
RAIDX: RAID without striping

András Fekete
University of New Hampshire

afekete@wildcats.unh.edu

Elizabeth Varki
University of New Hampshire

varki@cs.unh.edu

Abstract—Each disk of a RAID is logically divided into stripe
units, and stripe units at the same location on each disk form a
stripe. Thus, RAID striping forces homogeneity on its disks. Now,
consider a heterogeneous array of hard disks, solid state disks,
and RAM storage devices, with various access speeds and sizes.
If this array is organized as a RAID system, then larger disks
have wasted space and faster disks are under utilized. This paper
proposes RAIDX, a new organization for an heterogeneous array.
RAIDX disks are divided into chunks; larger disks have more
chunks. Chunks from one or more disks are grouped into bundles,
and RAIDX bundles data across its disks. The heterogeneity
of disks causes unbalanced load distribution with some under-
utilized disks and some bottleneck disks. To balance load across
disks, RAIDX unbalances its workload. RAIDX moves most
frequently access chunks to under-utilized, faster disks and least
frequently used chunks to larger, slower disks. Chunk remapping
is done at the RAIDX level and does not impact file system to
to storage addressing. Experiments show that RAIDX performs
more than 2.5x in a heterogeneous configuration after remapping
when compared to MD-RAID. RAIDX also shows 1.6x speed
improvements when trace files were executed across a network
compared to local MD-RAID. We also show a 30% speed boost
when the RAIDX array is accessed across a network. Using a
large array with 7 disks of assorted speeds, we also are able to
show a 7.7x improvement in bandwidth.

I. INTRODUCTION

RAID technology transforms an array of small, cheap disks
into a storage system with large capacity, low failure rate, and
high performance. The acronym, RAID, stands for Redundant
Array of Independent/Inexpensive Disks, but it could also
stand for Redundant Array of Identical Disks since RAID
configuration assumes that the disks have identical capacity
and speed. The performance of a parallel system is dependent
on the slowest component, so disk homogeneity allows for the
superior performance of RAID. However, the homogeneous
disk constraint limits the applicability of RAID. With the
establishment of Solid State Disks (SSDs), it would be useful
to put together a RAID consisting of expensive, fast SSDs
and the cheaper, slower disks. Moreover, when an old failed
disk is replaced by a larger disk, it would be advantageous
to incorporate the greater capacity and speed of the new disk.
This paper addresses the problem of integrating heterogeneous
disks into a RAID array.

In RAID, storage data are striped (distributed row-wise)
across all the disks in the array. A stripe unit is the smallest
block of addressable data. A stripe refers to all the stripe
units at the same location on each disk. When a file is stored
sequentially, the file’s data are written on consecutive stripes
spanning all disks. There are several RAID levels, which differ
in how data and redundancy are striped. Two common RAID

levels are RAID5 and RAID10. In RAID5, every stripe has
a parity stripe unit; in case a stripe unit is corrupted, the
corresponding parity stripe unit is used to regenerate the data.
In RAID10, data are striped across all the disks, and every
disk has a copy to protect against single disk failure.

A common feature in all RAID levels is that stripe units
from a stripe are at identical locations on each disk. This
feature facilitates quick mapping from logical to physical
space and ensures load balancing across the disks. However,
when a disk in an array is replaced by a larger disk, the extra
space in the new disk is wasted since the number of stripe units
on this new disk cannot exceed the number of stripe units on
the smallest disk in the set. Another disadvantage of RAID
striping is that faster disks in the array are under-utilized, so
it is wasteful to add fast disks to a RAID array. Thus, RAID
striping is inefficient for an array of heterogeneous disks.

This paper proposes RAIDX, a new RAID technology for
disks with varying capacities and speeds. A design objective of
RAIDX is to ensure that capacity of larger disks be included
in the array. RAID striping does not satisfy this objective
since each stripe includes a stripe unit from every disk in
the array; thus, every disk has the same number of stripe
units. Another design objective of RAIDX is to ensure that
slower disks are not the bottleneck. RAID striping does not
satisfy this objective either since stripes are distributed across
every disk and each disk has the same number of stripe units.
Consequently, faster disks would be under-utilized and slow
disks would become bottlenecks. RAIDX configuration must
allow larger disks to store more data while ensuring that
the speed of the array approaches the speed of faster disks.
Striping works when disks are homogeneous, so RAIDX does
not stripe.

RAIDX is fundamentally different from RAID: RAIDX has
no stripe units, and it does not stripe data across its disks.
RAIDX bundles data across its disks. A bundle need not span
all disks of the array. Bundles are composed of storage blocks
called chunks, with at most one chunk per disk. Chunks from
a bundle need not be at identical locations on each disk.
The assignment of chunks to bundles may be dynamically
remapped. This feature of RAIDX is used to balance the
inherent imbalance of RAIDX disks. When a disk becomes
a bottleneck, most frequently used chunks from the disk are
dynamically remapped to an under-utilized, faster disk. The
remapping of bundles does not impact the file system to
storage system address mapping. As such, RAIDX bundling
is designed for heterogeneous disks.

The contribution of this paper is the development of

1

RAIDX, a new organization designed for dissimilar disks.
The bundles in RAIDX efficiently incorporate larger disks
and faster disks. Prior papers on heterogeneous arrays [1]
used striping; we believe that we are the first to develop
a non-striping organization for heterogeneous arrays. Our
experimental evaluation shows that RAIDX outperforms MD-
RAID in a heterogeneous disk environment and performs on
par in with homogeneous disks. The overhead of RAIDX is
minimal, and is eclipsed by the benefit of a dynamic RAID
where combining different storage device types is a simple
possibility.

The rest of the paper is organized as follows: Section II
presents RAIDX architecture. Section IV explains the algo-
rithm for relocation of chunks. Section V-D discusses our tools
for testing heterogeneous arrays. Section V-E presents our
experimental results. Conclusions and plans for future work
are presented in Section VII.

