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Abstract

Maximum-flow is the logistical problem underlying the transmission of large files over the Internet. The time
to transmit a large file depends primarily on the bandwidth capacity of the Internet links. The physical capacity
is fixed, but the available capacity of links varies during the day depending on Internet traffic. The transmission
protocol divides the file into varying sized segments as determined by the maximum-flow algorithm. The
segments are routed independently; some segments may be temporarily stored in transit data centers until
bandwidth becomes available. File segments may be further divided into smaller segments at transit data
centers from where they are routed independently. Upon arrival of all file segments at the receiver, the file
is reassembled. The flow network modeling large file transmission, commonly referred to as bulk transmission,
consists of nodes that represent data centers and arcs that represent end-to-end bandwidth capacity between
the nodes. The inter-connectivity of the Internet ensures that there is end-to-end flow between any two nodes.
Consequently, the flow network of the Internet is a complete graph. The number of nodes in the graph is O(n)
and the number of arcs is O(n2). Since bandwidth capacity along arcs varies by time-of-day, the flow network
models flows over time. In a discrete time model, the arc capacity is parameterized for each flow instant t=0, 1,
..., T-1. The time expanded graph of the flow network has O(nT ) nodes and O(n2T ) arcs. This paper develops
a star graph model of the flow network for bulk transmission. The star graph flow network is equivalent to the
complete graph flow network. The time expanded star graph has O(nT ) nodes and O(nT ) arcs. The complexity
of routing algorithms is proportional to the size of the search space. This paper reduces the complexity of bulk
routing algorithms by developing a graph model with lower space complexity.



1 Introduction

Maximum-flow is the problem that underlies bulk transmission via the Internet. Bulk transmission refers to the
transmission of a large file - whose size may range from tens of Gigabyte to the Petabyte scale - from a sender’s
network to a receiver’s network. The Internet parameter of significance is the bandwidth capacity available to
the transmission. For example, a 100 MB file is transmitted in less than a minute over a 20 Mb/s, while a 100
GB file takes 11.36 hours over the 20 Mb/s link and less than 7 minutes over a 2 Gb/s link, a reduction of 99%
of transmission time. The physical bandwidth capacity is fixed, but the available bandwidth varies during the
day depending on Internet traffic. The network traffic pattern is dependent on time-of-day; bandwidth usage
increases during the day reaching peak usage around 8:00 PM, bandwidth usage decreases after 8:00 PM and
reaches minimum around 3:00 AM. There is maximum bandwidth availability during the early morning hours
of 1:00 AM to about 9:00 AM. This is similar to roadways, where roads are congested during rush-hour traffic.

The dependence of bandwidth availability on time-of-day may result in low end-to-end bandwidth when the
sender and receiver are located in different time zones. Flow rate is limited by the smallest pipe, so a sender with
ample bandwidth at 3:00 AM (sender’s local time) may be forced to transmit at low rates due to insufficient
bandwidth availability at the receiver (where the local time is 8:00 PM). This problem can be addressed by
transmitting to intermediate data centers that have high bandwidth capacity at the same time as the sender and
the receiver. Instead of transmitting directly (end-to-end) from the sender to the receiver, it is faster to transmit
by a store-and-forward protocol.

Netstitcher [2] is a store-and-forward bulk transmission protocol where the underlying flow network is mod-
eled as a time expanded graph and the routing is generated by Ford and Fulkerson’s maximum-flow algo-
rithm [1]. The routing is determined before the start of transmission; the file is divided into varying sized
segments as determined by the routing algorithm. Each file segment travels along its predetermined path which
may include transit data centers were a segment is stored until bandwidth is available. En route, at a transit
data center, a file segment may be divided into further file segments that are routed separately. Once all the file
segments arrive at the receiver, the file is reassembled.

The discrete time flow network underlying bulk transmission is modeled as a time expanded graph which
contains a copy of the set of nodes and the set of arcs at every flow time step. Let n represent the number of data
centers - sender, receiver, and transits - participating in the bulk transmission, and let T represent the number
of discrete time steps in the flow duration. Since any two networks (data centers) on the Internet are connected,
there are links between every pair of nodes in the graph. Thus, the time expanded graph for bulk transmission
has O(nT) nodes and O(n2T ) arcs [2].

This paper reduces the complexity of bulk routing, not by developing a new algorithm, but by reducing
the number of nodes and arcs in the underlying graph model. The paper reduces the state space by modeling
Internet flow with a star graph rather than a complete graph. The number of nodes in the star graph is n + 1
representing the n data centers and the internal node. We show that the star directed graph is equivalent to the
complete directed graph modeling Internet flow. The star graph has O(nT) nodes and O(nT) arcs as opposed to
the complete time expanded flow network with O(nT) nodes and O(n2T ) arcs.

