
Abstract

 RAID has been around since the late 80s. It is well
understood and has been implemented in many systems
throughout the world. Technology has much improved
since the 80s and disks are increasing in size and
reliability at a rapid rate. When a RAID system has been
set up with a certain sized drives and a disk breaks after a
couple years of use it does not make sense to purchase a
drive with the same capacity when a drive with twice the
size exists. RAID-X solves the problem of heterogeneous
disks in an array based on RAID. This paper introduces
the implementation of such an array with heterogeneous
disks. Additionally, with modern file-systems the authors
demonstrate how to support growing the file-system while
it is on-line.

 1 Introduction

Today's big buzzword is big data. What is frequently
forgotten is the underlying storage problem on the ever
expanding data. There are many problems to solve with big
data; accessibility, storage, searching. There are many
discussions on the way the database is architected to solve
this issue, but hardly any research in the low level storage
mechanism. In the late 80s Patterson et al. [1] came out with
the idea for RAID. Today it is ubiquitous and well
understood. However, all the latest technology is based on
30 year old ideas. This paper gives a brief overview of RAID
and what it means. There have been several tweaks proposed
and tested. In a world where there are Solid State drives as
well as magnetic drives and even experiments with RAM-
based storage much has been developed in terms of storage
technology. Algorithmically RAID has not changed since it
was first introduced. The latest research has some very
clever ideas but alas it is far too complicated to be
worthwhile to implement in hardware.

Consider HERA [2], it is a step in the direction of
heterogeneous disks in a RAID configuration, where they
assemble parts of each disk into a parity group. The inherent
problem is that once the system is initialized, it cannot
handle addition or removal of different sized disks. It
concentrates on the MTTF of the RAID, but omits the
consideration of rebuilding with a possibly larger disk.

The algorithm presented in this paper eliminates this
restriction and affords several other luxuries that aren't

available. One of these is the ability to have the total size of
the RAID increase with the addition of another disk.
Another is the graceful degradation of total space in the
event of a disk failure.

Conceptually, RAID-X removes the predictability of
where a block of data is stored on the physical disk. This
comes at the cost of having to store a lookup table, but in
relation to the size of storage that is available this cost is
negligible. The benefits of this include having a variable sized
partition which is similar in concept to that of a Linux
Volume Manager.

The graceful degradation feature of this system allows
RAID-X to exit from a degraded state by reorganizing the
way data is stored on the disks as long as it is possible to
shrink the file-system on top of the RAID. With this feature,
it is possible to lose another disk without catastrophic
effects. This is not possible with traditional RAID.
Traditional RAID can only rebuild what has been lost on the
missing disk once a new disk has been put in place.

 2 Background

Hard drives are notorious for being sensitive. Since they
are mechanical devices, great deal of care must be taken for
their use and keeping it operating. Throughout the years, the
storage density of drives has been increasing at a rate of
40% per year. The cost per gigabyte is decreasing at an
exponential rate (see Figure 1).

Today more and more data is stored, but the reliability of
the drives stays the same. The Bathtub Curve (see Figure 2)
has been used as the general plot of the failure rate of a
mechanical system over time. In the beginning, the drive is
being broken in (blue line), so it can have a malfunction due

RAID-X: RAID eXtended for Heterogeneous Arrays
András Fekete, Elizabeth Varki

Computer Science, University of New Hampshire
Durham, NH, 03824, USA

afekete@wildcats.unh.edu, varki@cs.unh.edu

Figure 1: Cost of drive capacity over time

1975 1980 1985 1990 1995 2000 2005 2010 2015

0.01

0.1

1

10

100

1000

10000

100000

1000000
Dollars per gigabyte

Year

C
os

t

mailto:afekete@wildcats.unh.edu
mailto:varki@cs.unh.edu

to the way it was manufactured. As time goes on, it has a
constant likelihood for failures due to natural causes (green
line). As we get to its life expectancy, the likelihood of a
failure starts increasing due to parts wearing out (red line).
Summing these curves gives us the bathtub curve simply
because it looks like the cross section view of a bathtub.