II. RAIDX ARCHITECTURE

RAIDX disks are divided into equal sized chunks - the
smallest physical storage unit. A RAIDX chunk is equivalent
to a RAID stripe unit. The number of chunks on a disk depends
on its capacity. Figure 1 shows a RAIDX array with 4 disks
of unequal sizes; disk 1 has 7 chunks, disks 2 and 4 have 4
chunks each, and disk 3 has 5 chunks. Chunks are grouped
into bundles. Each bundle consists of at most 1 chunk from
each disk of the array, and bundles of an array have the same
number of chunks. In Figure 1, each bundle consists of 3
chunks; bundle 1 consists of the first chunk (labeled B1 :
B1-1, B1-2, B1-3) from disk 1 (B1-1), disk 3 (B1-2), disk 2
(B1-3); bundle 2 consists of chunks (labeled B2) from disk
1 (B2-1), disk 3 (B2-2), and disk 4 (B2-3), and so on. The
label Bx-y represents the yth chunk from bundle number x.
A bundle is equivalent to a stripe, but bundles and stripes are
fundamentally different. The number of chunks in a bundle
may be less than the number of disks in the array, chunks of
a bundle need not be at identical locations on each disk, and
two bundles may contain chunks located on different set of
disks within the array. Figure 2 shows a RAIDX array with 2
chunks per bundle.

RAIDX allows two types of redundancy, namely, parity
and copy. In RAIDX-parity, each bundle contains a parity
chunk; thus, RAIDX-parity is similar to RAID5. Assume that
the RAIDX array of Figure 1 is RAIDX-parity with 3 chunks
in a bundle: the third chunk of each bundle could be the parity
chunk. In RAIDX-copy, each bundle consists of a chunk and
its mirror; thus, RAIDX-copy is similar to RAID10. Assume
that the RAIDX array of Figure 2 is RAIDX-copy: each bundle
consists of 2 identical chunks - a chunk and its mirror.

For a RAIDX array, two input parameters are: 1) the size
of a chunk and 2) the number of chunks in a bundle. The
factors that determine the size of a stripe unit are relevant to
determining the size of a chunk. A chunk size could be 4KB,
8KB, 16KB, 64KB, 256KB, or greater (similar to selection of
stripe unit sizes).

The number of chunks in a bundle, bundle length L, could
be a minimum of 1 and a maximum of D, the number of disks
in the array. The allocation of chunks to bundles has more
options when the value of L is small. The smallest L value
depends on the redundancy level: for RAIDX-parity, L=3; for
RAIDX-copy, L=2; for RAIDX-zero, L=1. There are three
cases: L=1, L=D, 1 < L < D. Below, we discuss the three
cases.

The special case is 1 chunk per bundle (L=1). Here, the
number of bundles on each disk is equal to the number of
chunks on the disk (given by the disk’s size divided by chunk
size). This level of RAIDX has maximum capacity and no
redundancy; we call it RAIDX-zero after RAID0 (striping, no
redundancy). The number of bundles, B, in the array is equal
to the sum of number of chunks on all the disks. The bundles
may be numbered as follows: bundle 1 (B1-1) consists of first
chunk on disk 1, B2-1 consists of first chunk on disk 2, B3-1
consists of first chunk on disk 3, and so on.

The next case is D chunks per bundle (L=D) where D is the
number of disks in the array. Here, the number of bundles in
the array, B, is equal to the number of chunks on the smallest
disk. Each bundle consists of 1 chunk from each disk. If each
bundle consists of chunks at an identical location on each disk,
then RAIDX is similar to RAID.

The final but most common case is 1 < L < D: when
the bundle length is greater than 1 but less than the number
of disks in the array. There may be different strategies for
assigning chunks to bundles. A simple allocation strategy that
maximizes utilization of all disks is as follows: calculate the
maximum number of chunks for each disk (disk size divided
by chunk size minus the number of chunks the lookup table
occupies). Initially, all chunks are not assigned to any bundle.
Bundle to chunk assignment: B1 is assigned chunks from the
L disks with greatest number of non-assigned chunks; next B2
is assigned chunks from the L disks with the greatest number
of remaining unassigned chunks, and so on, until there is no
space for further complete bundle assignment. For example,
consider Figure 1 where L=3, and Figure 2 where L=2. In
Figure 1: B1 consists of chunks from the three disks (D1,
D2, D3) with maximum unassigned chunks; B2 consists of
chunks from the three disks (D1, D3, D4) with the maximum
remaining unassigned chunks, and so on. In Figure 2: B1
consists of chunks from the disks with the maximum number
of unassigned chunks (D1, D3); B2 consists of chunks from
the disks with the maximum number of remaining unassigned
chunks (D1, D2), and so on.

The number of bundles in an array, B, is inversely propor-
tional to the bundle length L. In Figure 1, B=6; in Figure 2,
B=10. Intuitively, the degree of parallelism seems directly pro-
portional to the bundle length, and L=D results in maximum
parallelism. Reconsider Figures 1 and 2: L=4 with chunks
bundled across all disks has parallelism of 4. However, L=2,
can also result in maximum parallelism depending on how
bundles are assigned to chunks. For example, suppose B1 is
assigned to chunks from D1, D2, and B2 is assigned to chunks
from D3, D4, and assignment continues in this manner. This

2

Fig. 1: Sample allocation of a 3 chunk per bundle array

Fig. 2: Sample allocation of 2 chunk per bundle array

degree of parallelism is determined both by the bundle length
and the bundle allocation policy.

The redundancy level of RAIDX-copy depends on the
bundle length L. L=2 gives a single disk redundancy whereas
L=3 gives dual disk redundancy, and so on. For RAIDX-parity,
the larger the bundle length L, the lesser the disk space wasted
by parity and the longer the rebuild process upon single disk
failure. This can be illustrated by 10 disks of identical size. If
L=3 (the minimum necessary for RAIDX-parity), then 1/3rd
of the total storage space is used for parity but only L-1=2
disks need to be read during the rebuild process. Now consider
L=10: only 1/10th of the storage space is used by parity, but
L-1=9 disks have to be read during the rebuild process.

