2,1)] where (1,1) refers to
disk 1, chunk 1; (2,1) refers to disk 2, chunk 1; (3,1) refers to
disk 3 chunk 1. Similarly, for bundle 2, b[2]=[(1,2),(3,2),(4,1)],
bundle 3, b[3]=[(1,3),(2,1),(3,3)], and so on.

Every request arriving at a RAIDX array is mapped to the
correct disk location via the lookup table which is sorted and
has a fixed size. Mapping request addresses to disk locations
can be done directly in RAID; address mapping in RAIDX
has a lookup overhead.

IV. PERFORMANCE TUNER

A RAIDX array is inherently unbalanced; the disks differ
in sizes and speeds. In RAIDX, data are bundled across the
heterogeneous disks of the array. A request that is bundled
across several disks is completed only when all its chunks are
read/written. A goal of RAIDX is to reduce mean response
time by balancing load across the disks.

A strategy to lower response time of a multiple server
system is the following: an arriving job should be directed
to a faster server if the system is idle; on the other hand,
an arriving job should be directed to an idle slower server if
the faster servers are busy. The problem with storage is that
requests can only be serviced from the disk on which the data
resides. A larger disk has more chunks and it is natural that it
will get a proportionally larger number of requests. Similarly,
slower disks will have more outstanding requests waiting in
the queue than faster disks.

The inherent variance in sizes and speeds of RAIDX disks
would result in unbalanced load with some disks being under
utilized while other disks are bottlenecks. The performance of
RAIDX would be closer to the performance of the bottleneck
disks. To prevent disk bottlenecks, the workload to the disks
must be unbalanced too - faster disks should get proportionally
more read/write requests. In RAIDX, we balance disk load
by unbalancing the RAIDX workload. Next, we explain how
RAIDX unbalances the workload.

Several papers [11]–[13] have shown that only a small per-
centage of storage space is accessed. Miranda and Cortes [12]
showed that in various popular traces, 90% of I/O requests
access less than 40% of the storage device. For some traces,
less than 0.05% of the storage device is accessed. EMC states
that up to 50% of allocated storage is unused [14]. This implies
that only a small percentage of storage data are accessed
frequently. If frequently accessed data are moved to under
utilized disks, then the performance would improve.

It should be noted that under utilized disks are not necessar-
ily the fastest disks. If all frequently accessed data are moved
to the faster disks, then they would become the bottleneck
when arrival rates increase. The workload is dynamic - the
arrival rates change during the day and the data access patterns
change during the day. The goal is to ensure that load is
balanced dynamically across disks. The RAIDX performance
tuner must address three issues: 1) tracking disk utilization, 2)
shuffling (moving) storage data between disks, and 3) tracking
frequently accessed chunks.

A. Disk utilization

Disk utilization is a measure of a disk’s busy time - the
proportion of busy time over total running time. If all the
disks of RAIDX contained identical data, then an arriving
request should be directed to the disk with no outstanding
requests or an SSD with a short queue. (The SSD is an order of
magnitude faster than the HDD, so an SSD with a short queue
of outstanding requests may service an arriving request faster
than an idle HDD.) To balance load, we require a measure
of the load at each disk when a request arrives at the array.

3

We estimate arrival instant disk utilization from arrival instant
queue lengths. Each time a request is submitted to RAIDX,
we record the number of outstanding requests at each disk and
compute a moving average of arrival instant queue lengths.

The disk with the greatest queue length is a bottleneck and
frequently accessed chunks from this disk should be moved to
disks with smaller queue lengths. If the average arrival instant
queue length of all disks is close to 0, then it is best to move
frequently accessed data to the fastest disk; if not, it is best to
move frequently accessed data to under utilized disks.

B. Shuffling chunks between disks

In RAIDX, each bundle spans L disks of the array. It is
possible that an entire bundle is frequently accessed; it is also
possible that a chunk in a bundle is frequently accessed. When
all the chunks of a bundle are frequently accessed, then the
entire bundle must be moved to under-utilized disks. When
a chunk is frequently accessed, only the chunk in the bundle
needs to be moved.

In RAID, storage blocks cannot be moved. It must be
handled at the file system level. Assume that this is not the
case. If data from one stripe is moved to another stripe, then
the new data address must be transmitted upward to the file
system, which updates the logical block numbers. Without this
update, the requests from file system would map to incorrect
disk blocks. Therefore, in RAID, data may not be moved from
one stripe to another stripe by the RAID controller. (Note that
a disk may remap physical blocks to other disk locations, since
this movement does not affect the logical block numbering.)