The shape of this curve hasn't changed since the first day
hard drives were introduced. What has changed is the time
scale, which is measured by the Mean Time To Failure
(MTTF) of a drive. Nowadays having a million hours before
failure is rather normal for a drive, while 20 years ago it was
maybe 10K hours. So not only are drives getting more
dense, but they are failing less. This is a good thing, but the
failure rate isn't keeping up with the rate the capacity
increases.

Hard drive manufacturers have also put in a lot of effort
into making each drive withstand harsher environments.
Drives in laptops are especially vulnerable due to the simple
fact that they are mobile devices and must withstand shock
and vibration from multiple angles. Systems like Apple's
Sudden Motion Sensor, Dell's Free Fall Sensor, or Lenovo's
Hard Drive Active Protection System are all created to pro-
actively defend against these outside events which don't
normally occur in desktop or server drives.

Another angle to consider is that mechanical drives are
really slow at reading and writing data. This is because the
head has to move to the correct track, and the platter has to
spin to the proper sector. This all takes time and there's a
need to have it be reduced so that programs don't spend
their time waiting for I/O operations to finish.

Patterson et al. [1] came up with methods to combine
the MTTF of multiple disks to decrease the likelihood of
data loss as well as speed up I/O operations by combining
the speed of drives together. They introduced the concept of
Redundant Arrays of Inexpensive Disks (RAID).

This research takes a look at the most popular types of
RAID, their benefits and drawbacks. Most RAID concepts
and techniques rely on the fact that all disks are identical.

In RAID, each disk is split up into stripe units. They are
generally based on the block size of a disk. Stripe units that
share the same logical location across different disks are
grouped into a stripe (see Figure 3).

Depending on the number of disks in the array, it is
possible to achieve certain so-called RAID levels. The
simplest level is RAID0 and RAID1 also known as striping
and mirroring respectively. This is the simplest kind of RAID
that can be implemented with as little as two drives. More
advanced RAID levels are ones like RAID5 (single parity)
and RAID6 (double parity). Parity refers to how redundant
the algorithm is which determines how many disks can die
before data loss occurs. There have been numerous
enhancements [3][4][5][6][7] to these parity calculations
that have either made the calculations simpler or allow for
more disks to fail.

In recent years, solid state storage has come down in
cost and is rapidly being incorporated into RAID
technologies to speed up access. Research [8] is being done
to make use of this new technology which requires wear
leveling across the disks.

 3 RAID-X

Up until recently, it has been understood that all disks in
an array are of the same size, or the space available is of the
size of the smallest disk. This causes inefficient disk usage
and causes problems when a disk in an array needs to be
replaced, as the same model or size disk may not be
available.

Liu et al [9] have demonstrated a different layout
scheme on heterogeneous disks where it will use a RAID5
topology until it fills up a disk, then it will use the remaining
disks to continue allocating stripes of a RAID until all disks
are full. This creates a complicated mechanism where it must
store a pseudo stripe pattern where each stripe unit on the
disk is located using a complex computation.

RAID-X is a novel solution to using heterogeneous disks
where it removes any logical restriction on where a stripe
unit is, but still keeping the logical block mapping an O(1)
problem.

 4 Chunking

In RAID-X the concept of chunking is introduced. To
move forward, one has to move away from the idea of stripe

Figure 2: The bathtub curve: Blue – breakin failure, Red –
wearout failure, Green – random failure, Magenta – sum of
all failures

Figure 3: Stripe vs Stripe Unit

units. With more RAM and faster CPUs one can afford a
loss in strict logical placement of data.

RAID-X works by creating groupings of sequential
logical blocks on a disk called chunks instead of stripe units.
A stripe is then made up of chunks, but now, instead of
stripes being at a predictable location on each disk, a stripe
will be scattered throughout the array. Each chunk in a stripe
will have related chunks stored on another disk in an
arbitrary location to ensure that if a disk breaks it does not
take out more than one chunk in one stripe. The distinction
here is important, because chunks can be paired anywhere
on the disk, whereas stripe units are determined based on
physical location.