III. RAIDX LOOKUP TABLE

In RAID, stripe numbers are assigned to stripe units im-
plicitly: stripe 1 consists of the first stripe unit from each
disk, stripe 2 consists of the second stripe unit from each
disk, and stripe i consists of the ith stripe unit from each
disk. In RAIDX, bundle numbers are assigned to chunks by
a bundle allocation strategy, so a data structure that explicitly
maps bundle numbers to chunks is required. The chunks in
bundle i (Bi) are found by using a lookup table that maps
bundle numbers to disk numbers and to the chunk number
within the disk.

Each disk has an associated array that maps chunk numbers
to bundle numbers. In Figure 1, disk 1’s lookup array, D1-
lookup is as follows: c[1]=1, c[2]=2, c[3]=3, c[4]=4, c[5]=5,
c[6]=6, c[7]=0. The last chunk of D1 is not assigned to
any bundle, so c[7] is set to 0. Disk 2’s lookup array, D2-
lookup, is as follows: c[1]=1, c[2]=3, c[3]=4, c[4]=6. Disk
3’s lookup array, D3-lookup, is as follows: c[1]=1, c[2]=2,
c[3]=3, c[4]=5, C[5]=6. Disk 4’s lookup array, D4-lookup, is
as follows: c[1]=2, c[2]=4, c[3]=5, c[4]=0.

At boot time, a bundle-lookup table (or RAIDX-lookup
table) is constructed from the disk-lookup arrays; a RAIDX-
lookup maps bundle numbers to chunk addresses. The
RAIDX-lookup associated with Figure 1 is explained here.
Bundle 1 is mapped to the first chunk in disks 1, 3, 2, so it
may be written as: b[1]=[(1,1),(3,1),(2,1)] where (1,1) refers to
disk 1, chunk 1; (2,1) refers to disk 2, chunk 1; (3,1) refers to
disk 3 chunk 1. Similarly, for bundle 2, b[2]=[(1,2),(3,2),(4,1)],
bundle 3, b[3]=[(1,3),(2,1),(3,3)], and so on.

Every request arriving at a RAIDX array is mapped to the
correct disk location via the lookup table. Mapping request
addresses to disk locations can be done directly in RAID;
address mapping in RAIDX has a lookup overhead.

IV. PERFORMANCE TUNER

A RAIDX array is inherently unbalanced; the disks differ
in sizes and speeds. In RAIDX, data are bundled across the
heterogeneous disks of the array. A request that is bundled
across several disks is completed only when all its chunks are
read/written. A goal of RAIDX is to maximize performance
by balancing load across the disks.

The objective is to minimize the average response time
of a RAIDX array. A strategy to lower response time of a
multiple server system is the following: an arriving job should
be directed to a faster server if the system is idle; on the other
hand, an arriving job should be directed to an idle slower
server if the faster servers are busy. The problem with storage
is that requests can only be serviced from the disk on which the
data resides. A larger disk has more chunks and it is natural
that it will get a proportionally larger number of requests.
Similarly, slower disks will have more outstanding requests
waiting in the queue than faster disks.

The inherent variance in sizes and speeds of RAIDX disks
would result in unbalanced load with some disks being under
utilized while other disks are bottlenecks. The performance of
RAIDX would be closer to the performance of the bottleneck
disks. To prevent disk bottlenecks, the workload to the disks
must be unbalanced too - faster disks should get proportionally
more read/write requests. In RAIDX, we balance disk load
by unbalancing the RAIDX workload. Next, we explain how
RAIDX unbalances the workload.

Several papers [2]–[4] have shown that only a small per-
centage of storage space is accessed. Miranda and Cortes [3]
showed that in various popular traces, 90% of I/O requests
access less than 40% of the storage device. For some traces,
less than 0.05% of the storage device is accessed. EMC states
that up to 50% of allocated storage is unused [5]. This implies

3

that only a small percentage of storage data are accessed
frequently. If frequently accessed data are moved to under
utilized disks, then the performance would improve.

It should be noted that under utilized disks are not necessar-
ily the fastest disks. If all frequently accessed data are moved
to the faster disks, then they would become the bottleneck
when arrival rates increase. The workload is dynamic - the
arrival rates change during the day and the data access patterns
change during the day. The goal is to ensure that load is
balanced dynamically across disks. The RAIDX performance
tuner must address three issues: 1) tracking disk utilization, 2)
shuffling (moving) storage data between disks, and 3) tracking
frequently accessed chunks.

A. Disk utilization

Disk utilization is a measure of a disk’s busy time - the
proportion of busy time over total running time. If all the
disks of RAIDX contained identical data, then an arriving
request should be directed to the disk with no outstanding
requests or an SSD with a short queue. (The SSD is an order of
magnitude faster than the HDD, so an SSD with a short queue
of outstanding requests may service an arriving request faster
than an idle HDD.) To balance load, we require a measure
of the load at each disk when a request arrives at the array.
We estimate arrival instant disk utilization from arrival instant
queue lengths. Each time a request is submitted to RAIDX,
we record the number of outstanding requests at each disk and
compute a moving average of arrival instant queue lengths.

The disk with the greatest queue length is a bottleneck and
frequently accessed chunks from this disk should be moved to
disks with smaller queue lengths. If the average arrival instant
queue length of all disks is close to 0, then it is best to move
frequently accessed data to the fastest disk; if not, it is best to
move frequently accessed data to under utilized disks.

It may be that the arrival queue length is equal among all
disks. This happens when requests are small and don’t require
the use of all the disks. In this case, we use the estimated
disk speeds by observing the size of the request divided by
the amount of time the request takes to finish. We look at
reads and writes separately as SSDs have a much faster read,
but may not exhibit a significantly faster write because of the
large memory caches placed on HDDs.