In RAIDX, however, it is possible to move storage data
without updating logical block numbers. RAIDX moves data
by moving the corresponding chunks and bundles where the
data are stored. When chunks and bundles are moved, the
only data structure that has to be updated is the RAIDX-
lookup table (and the associated disk-lookup arrays). Changing
the address of chunks and bundles does not impact the file
system’s logical block numbers since the file system maps to
the same bundle.

For example, Figure 3 is the RAIDX array of Figure 1 with
chunk B6-2 of bundle 6 (b[6]=[(1,6), (2,4),(3,5)]) moved to a
faster disk 4. This change would be updated in the RAIDX
lookup table as: b[6]=[(1,6),(4,4),(3,5)]. Suppose disk 1 is the
bottleneck and chunk B6-1 is frequently accessed; if disk 2
is under utilized, the chunk B6-1 on disk1 may be moved
onto disk 2, so that b[6]=[(2,4),(4,4),(3,5)]. The corresponding
changes are also made in the disk-lookup arrays.

Thus, RAIDX moves data between disks by shuffling chunk
addresses. The shuffling of chunks and bundles is an atomic
(all-or-nothing) operation. Initially, all disks in RAIDX will
have free (unallocated) chunks used as temporary chunks for
shuffling. A chunk may only be moved to an unused chunk.
This ensures atomicity as the chunk is not considered moved
until the lookup table is updated. The shuffling occurs during
RAIDX’s idle time. If a request arrives during shuffling, the
shuffling stops and the request is serviced.

Fig. 3: Disk array of Figure 1 with some chunks relocated.

C. Tracking chunk access frequency

The objective is to balance the imbalance of RAIDX hard-
ware. We achieve this by unbalancing the workload so that
more requests are serviced by faster disks. To do so, frequently
accessed chunks must be moved to faster disks, and less
frequently accessed chunks must be moved to larger, slower
disks. Thus, RAIDX must track the rates at which chunks are
accessed.

RAIDX uses the frequency of access of a chunk to de-
termine the chunk’s placement on disk. This is similar to
how cache replacement algorithms determine what data should
remain in cache and what data should be evicted. Cache
replacement policies such as LRU (Least Recently Used) and
LFU (Least Frequently Used) evict blocks from the cache.
RAIDX uses similar algorithms to determine chunk placement
on disk.

RAIDX tracks the Most Frequently Used (MFU) chunks of
the array. When there is a lull in array traffic, RAIDX starts
chunk shuffling by moving the most frequently accessed chunk
from a bottleneck disk to an under-utilized faster disk. If the
fast disk is full, then the least frequently used chunk on the
fast disk is swapped out. During chunk shuffling, the algorithm
must ensure that there is at most 1 chunk from a bundle on
each disk.

V. EXPERIMENTAL EVALUATION

The goal of our experimental evaluation is to compare the
performance of RAIDX against the performance of RAID.
Our implementation of RAIDX, shown in Figure 4, uses the
ZeroMQ framework [15], a high speed bus/network transmis-
sion protocol. ZeroMQ reduces the number of memory copies
and has a minimal packet header size, thereby lowering trans-
mission overhead. In Figure 4, our application, ZMQ-Device,
connects the virtual device to a raw block device. We created
ZMQ-RAIDX to combine multiple ZMQ-Devices together to
form a RAID. Our ZMQ-ToNBD application creates a virtual
device that can be mounted on a Linux filesystem. Each of the
ZMQ devices connects to a disk. The ZMQ RAIDX stores
the RAIDX-lookup table and the performance tuning data
structures. We used Multiple Device RAID (MD-RAID) [16]

4

Fig. 4: ZeroMQ RAIDX architecture: dashed arrows show
connections that can be either local or networked, solid arrows
are local connections

the Linux software RAID, as the experimental control RAID
platform.

Our first two experiments evaluate the overhead of lookup
tables in RAIDX. For these experiments, we did not run the
performance tuner in RAIDX. The disk array consists of two
disks where each disk is a copy of the other - for RAID the
redundancy is RAID1, for RAIDX the redundancy is RAIDX-
copy. The RAIDX configuration can be local or remote, where
local implies that storage and testing computer are in the
same box and remote implies that storage is on the network.
The RAIDX configuration can have storage cache activated
or disabled. Thus, we tested four RAIDX configurations: 1)
local with cache, 2) local with no cache, 3) remote with
cache, 4) remote with no cache. We tested only one RAID
configuration - local with cache activated. The workloads are
financial and websearch trace files [17]–[19]. Each workload
is executed on a disk array configuration (RAIDX - local with
cache, local with no cache, remote with cache, remote with
no cache; RAID - local with cache) and the time to complete
execution is noted. We ran each workload on a given disk
array configuration several times and found that the results
were statistically identical.