2 Complete graph model of bulk routing

The complete graph is the standard model for store-and-forward bulk routing. The nodes represent data centers
and the arcs represent end-to-end bandwidth capacity between the nodes at each flow instant. The flow network
is represented by a graph G=(V,E,T) where V is the set of nodes representing data centers, E is the set of arcs
representing end-to-end bandwidth between nodes, and T is the total flow time. A node v ∈ V has uplink and
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Figure 1: Complete graph modeling bulk transmission

downlink bandwidth capacity, ul(v,t) and dl(v,t), at flow instant t. The sender, s, has zero downlink capacity;
the receiver, r, has zero uplink capacity. Since there is end-to-end Internet flow between any two networks, the
graph is complete. There are incoming and outgoing arcs between all internal nodes (nodes other than sender
and receiver), outgoing arcs from the sender to all nodes, and incoming arcs from all nodes to the receiver.
Define the capacity, c(u,v,t), of arc (u,v) at time t as:

c(u,v,t) ≤ minimum{ul(u,t), dl(v,t)}.
The capacity c(u,v,t) represents an upper bound on the end-to-end bandwidth available for transmission from u
to v at flow instant t=0, 1, ..., T-1. The arc transit time is zero, so flow moves instantaneously along a path at time
t. The nodes have storage capacity; it is assumed that storage capacity at the data centers is not a bottleneck.

Figure 1 presents an example to illustrate the complete graph model of bulk transmission. Figure 1(i) shows
the uplink and downlink capacities of nodes, s, r, and a transit node v. Figure 1(ii) shows the complete graph
for store-and-forward flow corresponding to the nodes. For this simple example, it is easy to compute maximal
flow from s to r. At time t0: f(s,r,t0)=2; f(s,v,t0)=6; At time t1: f(s,r,t1)=2; f(v,r,t1)=6. The value of flow
| f | = f(s,r,t0)+f(s,r,t1)+f(s,v,t0)=10 units of flow during flow duration. But the flow value of 10 exceeds the
bottleneck capacity 8 (= minimum {ul(s,T)=12, dl(r,T)=8 }). The reason that flow exceeds bottleneck capacity
is that the complete graph does not model the bottleneck constraints of the end networks. For example, while
the uplink from s at time t0 equals 10 units, the complete graph models an uplink of 12 units at t0 (2 units along
(s,r) and 10 units along (s,u)). Thus, the complete graph accurately models the end-to-end capacity between the
nodes, but it does not model the end network bottleneck constraint.

3 Star graph model of bulk routing

The bottlenecks are modeled in the complete graph as follows: link each data center node, v, to an exchange
node, xv. The capacity of arcs (v, xv) and (xv, v) are set to be:

c(v, xv, t) = ul(v, t); c(xv, v, t) = dl(v, t).
The capacity of arcs between two exchange nodes xu and xv are set to be:

c(xu, xv, t) = minimum {ul(u, t), dl(v, t)}.
That is, the capacity of arc (u, xu) is set to the uplink from u, the capacity of arc (xu, u) is set to the downlink
from u, and the capacity of arc (xu, xv) is set to the end-to-end capacity from u to v. By construction, the value
of flow | f |≤ minimum { ul(s,T), dl(r,T) }. Figure 2(i) incorporates bottlenecks into the complete graph of
Figure 1(ii). The maximum flow from s to r during flow time t0 and t1 is: At time t0: f(s,r,t0)=2, f(s,v,t0)=4;
At time t1: f(s,r,t1)=2, f(v,r,t1)=4. Thus, f(s,r)=8 units of flow during t0 and t1, which equals the bottleneck
capacity at r.
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Figure 2: Flow network modeling bulk transmission

In the bottleneck modeling, the arc (xu, xv) is redundant since capacity of augmenting path, puv, from u to v,
c(puv) = minimum {c(u, xu), c(xu, xv), c(xv, v)} = minimum {ul(u), dl(v)}. The complete graph consisting
of exchange nodes and the arcs between the exchange nodes is redundant, and can be replaced by a single
exchange node, x, that is linked to all the data center nodes. (Proof omitted due to page constraints.) This leads
to a star graph flow network where the n data center nodes are leaves and the exchange node x is the internal
hub. Figure 2(ii) presents the star model corresponding to Figure 2(i). The nodes s, r, v are leaves while x is an
interior node. The capacity of arc (v,x) is equal to the uplink capacity of v, and the capacity of (x,v) is equal to
the downlink capacity if v.

The assumption underlying the model is that the bandwidth bottleneck (i.e., minimum cut) for end-to-end
transmission from u to v is the minimum of u’s uplink bandwidth and v’s downlink bandwidth. The uplink
(downlink) bandwidth of a node is at most equal to the minimum of the node’s Internet link and the node’s
backbone bandwidth. This is a reasonable assumption given that backbone transit providers must provide the
bandwidth connectivity paid for by end networks, and in a network as dense and interconnected as the Internet,
it is possible to find multiple paths between two end networks.

The star graph modeling bulk routing is defined by G=(V ∪ x,E,T) where V has n nodes representing s, r,
and the (n-2) transit nodes; x is the central exchange node. All nodes v ∈ V have storage capacity; x has no
storage capacity. The arc set E = {(s, x), (x, r)} ∪ { (v, x), (x, v) | ∀v ∈ V-s-r }. The capacity at flow instant
t=0,1, ..., T-1, is given by

c(x, v, t) = dl(v, t) ∀(x, v) ∈ E
c(v, x, t) = ul(v, t) ∀(v, x) ∈ E

Figure 2(iii) shows the time expanded graph; there is a copy of the node set and the arc set for each flow instant.
Let v(t) represent the node at flow instant t. There are holdover arcs (v(t),v(t+1)), t=0, 1, .., T-2, ∀v ∈ V ; the
capacity of holdover arcs is infinite since it carries excess flow to the next time instant. When the assumption
of bottleneck capacity holds, it can be proved that the star graph flow network is equivalent to the bottleneck
complete graph flow network.
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