B. Shuffling chunks between disks

In RAIDX, data are bundled across disks. Each bundle spans
L disks of the array. It is possible that an entire bundle is
frequently accessed; it is also possible that a chunk in a bundle
is frequently accessed. When all the chunks of a bundle are
frequently accessed, then the entire bundle must be moved
to under-utilized disks. When a chunk is frequently accessed,
only the chunk in the bundle needs to be moved.

In RAID, storage blocks cannot be moved. It must be
handled at the file system level. Assume that this is not the
case. If data from one stripe is moved to another stripe, then
the new data address must be transmitted upward to the file
system, which updates the logical block numbers. Without this

Fig. 3: Example movement of chunks on the 3 disk array

update, the requests from file system would map to incorrect
disk blocks. Therefore, in RAID, data may not be moved
from one stripe to another stripe by the RAID controller.
(Note that a disk may remap a physical blocks to another
disk location, since this movement does not affect the logical
block numbering.)

In RAIDX, however, it is possible to move storage data
without updating logical block numbers. RAIDX moves data
by moving the corresponding “chunks” and “bundles” where
the data are stored. When chunks and bundles are moved,
the only data structure that has to be updated is the RAIDX-
lookup table (and the associated disk-lookup arrays). Changing
the address of chunks and bundles does not impact the file
system’s logical block numbers since the file system maps to
the same bundle.

For example, Figure 3 is the RAIDX array of Figure 1 with
chunk B6-2 of bundle 6 (b[6]=[(1,6), (2,4),(3,5)]) moved to a
faster disk 4. This change would be updated in the RAIDX
lookup table as: b[6]=[(1,6),(4,4),(3,5)]. Suppose disk 1 is the
bottleneck and chunk B6-1 is frequently accessed; if disk 2
is under utilized, the chunk B6-1 on disk1 may be moved
onto disk 2, so that b[6]=[(2,4),(4,4),(3,5)]. The corresponding
changes are also made in the disk-lookup arrays.

Thus, RAIDX moves data between disks by shuffling chunk
addresses. The shuffling of chunks and bundles is an atomic
(all-or-nothing) operation. Initially, all disks in RAIDX will
have free (unallocated) chunks used as temporary chunks for
shuffling. A chunk may only be moved to an unused chunk.
This ensures atomicity as the chunk is not considered moved
until the lookup table is updated. The shuffling occurs during
RAIDX’s idle time. If a request arrives during shuffling, the
shuffling stops and the request is serviced.

C. Tracking chunk access frequency

The objective is to balance the imbalance of RAIDX hard-
ware. We achieve this by unbalancing the workload so that
more requests are serviced by faster disks. To do so, frequently
accessed chunks must be moved to faster disks, and less
frequently accessed chunks must be moved to larger, slower
disks. Thus, RAIDX must track the rates at which chunks are
accessed.

4

Fig. 4: ZeroMQ RAIDX architecture: dashed arrows show
connections that can be either local or networked, solid arrows
are local connections

RAIDX uses the frequency of access of a chunk to de-
termine the chunk’s placement on disk. This is similar to
how cache replacement algorithms determine what data should
remain in cache and what data should be evicted. Cache
replacement policies such as LRU (Least Recently Used) and
LFU (Least Frequently Used) evict blocks from the cache.
RAIDX uses similar algorithms to determine chunk placement
on disk.

RAIDX tracks the Most Frequently Used (MFU) chunks of
the array. When there is a lull in array traffic, RAIDX starts
chunk shuffling by moving the most frequently accessed chunk
from a bottleneck disk to an under-utilized faster disk. If the
fast disk is full, then the least frequently used chunk on the
fast disk is swapped out. During chunk shuffling, the algorithm
must ensure that there is at most 1 chunk from a bundle on
each disk.

V. EXPERIMENTAL EVALUATION

Our implementation of RAIDX, shown in Figure 4, uses
the ZeroMQ framework [6], a high speed bus/network trans-
mission protocol. ZeroMQ reduces the number of memory
copies, thereby lowering transmission overhead. ZeroMQ has
been successfully used for forecasting stock prices [7] and
distributed data storage systems [8]. In Figure 4, ZMQ-Device
is our application to connect a raw block device. We created
ZMQ-RAIDX to combine multiple ZMQ-Devices together to
form a RAID. Our ZMQ-ToNBD application creates a virtual
device that can be mounted on a Linux filesystem. For testing
bandwidth, we connected a ZMQ Device to a ZMQ Virtual
Device directly; Table I presents our results. When testing the
ZMQRAIDX framework, using a single device we found that
in the worst case there was a 76% utilization of a gigabit
network using a RAM drive.

Each of the ZMQ devices connects to a disk. The ZMQ
RAIDX stores the RAIDX-lookup table and the performance
tuning data structures. We use MD-RAID, the Linux software
RAID, as the RAID platform to compare against.

TABLE I: ZeroMQ bandwidths

Connection Buffered Unbuffered
IPC 65.56MB/s 60.03MB/s
Net-Local 64.56MB/s 60.15MB/s
Net-Remote 57.17MB/s 52.82MB/s

A. Performance tuner implementation

The data structures and outline of the performance tuner,
which balances workload across the unbalanced disks, is
presented in the previous section. Here, we present imple-
mentation details. For this first version, we implemented an
approximate LFU algorithm for estimating the most frequently
used chunks and the least frequently used chunks on a disk.
There are two separate lookup tables in RAIDX: one on disk
and one in RAM. Both tables are relatively small compared
to the size of the storage. The performance tuner is only
called when the system is idle. To help the system get up
and running, it will create additional reads to better estimate
disk speeds. Note, this only happens if the system is idle.
In our experiments, we find that a more accurate the mea-
surement of the disk speeds gives a significant improvement
to initial movement of chunks. This eliminates many of the
chunk moves that may have been moved to disks that had a
performance boost due to caching or moved from disks that
had a performance loss due to disk spinup.