In the first experiment, we used two identical Samsung 850
EVO 250GB SSD disks. Figure 5 shows the results of our first
experiment with similar disks. The goal of this experiment is
to evaluate the performance slowdown caused by lookup tables
in RAIDX. Each bar graph plots RAIDX speedup: the time to
run a workload on RAID divided by the time to run the same
workload on RAIDX. A speedup of 1 is obtained when RAID
and RAIDX have similar times; a value less than 1 is obtained
when RAID is faster than RAIDX; a value greater than 1 is
obtained when RAID is slower than RAIDX. Our results show
that the overhead of lookup tables is not significant. The graph
shows that when RAIDX is remote, it is slightly faster than
RAID (which is always local); this result is surprising and we
conjecture that the superior remote RAIDX performance is a

Fig. 5: Speedup comparison between traditional RAID and
RAIDX when array has identical disks

Fig. 6: Speedup comparison between traditional RAID and
RAIDX when array has disks of varying speeds

result of storage computation being carried out on a separate
computer in remote RAIDX whereas storage and workload
computation are carried out on the same computer in local
RAID and local RAIDX.

For the next experiment, we used two disks, a 300GB
HDD and a 250GB SSD. The goal of this experiment is
to evaluate the overhead of RAIDX lookup tables without
the performance tuner. The results (see Figure 6) show that
RAIDX performed slightly better than RAID. The reason for
RAIDX’s performance edge is its queuing algorithm, which
determines which disk copy should service a read request:
when both disk queues are empty RAIDX selects the faster
disk while RAID randomly chooses either disk.

Our next experiment evaluates the impact of the perfor-
mance tuner in RAIDX. For this experiment, we used the same
hardware platform as the previous experiment with a 250GB
SSD and 300GB HDD disk. We removed redundancy from
the array, so the array is configured as RAID0 and RAIDX-
zero. Instead of using standard workload traces, we generated
a workload. We developed diskSpotcheck [20], a tool that
generates random I/O requests on the disks. DiskSpotcheck
mimics a multi-user system with various users using various
files; the random workload ensures that performance does
not include caching effects. The workload consists of write
requests, later followed by read requests to the written data.
With each each array configuration - RAID0 and RAIDX-zero
- we ran the workload four times. For each of the four runs, we
measured the total time to execute the workload. We generated
a total of three random workloads using diskSpotcheck with

5

Fig. 7: Comparing RAID0 to RAIDX-zero

different random seeds. Figure 7 plots the results of our
experiment. The X-axis specifies the four runs and the Y-
axis specifies the mean throughput (for the three workloads).
The 99% confidence interval is worst case ±0.006 for the
values in the figure. As expected, the run time is constant for
RAID. For RAIDX, however, the run time decreases since the
performance tuner executes between runs. The performance
tuner moves frequently accessed chunks to the faster disk. For
RAIDX, throughput increases with each run; there is a 2.5x
speedup after the second run.

VI. CONCLUSIONS

This paper develops RAIDX, a new RAID for heteroge-
neous arrays of disks with varying speeds, sizes, and tech-
nologies. RAIDX is unique in that it does not stripe data
across disks; RAIDX bundles data across disks. Bundles are
composed of chunks, with at most one chunk per disk. The
number of chunks per disk varies according to size. Therefore,
RAIDX incorporates the capacities of larger disks.

A novel feature of bundles is that chunks are dynamically
assigned to bundles. At boot time, a bundle may be assigned
chunks from disks, say 1, 2, 3, 4; at a later time, the same
bundle may be assigned chunks from disks, say 2, 4, 5, 6. This
dynamic assignment of chunks allows RAIDX to balance load
across disks and maximize performance. Frequently accessed
chunks are moved to faster disks on-the-fly, thereby ensuring
that there are no under-utilized disks nor bottleneck disks.

RAIDX provides two types of redundancy, namely RAIDX-
parity, which is similar to RAID5, and RAIDX-copy, which is
similar to RAID10. The goals of RAIDX are to provide redun-
dancy and parallelism of traditional RAID, and to provide the
access speeds of the faster disks in the array. Our experiments
suggest that RAIDX satisfies these goals. RAIDX is a suitable
technology for arrays composed of slower hard disks and faster
solid state disks.

RAIDX has a performance tuner that tracks chunk access
frequency and determines what chunks should be moved, when
they should be moved, and where they should be moved. Thus,
RAIDX has computational overhead and traffic overhead. The
movement of chunks between disks causes traffic at the disks.