With RAID-X it will be necessary to keep a lookup table
in RAM to have a map from the physical to the logical
mapping of chunks on the disk. Since this will be an array
whose size is bounded by the number of chunks on the drive,
it will be an O(1) lookup. The size of a chunk will be 4096
bytes or some multiple of that number as per the standard
put forth by IDEMA (International Disk Drive Equipment
and Materials Association) makes that be the most efficient
size to transfer on today's drives. The size of the chunk also
determines the amount of RAM that will be used, but having
a large chunk size affects the efficiency at which small
fragmented data can be accessed. This is a topic of much
debate in traditional RAID, and the same reasoning applies
to RAID-X. The smaller chunk size is good for quick access
to small files, but a larger chunk size allows for better
throughput.

 5 Initialization

To initialize the array, more work has to be done
compared to other RAIDs. A total number of free chunks
must be calculated for each disk that is being added. Then

take a chunk from the disk with the largest number of free
chunks, and put it in the same stripe as the disk with the next
largest number of free chunks. Once the stripe has been
allocated, mark all the chunks used. Continue this process
until the number of disks with chunks available in the system
is zero or one less than the total number of chunks in a stripe
(call this CS). It is guaranteed to have at most CS - 1 free
chunks because if CS disks have chunks available, then they
can be added and used to store chunks. The initialization
function takes in the startCID value (which is the starting
chunk ID) because the function itsself is generic enough to
be used at times when the RAID is being reshuffled. This is
discussed further in later sections.

It must be pointed out that each disk may not necessarily
contain a chunk of every stripe. The only time that each disk
will contain a chunk of each stripe is when CS is equivalent
to the number of disks in the array. This property becomes
useful when trying to access multiple stripes at the same
time, the access time can be decreased by spreading the load
across all the disks.

To look at an example, one can take Figure 4 and
assume all disks are empty and that an underlying RAID
which only requires 2 disks is requested. For the sake of
simplicity, a RAID1 level (which is mirroring) is chosen.
Following Algorithm 1, we calculate that Disk 1 has the
most chunks followed by Disk 3, then Disk 3 and 4. In the
first iteration, Disk 1 will get its first free chunk allocated to
CID=1 with a mirror on Disk 3. This will become our first
stripe. Next we have Disk 1 with the most free chunks and
the remaining 3 disks have the same amount. Thus CID=2
can be allocated onto Disk 1 and Disk 2 is arbitrarily chosen
as its mirror. Now Disk 1 still has the most free chunks, so it
is chosen, and Disk 3 is arbitrarily chosen from the set
containing Disk 3 and 4. The process continues until there
aren't any available disks to mirror across which in this case
is at most one.

It is also important to realize, that with homogeneous
disks, RAID-X is the same as the underlying RAID in its
layout given that the underlying RAID uses the same number
of disks as there are disks in total.

The main advantage of this system is to make use of the
extra space left over on larger disks in a redundant fashion.
Another advantage is that when a disk dies, if the amount of

Procedure: initRAID(allDisks, CS, startCID)

1: CID = startCID
2: DFC = getDisksWithFreeChunks(allDisks)
3: while(DFC > CS)
4: curStripe = { }
5: validDisks = allDisks
6: for i = 1:CS
7: curDisk = mostChunksFree(validDisks)
8: curStripe = curStripe ᑌ curDisk
9: validDisks = validDisks – curDisk
10: if(chunksFree(curDisk) == 1)
11: DFC = DFC – 1
12: endif
13: endfor
14: allocStripe(curStripe, CID)
15: CID = CID + 1
16: endwhile

Algorithm 1: This is how to initialize a RAID-X array. DFC
is disks with free chunks; CS is number of chunks in a
stripe; allDisks is the set containing the disks in the array

Figure 4: RAID-X - 2 disk redundancy

data stored on the array would fit in the now smaller array,
the system could reorganize the chunks so that the data is all
redundant and the system is able to suffer the loss of another
drive. Since the probability of having 2 drives die
simultaneously is very small (in the case of a 1 disk
redundancy), this becomes a viable option similar to RAID1
and RAID5.