The performance tuner periodically runs a disk scrub, since
deterministic disk scrubbing is the most efficient and reliable
method to avoid unrecoverable sector errors [9]. In addition
to disk scrubbing, the performance tuner flushes dirty caches
to disk.

Most of the workload in the performance tuner is in the
movement of chunks based on average access interval. Each
section of the performance tuner is timed, and if it has been
running for more than 50 milliseconds, we check to make
sure there aren’t any outstanding system requests for data. If
there is an outstanding request, then it is executed and the
performance tuner is called 1 second after the last request has
completed. Otherwise if there are no outstanding requests, the
performance tuner is called again.

The disks are grouped by speed and average queue length
into disk groups. Each disk group contains L disks. The
shuffling algorithm, which moves chunks between disks, is
activated during lull periods. The shuffling algorithm pops an
arbitrary element from the MFU set. It recalculates what the
average access interval would be if it were accessed. If this
interval is appropriate for the disk group that it is in, then
the next element on the MFU set is popped. When a MFU
element is in a slower disk group, then it is moved onto the
appropriate faster disk group. If there is no free chunk in a
faster disk group, then the least frequently accessed chunk is
selected from a subset of all chunks on a disk in the group to
be moved to a slower disk group. There is no need to find the
absolute least frequently accessed chunk because it may vary
as the system is being used. An approximate chunk selection
yields a fast routine while the chunk layout approaches the

5

optimal layout.

B. Lookup table implementation

RAIDX has the stripes dynamically assigned, and those
locations need to be stored, thus compared to traditional RAID,
RAIDX requires a lookup table. A concern may be that this
gives unpredictability in the system requirements for the array.
However, the memory required to store the table is a simple
equation:

memoryRequired =
15 ∗ totalPhysicalStorage

chunkSize

Chunks need to store 4 things: 1) the disk it is on; 2) the
offset it’s located at on the disk; 3) the last access time; and
4) the average access interval. The number 15 is the size of a
chunk data structure. Each chunk entry comprises of an 8byte
chunk offset on the disk, 4byte previous access time, 2byte
average access interval, and 1byte disk ID. A 64bit chunk
offset will be sufficient to support a 2048 petabyte array. The
previous access time is stored as a C++ std::chrono::timepoint
using a 32bit container, which is sufficient to store time at a
resolution of minutes. The average access interval is a simple
16 bit integer which stores the average time between updates
to the last access time. The larger the interval, the less often the
chunk is accessed. When the average access interval changes
by a significant amount, the chunk ID is placed in an unsorted
set so that during the next cycle of the performance tuner will
move the chunk to a faster disk. At boot time, this unsorted
set will be empty. As chunks are accessed, the set is updated.

Upon initialization for each chunk entry, the offset field is
populated based on the location of the chunk and the last
access time is set to the current time. The other two fields are
left as the maximum value for the field.

The selection of a chunk size is similar to that of traditional
RAID. The smaller chunk size creates more chunks which is
better for systems with smaller files but slower for larger files.
Larger chunk sizes also require less RAM to store the lookup
table. The smallest chunk size is 4KB. Many filesystems use
this as the minimum as well because the sector size of a drive
has been set at 4KB since 2011 [10]. In the worst case with
4KB chunk sizes, using the equation above, the largest lookup
table will be only 0.36% of the total physical storage space.

The lookup table will be stored on the physical storage and
loaded in to RAM upon startup. Each drive stores only the
information about those chunks that are stored on the device.
There is no advantage to the knowledge of chunks on other
disks. In the event of a drive failure, or disks missing on
initialization, the knowledge of which disks had a particular
chunk offer no utility in reconstructing the array. The lookup
table stored in RAM will have the chunks and bundles in
an array so lookup is an O(1) operation. Once the array is
assembled in RAM, there is no addition or removal of bundles
in the course of normal operation.

We store an array of free chunk locations for each disk. This
helps determine which disks can store chunks. The system
overall will only have as many free chunks as there are disks

in the system. Over time, the free chunks tend to be on the
slowest disks in the array. Since chunks are only a couple
kilobytes in size, this is also not a major waste of space.

C. Disk caching

Using ZeroMQ allows the connection to be across a network
that is transparent to the running program. The remote address
gives a clue as to the type of connection to be used. We use
inter-process and network connections. When a ZMQ-Device
is across a network, we needed a cache to reduce the amount
of data traveling over the ethernet. For this, we implemented
a simple LRU cache mechanism. When there’s a cache miss
for a particular chunk, the least recently used chunk is flushed
and is replaced with the missing chunk.

All the previous knowledge about LRU caching applies and
is very much load dependent whether the cache enhances
performance or detracts from it. In the case of a load with
random unique requests, the cache will be a hindrance. How-
ever, as discussed in prior sections, it has been shown that
most disk accesses occur to a small subsection of the physical
storage space. Therefore, having a cache is likely to improve
the system speed.

D. Device Testing

The goal of our experimental evaluation is to compare the
performance of RAIDX against the performance of RAID. In
our first experiment, we use two Samsung 850 EVO 250GB
SSD homogeneous disks, and compare RAID against RAIDX.
In this experiment, we do not perform performance tuning
(shuffling of chunks) since the disks are homogeneous. The
goal of this experiment is to estimate the overhead of lookup
tables in RAIDX. We expect RAID to perform better than
RAIDX.

The workloads used for our experimental evaluations are
financial and websearch trace files [11]–[14]. In order to
understand the workloads, we generated statistics shown in
table II. We also looked at the sizes of the transactions in the
traces (see figure 5). This shows what kind of performance
can be expected with varying chunk sizes. On average, the
transactions were 5-30Kib in size. The WebSearch traces
showed an interesting pattern to the reads. There were some
outliers in each of the plots which we omitted for the sake of
clarity in the figures.