We plan to study the overhead of RAIDX performance tuner.
Our preliminary implementation of the performance tuner uses
an approximate LFU algorithm. We plan to analyze alternative
algorithms for the performance tuner.

REFERENCES

[1] A. Thomasian, “Disk arrays with multiple RAID levels,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 5, pp. 6–24, 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2641364

[2] N. Jeremic, H. Parzyjegla, and G. Mühl, “Improving Random Write Per-
formance in Heterogeneous Erasure-Coded Drive Arrays by Offloading
Code Block Requests,” pp. 2007–2014, 2015.

[3] T. Cortes and J. Labarta, “A Case for Heterogenenous Disk Arrays,”
Proceedings of the IEEE International Conference on Cluster Computing
(Cluster’2000), pp. 319–325, 2000.

[4] J. L. Gonzalez and T. Cortes, “Adaptive Data Block Placement Based
on Deterministic Zones (AdaptiveZ),” pp. 1214–1232, 2007.

[5] M. D. Flouris and A. Bilas, “Violin: A framework for extensible block-
level storage,” Proceedings - Twenty -second IEEE/Thirteenth NASA
Goddard Conference on Mass Storage Systems and Technologies, no. i,
pp. 128–142, 2005.

[6] S. Im and D. Shin, “Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,” IEEE Transactions on Comput-
ers, vol. 60, no. 1, pp. 80–92, 2011.

[7] N. Jeremic, G. Mühl, A. Busse, and J. Richling, “The pitfalls
of deploying solid-state drive RAIDs,” in Proceedings of the
4th Annual International Conference on Systems and Storage
- SYSTOR ’11. ACM Press, 2011, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987816.1987835

[8] J. Ren and Q. Yang, “I-CASH: Intelligently coupled array of SSD and
HDD,” Proceedings - International Symposium on High-Performance
Computer Architecture, vol. 02881, pp. 278–289, 2011.

[9] A. Miranda and T. Cortes, “CRAID: Online RAID Upgrades Using
Dynamic Hot Data Reorganization,” Proceedings of the 12th USENIX
Conference on File and Storage Technologies, pp. 133–146, 2014.
[Online]. Available: http://blogs.usenix.org/conference/fast14/technical-
sessions/presentation/miranda

[10] A. Fekete and E. Varki, “RAID-X : RAID eXtended
for Heterogeneous Arrays,” in 30th International Conference
on Computers and Their Applications, 2015, pp. 157–162.
[Online]. Available: http://www.bandilabs.com/2015/03/12/cata-2015-
presentation-of-raid-x-raid-extended-for-heterogeneous-disks/

[11] T. Gibson, E. L. Miller, and D. D. E. Long, “Long-term File Activity
and Inter-Reference Patterns University of California,” International
Business, no. December, pp. 976–987, 1998.

[12] A. Miranda and T. Cortes, “Analyzing Long-Term Access Locality to
Find Ways to Improve Distributed Storage Systems,” Parallel, Dis-
tributed and Network-Based Processing (PDP), 2012 20th Euromicro
International Conference on, pp. 544–553, 2012.

[13] D. Roselli, J. Lorch, and T. Anderson, “A Comparison of
File System Workloads,” In Proceedings of the 2000 USENIX
Annual Technical Conference, pp. 41–54, 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.195

[14] EMC, “EMC VNX Virtual Provisioning,” Tech. Rep. December, 2013.
[15] “ZeroMQ,” 2015. [Online]. Available: http://www.zeromq.org
[16] G. Oxman, I. Molnar, and M. de Icaza, “The linux raid-1,-

4,-5 code,” Linux Journal, no. 44, 1997. [Online]. Available:
http://www.linuxjournal.com/article/2391

[17] J. Wan, J. Wang, Q. Yang, and C. Xie, “S2-RAID:
A new RAID architecture for fast data recovery,” Mass
Storage Systems and . . . , vol. c, 2010. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5496980

[18] S. Wu, D. Feng, H. Jiang, B. Mao, L. Zeng, and J. Chen, “JOR: A
journal-guided reconstruction optimization for RAID-structured storage
systems,” Proceedings of the International Conference on Parallel and
Distributed Systems - ICPADS, pp. 609–616, 2009.

[19] F. Ye, J. Chen, X. Fang, J. Li, and D. Feng, “A Regional Popularity-
Aware Cache Replacement Algorithm to Improve the Performance and
Lifetime of SSD-based Disk Cache,” pp. 45–53, 2015.

[20] A. Fekete, “diskSpotcheck,” 2016. [Online]. Available:
https://github.com/bandi13/diskSpotcheck

6