Having this type of redundancy allows for the MTTF to
be rather large, much larger than any other kind of RAID.
This is because without the need for spare disks, the RAID
can repair its self into a redundant state as long as the array
is not completely full with data. The worst case MTTF is
same as for RAID1, but in practice what is likely to happen
is that smaller disks will have more hours on them, and thus
the likelihood of them failing is larger than the larger disks.

Like in traditional RAID, RAID-X also keeps track of
which disks are members of a particular RAID. This is useful
for two things:

1. Detection of RAID groups from a pool of disks

2. Detection of disks missing from the RAID

Both points are important in the case of system
initialization. Point 1 is useful to group the disks into their
respective RAID sets from a collection of disks. Point 2 is
necessary when a drive is removed and the RAID is being
rebuilt.

 5.1 Stripes with 3 or more chunks

RAID-X is also well suited for having more than 2
blocks in one chunk. For example, if the underlying RAID is
RAID5, then one can see in Figure 5 that with the same set
of disks as before in Figure 4 we can realize the different
data layout. Of course, since there are 20 chunks available,
which is not evenly divisible by 3, so the remainder chunks
will be unused. Even still, 2 extra stripes are gained out of
the system. Adding in an additional disk with a single chunk
would allow for full utilization of all disks. Similarly, any
disk with size calculated using Equation 1 (where n ≥ 0)
would be able to expand the array to full utilization.

diskSize=missingChunkCount+n∗CS (1)

Looking at Figure 5, it can observed again, that Disk 1
has the most free chunks, then Disk 3, then Disk 2 and 4.
When the first stripe is created, it starts with Disk 1, then
Disk 3, then arbitrarily picks Disk 2. For the second stripe,
Disk 1 still has the most free chunks, then it arbitrarily picks
Disk 3, then Disk 4.

 5.2 Data access

Another interesting advantage of RAID-X is that the
data access algorithms would be much different that of
traditional RAID. Assume that we want to read the data in
stripe 4 from the disk array in Figure 5. We can play tricks
with optimization based on whether it is faster to compute
the XOR of the last chunk or to wait for the disk to read it.
It is important to point out that the heads of each disk are in
a relatively random configuration (compared to that of
traditional RAID), therefore we can also do a simple
shortest path optimization of which disk is best suited to
read which chunk since it is possible to keep track of what
chunk each disk last read.

This can as a byproduct reduce wear on the disk as well
as energy usage. Many others [10][11] have tried to reduce
the power consumption of RAID.

For writes to the array, there is no such optimization that
can be applied since each chunk must be written to. As with

all other RAIDs, RAID-X is also prone to the “Write hole”
phenomenon, where if there is a power loss during a write,
the RAID will not be able to correct itsself. Generally, this
problem is left to be solved by the file-system to replay its
last journal entry or run a consistency check. Since the
probability of this occurring is very small, not much has been
done to prevent it.

 6 Array degradation

As with any other RAID, the array can get in a degraded
state when a disk has gone missing for any number of

Figure 5: RAID-X - 3 disk redundancy

Procedure: addDisk(raidDisks, maxCID, CS, newDisk)

1: curCID = maxCID
2: for i = 1:floor(chunksFree(newDisk) / CS)*CS
3: validDisks = containsCID(allDisks, curCID)
4: curDisk = leastChunksFree(validDisks)
5: reallocChunk(newDisk, curDisk, curCID)
6: curCID = curCID - 1
7: endfor
8: initRAID(raidDisks ᑌ newDisk, CS, maxCID + 1)

Algorithm 2: Showing how to add a disk to the RAID-X
array. RaidDisks is the set containing the existing disks in
the array with maxCID as the largest Chunk ID.

reasons. There will be degradation events such as when a
disk dies or when there is a new disk inserted. In RAID-X,
this is the opportunity to reshuffle chunks. Generally, it is
desired to have chunks in long sequences stored on the disks
to optimize large reads. It is not vital though to have it that
way on all disks as non-sequential reads would be sped up
by having the chunks scattered on several disks.