To replay these trace files, we created our own replayer [15].
This collects the statistics of the trace as well as can replay
the trace as it was recorded or at maximum speed where the
delay between transactions is ignored. We use the maximum
speed to see what the bandwidth of the device is. The replayer
can also run a limited range of transactions to be able to add
custom delays. Since RAIDX has a performance tuning that
only runs at idle times, the intention was that custom delays
would be added, but we found no difference between custom
delays versus rerunning the same trace file multiple times.

In addition to trace files, we developed diskSpotcheck [16],
a tool that generates random I/O on the disks; a random
workload allows us to evaluate RAID and RAIDX without

6

TABLE II: Statistics of SPC trace files

Trace Name Run time Read % Transactions TX/sec Read size Write size Min. disk size ASUs
Financial1 12h 8m 23.16 5334987 122.05 2715.67MB 14918.69MB 29.319GB 23
Financial2 11h 23m 82.345 3699195 90.24 6778.685MB 1860.74MB 0.02GB 18
WebSearch1 0h 52m 99.98 1055448 334.92 15608.88MB 1.78MB 0.163GB 5
WebSearch2 4h 16m 99.978 4579809 297.47 67394.82MB 7.83MB 0.163GB 5

Fig. 5: Size of transactions in SPC trace files

effects of caching. The tool uses a predetermined random seed
to generate pseudo-random values for the offsets and data to
write. The benefit of using a pseudo-random number generator
is to create arbitrarily large transactions that can be verified
as correctly written. This tool is device agnostic, meaning that
it can be used on any kind of block device. Other tools such
as fio [17] are very advanced and can execute a variety of
workloads, but it doesn’t verify that the contents are correctly
written. In particular, we want to ensure that different offsets
are not overlapping in our RAIDX.

This program is intended to mimic the access to a multi-
user system as each user has their own files which will be in
different locations on the disk. DiskSpotcheck also attempts
to minimize the utility of caching by purposely making disk
transactions that are highly random. This tool also forces the
system to drop caches and performs a flush of the buffers after
all writes have been issued. The total time to execute all the
writes and readback verification is measured. The tests run 3
different times with a different random seed each time. The
average of the 3 times is what is used to compare different
block devices and configurations.

E. Results

Figure 6 shows the results of our first experiment with
similar disks. The goal of this experiment is to evaluate the
peformance slowdown caused by lokup tables in RAIDX.
Each bar graph plots RAID/RAIDX speedup: the time to
run a workload on RAID divided by the time to run the
same workload on RAIDX. A speedup of 1 is obtained when
RAID and RAIDX have similar times; a value less than 1 is
obtained when RAID is faster than RAIDX; a value greater
than 1 is obtained when RAID is slower than RAIDX. The
performances of RAID and RAIDX are comparable when the
disks are identical. Our results show that the overhead of
lookup tables is not significant.

Using MD-RAID on a local set of disks, we ran the same
experiments using RAIDX on local and remote disks. Remote
disks were achieved using ZeroMQ over a gigabit LAN to a
separate server using a Dell Vostro 420 system. The system
with the disks was a Dell PowerEdge 2900. The cache refers
to whether the LRU cache of the ZMQ virtual device was
enabled. The speedups in figures 6 and 7 are all in relation to
the MD-RAID.

7

Fig. 6: Speedup comparison between traditional RAID and
RAIDX on identical disks

1) General RAID performance: In figure 6 the experiment
was to compare the performance of RAIDX to MD-RAID
on a homogeneous system using mirroring. MD-RAID was
configured for a two disk mirror using two SSDs. RAIDX
was set for RAIDX-copy using the same two SSDs. This
experiment gives us the baseline performance of the two types
of RAID. In the figure, we see that when the disks are local
RAIDX is nearly identical in performance to MD-RAIDX.
An unexpected result is that when the disks were accessed
remotely, there was a significant speedup in performance. Our
hypothesis is that the load of executing the trace file and
retrieving the data is akin to having a separate hardware take
care of the RAID.

The next experiment involved similar size disks, but differ-
ent architectures. We used a 300GB HDD and a 250GB SSD.
Figure 7 shows the results. Again, RAIDX performed on par
with MD-RAID if not a slight bit better. This experiment is
concentrating on the queuing systems for deciding which disk
in the mirror the transaction should be scheduled onto. MD-
RAID just uses the disk that is idle. RAIDX does this as well,
but if there are no idle disks, it will queue all the transactions
so that as soon as a disk is ready, it will have a task to execute.
The key difference is that RAIDX takes into consideration
the disk speeds as well as the queue lengths when deciding
which mirror to put the transaction on. MD-RAID on the
other hand keeps these queue lengths equal. Remote RAID
showed an improvement again, but caching actually worsened
performance. Perhaps a cache size of 200MB is not large
enough to keep the most accessed blocks in the cache.

2) Performance tuner testing: We tested RAIDX-zero to
determine the efficacy of the performance tuner algorithm. Fig-
ure 8 shows that using the same 250GB SSD and 300GB HDD
as before, after about the 2nd iteration of the diskSpotcheck
utility, the most frequently used chunks have been optimized
across the disks. We were able to achieve over 2.5x speed
gains by this kind of reorganization.

Figure 9 shows our performance tuner in a situation involv-
ing more than just two disks. We assembled a large array
consisting of four 250GB SSDs, an assorted set of HDDs
which ranged in size from 74GB to 1TB, and lastly a 600MB
RAM disk. The RAM disk was simply a piece of system RAM

Fig. 7: Speedup comparison between traditional RAID and
RAIDX on different speed disks

Fig. 8: Comparing MD-RAID to RAIDX-zero

mounted as a block device. We can see that already after the
first iteration, the chunks have moved to the optimal location
giving a 7.7x improvement in disk performance.

3) Filesystem testing: Using a single server with 7 disks
and a RAM drive, we tested the speedup of a RAIDX array.
Using buffered I/O, we were able to achieve a significant
speedup after the first pass of performance tuning. Subsequent
tuning only gave marginal speed improvements. Testing was
done on the array by measuring the time it took to create a

Fig. 9: Speed of data access and performance tuning time of
a 7 disk RAIDX array

8

filesystem and copying 1GB of data to the drive. This took
on average 35 seconds. After the tuning completed, the same
process took only 21 seconds on average.

To test the read performance, we took the test procedure
above and followed it by measuring the time it took to copy
from the RAIDX array all the files. The reads took on average
20 seconds to complete.

Even in a HDD-only system we were able to get a speed
boost by distributing the frequently accessed chunks on the
faster disks. We then recorded the amount of time it took
to retrieve 3GB of data on the array before (87 seconds) and
after tuning (61 seconds). 30% performance improvement was
achieved after a single performance tuning. We find that the
larger the diversity in speed, the greater the speedup after
tuning.

VI. RELATED WORK

Research into heterogenous RAID has focused on multi-
level RAID [18]–[20], RAID reconstruction [11], parity cod-
ing [21], [22], and striping on different sized disks [1].
Recently, research has focused on RAID for SSDs [23], [24].
When storage consists of SSDs and HDDs, the RAID is
constructed on HDDs and SSDs are treated as caches [25]–
[27].

CRAID [28] is an implementation of a RAID array which
moves blocks that are more frequently accessed onto a small
cache partition on the disks in the array. When a new disk is
added to the array, the RAID needs to be reorganized and all
accesses are restricted to the cache partition.

Others have used chunk migration strategies to reduce the
number of spinning disks in the array to increase energy
efficiency. An example is ThinRAID [29], which concentrates
the RAID on a subset of disks and then spins down the
rest. When there is a heavy load predicted, the chunks are
moved to the unused disks to speed up I/O with added
parallelism. It is shown to have a 15-27% energy savings.
EERAID [30] is another method which spins down one disk
and uses redundancy to reproduce it during disk access. In
RAID5, this means calculating the parity based on the other
blocks. In EERAID, there is up to a 30% energy savings while
using mirroring and 11% for a single parity RAID.

Prior work treats SSDs as caches. We are the first to move
frequently accessed areas of the array to faster disks without
the use of a cache device. Dynamic bundling is a new concept
that allows a RAIDX array to match the system hardware with
the data access patterns of the device.

This paper extends prior work on heterogeneous disks.
Similar to prior work [31], [32], we try to balance the load
across the disks in the array. Unlike the prior work which
is constrained to a single system using a single program, we
split up the system into smaller pieces so that each piece only
handles one particular task, but it handles it well. We also
improve on this work by introducing the performance tuning
algorithm. The work in [32] concentrates on determining the
best write scheduling policy for a heterogeneous disk system.

VII. CONCLUSIONS

This paper develops RAIDX, a new RAID for heteroge-
neous arrays of disks with varying speeds, sizes, and tech-
nologies. RAIDX is unique in that it does not stripe data
across disks; RAIDX bundles data across disks. Bundles are
composed of chunks, with at most one chunk per disk. The
number of chunks per disk varies according to size. Therefore,
RAIDX incorporates the capacities of larger disks.

A novel feature of bundles is that chunks are dynamically
assigned to bundles. At boot time, a bundle may be assigned
chunks from disks, say 1, 2, 3, 4; at a later time, the same
bundle may be assigned chunks from disks, say 2, 4, 5, 6. This
dynamic assignment of bundles allows RAIDX to balance load
across disks and maximize performance. Frequently accessed
chunks are moved to faster disks on-the-fly, thereby ensuring
that there are no under-utilized disks nor bottleneck disks.

RAIDX provides two types of redundancy, namely RAIDX-
parity, which is similar to RAID5, and RAIDX-copy, which is
similar to RAID10. The goals of RAIDX are to provide redun-
dancy and parallelism of traditional RAID, and to provide the
access speeds of the faster disks in the array. Our experiments
suggest that RAIDX satisfies these goals. RAIDX is a suitable
technology for arrays composed of slower hard disks and faster
solid state disks.

RAIDX has a performance tuner that tracks chunk access
frequency and determines what chunks should be moved, when
they should be moved, and where they should be moved. Thus,
RAIDX has computational overhead and traffic overhead. The
movement of chunks between disks causes traffic at the disks.
We plan to study the overhead of RAIDX performance tuner.
Our preliminary implementation of the performance tuner uses
an approximate LFU algorithm. We plan to analyze alternative
algorithms for the performance tuner.

In the future, we hope that we can propose a solution to
the write hole problem in RAID by having RAIDX perform
an automatic copy on write of a chunk. For this, we anticipate
having to create a journaling mechanism to ensure that all
writes are correctly performed.

REFERENCES

[1] T. Cortes and J. Labarta, “A Case for Heterogenenous Disk Arrays,”
Proceedings of the IEEE International Conference on Cluster Computing
(Cluster’2000), pp. 319–325, 2000.

[2] T. Gibson, E. L. Miller, and D. D. E. Long, “Long-term File Activity
and Inter-Reference Patterns University of California,” International
Business, no. December, pp. 976–987, 1998.

[3] a. Miranda and T. Cortes, “Analyzing Long-Term Access Locality to
Find Ways to Improve Distributed Storage Systems,” Parallel, Dis-
tributed and Network-Based Processing (PDP), 2012 20th Euromicro
International Conference on, pp. 544–553, 2012.