When a disk is removed from the array for any reason, as
it was just discussed, it is in a degraded state. RAID-X has
the ability to discard some unused stripes and reallocate the
newly freed chunks to those stripes that have lost a chunk
because of the missing disk. Once the process is completed,
the array is once again fully redundant and can suffer the loss
of an additional disk. This technique is called graceful
degradation. It is not required to do graceful degradation as
it may be unnecessary work performed on restructuring the
array when a new disk is standing by to be added.

While the array is in a degraded state, it will be less than
optimal in performance similar to a traditional RAID
because of having to calculate XORs of all the chunks in the
stripe.

When a removed disk is added back in, it has to be
checked for consistency. This consistency check is similar to
rebuilding a traditional RAID except that only those stripes
which are on the newly connected disk have to be checked.

Fixing a degraded array has a smaller amount of time
needed for rebuilding than for a traditional array, because the
original disks in the array will be also written to while the
chunks are being reorganized. Therefore it is more of a
parallel process compared to when a traditional RAID is
being rebuilt and a single disk is being written to.

 6.1 Adding new disks

When there is a new disk added to the array, we will
determine the number of chunks available on the disk, take
only whole divisors of CS number of chunks and copy
chunks from other disks in the array to the new disk. This
will free up chunks on the other disks which we'll allocate
into new stripes. We start by taking the chunk with largest
ID from the disk which is the most full and going down in
chunk IDs until all the chunks have been transferred.
Obviously, on the new disk, we'll put these in increasing
order to help with sequential reads. This method best
preserves sequences on disks.

Next, it might be necessary to shift down any chunks to
fill in the gaps. This might not be as important of a step and
will be a topic of future research. Seeing that this area on the
disks will likely have non-sequential chunks it might not
make sense to do the effort. In fact it may be beneficial to
have chunks with larger IDs be closer to the front of the disk
as access times are generally better.

The last step is to fill in the now empty chunks using the
same algorithm as in the initialization. Figure 6 shows the
final result of such a restructuring.

When a new disk is added to the RAID, the amount of
space available is obviously increased. With new advances in
file systems, it is possible to increase the available space on
the file system in-situ. An example of such a file-system is
the widely used EXT3/4.

 6.2 GRACEFUL DEGRADATION

In the event that a disk is removed from the array due to
hardware failure or otherwise, the array enters a degraded
state. The first task is to resize the file-system similar to
what was mentioned in the previous section. The size of the
reduction depends on the resulting size of the array after the
RAID is rebuilt. This can be calculated by simply taking the
number of chunks that were lost and dividing by the number
of chunks in the stripe rounding up. This will tell how many
stripes have been lost.

When the data is condensed onto the remaining chunks
thanks to the file-system resizing, the higher numbered
chunks can be eliminated. As mentioned in section 6.1, it
may be wise to shift down the chunks on the disk. One can

Figure 6: RAID-X - adding a new disk

Figure 7: RAID-X - Removing a disk

Procedure: delDisk(raidDisks, maxCID, CS, selDisk)

1: usedStripes = ceil(numUsedChunks(selDisk) / CS)*CS
2: shrinkByStripe(raidDisks, usedStripes)
3: maxCID = maxCID - usedStripes
4: for i = 1:numUsedChunks(selDisk)
5: curCID = getCID(selDisk, i)
6: validDisks = raidDisks

- containsCID(raidDisks, curCID)
7: destDisk = mostChunksFree(validDisks)
8: reallocChunk(destDisk, selDisk, curCID)
9: endfor

Algorithm 3: Removing a disk from RAID-X

see in Figure 7 the shift-down step was omitted and that
with the removal of Disk 2, there were two stripes that had
to be removed. Any disk that stored chunks from those
stripes has those particular chunks back on the free chunks
pool. The data lost in Disk 2 was recreated by using the
techniques of the underlying RAID which in this case was
taking the XOR of the remaining chunks in each stripe.