[4] D. Roselli, J. Lorch, and T. Anderson, “A Comparison of
File System Workloads,” In Proceedings of the 2000 USENIX
Annual Technical Conference, pp. 41–54, 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.195

[5] EMC, “EMC VNX Virtual Provisioning,” Tech. Rep. December, 2013.
[6] “ZeroMQ,” 2015. [Online]. Available: http://www.zeromq.org
[7] P. Arce, C. Maureira, R. Bonvallet, and C. Fernandez, “Forecasting High

Frequency Financial Time Series Using Parallel FFN with CUDA and
ZeroMQ,” Information and Telecommunication Technologies (APSITT),
2012 9th Asia-Pacific Symposium on, no. February, pp. 1–5, 2012.

9

[8] P. Fengping and C. Jianzheng, “Distributed System Based on ZeroMQ,”
2012.

[9] I. Iliadis, R. Haas, X. Hu, and E. Eleftheriou, “Disk scrubbing versus
intradisk redundancy for RAID storage systems,” ACM transactions
on storage (. . . , vol. 7, no. 2, pp. 1–42, 7 2011. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1970348.1970350
http://dl.acm.org/citation.cfm?id=1970350

[10] IDEMA, “The Advent of Advanced Format,” 2013. [Online]. Available:
http://www.idema.org/?page id=2369

[11] L. Tian, D. Feng, H. Jiang, and K. Zhou, “PRO : A Popularity-
based Multi-threaded Reconstruction Optimization for RAID-Structured
Storage Systems,” Fast07, pp. 277–290, 2007.

[12] J. Wan, J. Wang, Q. Yang, and C. Xie, “S2-RAID:
A new RAID architecture for fast data recovery,” Mass
Storage Systems and . . . , vol. c, 2010. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5496980

[13] S. Wu, D. Feng, H. Jiang, B. Mao, L. Zeng, and J. Chen, “JOR: A
journal-guided reconstruction optimization for RAID-structured storage
systems,” Proceedings of the International Conference on Parallel and
Distributed Systems - ICPADS, pp. 609–616, 2009.

[14] F. Ye, J. Chen, X. Fang, J. Li, and D. Feng, “A Regional Popularity-
Aware Cache Replacement Algorithm to Improve the Performance and
Lifetime of SSD-based Disk Cache,” pp. 45–53, 2015.

[15] A. Fekete, “UMASS Trace Replayer,” 2016. [Online]. Available:
https://github.com/bandi13/UMASS Trace Replayer

[16] ——, “diskSpotcheck,” 2016. [Online]. Available:
https://github.com/bandi13/diskSpotcheck

[17] J. Axboe, “fio - Flexible I/O Tester Synthetic Benchmark.” [Online].
Available: https://github.com/axboe/fio

[18] J. L. Gonzalez and T. Cortes, “Adaptive Data Block Placement Based
on Deterministic Zones (AdaptiveZ),” pp. 1214–1232, 2007.

[19] N. Jeremic, H. Parzyjegla, and G. Mühl, “Improving Random Write Per-
formance in Heterogeneous Erasure-Coded Drive Arrays by Offloading
Code Block Requests,” pp. 2007–2014, 2015.

[20] A. Thomasian, “Disk arrays with multiple RAID levels,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 5, pp. 6–24, 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2641364

[21] M.-s. Chen, B.-y. Yang, and C.-m. Cheng, “RAIDq : A software-friendly
, multiple-parity RAID,” (USENIX) HotStorage, pp. 1–5, 2013.

[22] P. Xie, J. Huang, Q. Cao, and C. Xie, “Balanced P-Code: A RAID-6
Code to Support Highly Balanced I/Os for Disk Arrays,” Networking,
Architecture, and . . . , pp. 133–137, 8 2014. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6923172
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6923172

[23] C. C. Chung and H. H. Hsu, “Partial parity cache and data cache
management method to improve the performance of an SSD-based
RAID,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 7, pp. 1470–1480, 2014.

[24] Y. Li, P. P. C. Lee, and J. C. S. Lui, “Stochastic analysis on RAID
reliability for solid-state drives,” Proceedings of the IEEE Symposium
on Reliable Distributed Systems, pp. 71–80, 2013.

[25] S. Im and D. Shin, “Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,” IEEE Transactions on Comput-
ers, vol. 60, no. 1, pp. 80–92, 2011.

[26] N. Jeremic, G. Mühl, A. Busse, and J. Richling, “The pitfalls
of deploying solid-state drive RAIDs,” in Proceedings of the
4th Annual International Conference on Systems and Storage
- SYSTOR ’11. ACM Press, 2011, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987816.1987835

[27] J. Ren and Q. Yang, “I-CASH: Intelligently coupled array of SSD and
HDD,” Proceedings - International Symposium on High-Performance
Computer Architecture, vol. 02881, pp. 278–289, 2011.

[28] A. Miranda and T. Cortes, “CRAID: Online RAID Upgrades Using
Dynamic Hot Data Reorganization,” Proceedings of the 12th USENIX
Conference on File and Storage Technologies, pp. 133–146, 2014.
[Online]. Available: http://blogs.usenix.org/conference/fast14/technical-
sessions/presentation/miranda

[29] J. Wan, X. Qu, N. Zhao, J. Wang, and C. Xie,
“ThinRAID: Thinning Down RAID Array for Energy Conservation,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 10, pp. 2903–2915, 2015. [Online]. Available:
http://www.computer.org/csdl/trans/td/2015/10/06912991.pdf

[30] D. Li and J. Wang, “EERAID: energy efficient redundant and
inexpensive disk array,” Proceedings of the 11th workshop on ACM

SIGOPS European workshop, vol. 6, p. 29, 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1133572.1133577

[31] A. Fekete and E. Varki, “RAID-X : RAID eXtended
for Heterogeneous Arrays,” in 30th International Conference
on Computers and Their Applications, 2015, pp. 157–162.
[Online]. Available: http://www.bandilabs.com/2015/03/12/cata-2015-
presentation-of-raid-x-raid-extended-for-heterogeneous-disks/

[32] ——, “RAID on Heterogeneous Arrays,” 2016.

10