 7 Conclusions

In this paper, a different approach to RAID is discussed
using chunks instead of stripe units. This new approach
loosens the restrictions of traditional RAID systems to allow
for simple algorithmic implementation of a RAID on a
heterogeneous disk array.

The system could be used as an intermediary system
between the storage and the underlying RAID level. This
would then incorporate all the research and development
that has been done with RAID and be able to expand it to a
heterogeneous disk system.

 8 Future Work

The authors intend on further exploring the potential of
this algorithm and comparing it to current standards for
RAID. It will be interesting to compare the overhead of
keeping track of the chunk locations in memory as opposed
to having it be calculated. Given this baseline, the optimality
of this algorithm over the current RAID implementations
can be shown.

Determining the speed of a disk where the chunks are
not shifted around after a change in the number of disks will
also be a big concern of this research. In addition to that,
when arbitrarily selecting a disk to place a chunk on might
not be the best solution. Instead it may be necessary to
devise an algorithm that picks the optimal disk to spread the
chunk on to which depends on the correlation of disks in the
stripe. Simply put, if the selected disk has a high number of
stripes shared with the disks in the array, it may be wise to
put the chunk on another disk to even out the workload.

Benchmarking the rebuild speed of RAID-X versus a
traditional RAID will yield additional results on the overhead
costs of using RAID-X. There will be an extra angle where
the time to perform a graceful degradation will be studied.
Since this is not available in traditional RAID, it can still be
compared to a rebuild time.

References

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for
redundant arrays of inexpensive disks (RAID),”
ACM SIGMOD Record, vol. 17, no. 3. pp. 109–116,
1988.

[2] R. Zimmermann and S. Ghandeharizadeh, “HERA:
Heterogeneous Extension of RAID.,” in PDPTA,
2000, no. Pdpta.

[3] H. Anvin, “The mathematics of RAID-6,” online Pap.,
no. January 2004, pp. 1–9, 2007.

[4] C. Jin, H. Jiang, D. Feng, and L. Tian, “P-Code: A new
RAID-6 code with optimal properties,” … 23rd Int.
Conf. …, 2009.

[5] G. a. Alvarez, W. a. Burkhard, and F. Cristian,
“Tolerating multiple failures in RAID architectures
with optimal storage and uniform declustering,”
ACM SIGARCH Comput. …, 1997.

[6] P. Xie, J. Huang, Q. Cao, and C. Xie, “Balanced P-Code:
A RAID-6 Code to Support Highly Balanced I/Os
for Disk Arrays,” Networking, Archit. …, pp. 133–
137, Aug. 2014.

[7] M. Chen, B. Yang, and C. Cheng, “RAIDq : A software- 
friendly , multiple-parity RAID,” (USENIX)
HotStorage, pp. 1–5, 2013.

[8] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D.
Malkhi, “Differential RAID,” ACM Transactions on
Storage, vol. 6, no. 2. pp. 1–22, 2010.

[9] Y. Liu, X. Xie, and H. Li, “A Data Layout Method in
Heterogeneous RAID,” Scalable Comput.
Commun. …, pp. 218–225, 2009.

[10] D. Colarelli and D. Grunwald, “Massive arrays of idle
disks for storage archives,” Proc. 2002 ACM/IEEE
…, vol. 00, no. c, 2002.

[11] T. Chen, T. Yeh, H. Wei, and Y. Fang, “CacheRAID: An
Efficient Adaptive Write Cache Policy to Conserve
RAID Disk Array Energy,” Proc. 2012 …, pp. 117–
124, Nov. 2012.

	1 Introduction
	2 Background
	3 RAID-X
	4 Chunking
	5 Initialization
	5.1 Stripes with 3 or more chunks
	5.2 Data access

	6 Array degradation
	6.1 Adding new disks
	6.2 Graceful degradation

	7 Conclusions
	8 Future Work

