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Abstract. The performance of a prefetch cache is dependent on both
the prefetch technique and the cache replacement policy. Both these algo-
rithms execute independently of each other, but they share a data struc-
ture - the cache replacement queue. This paper shows that even with a
simple prefetch technique, there is an increase in hit rate when the LRU
replacement queue is split into two equal sized queues. A more signifi-
cant performance improvement is possible with a sophisticated prefetch
technique and by splitting the queue unequally.
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1 Introduction

A prefetch technique is the software responsible for identifying access patterns in
the cache workload and loading data blocks from these patterns into the cache
before the blocks are requested. For example, if a file is being read sequentially,
the prefetch technique associated with the file system cache may prefetch sev-
eral blocks contiguous to the requested file block. Thus, a prefetch technique is
responsible for leveraging the spatial locality of reference in the cache workload.

The task of a prefetch technique is to determine what data blocks to prefetch
and when to prefetch the blocks. The prefetch technique, however, does not
control when a prefetched block is evicted from the cache. The replacement
policy is the cache software that determines which block is evicted from the
cache when a new block is to be loaded into a full cache. Therefore, it is the
replacement policy that is responsible for keeping a prefetch block in the cache
until it is requested.

The goal of cache software is to ensure that the cache contains blocks that will
be requested in the near-future. The cache software essentially consists of two
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algorithms, namely, the prefetch technique and the replacement policy. The two
algorithms are standalone - capable of executing independently of each other
- the prefetch technique does not decide when a prefetched block is evicted;
the replacement policy does not decide when a block is prefetched. The two
algorithms together determine the contents of the cache.

Both the prefetch technique and the replacement policy have a say in the
contents of the cache via the replacement queue. The cache replacement queue
orders cache blocks by eviction priority and it is the meta-data used by caching
software. Even though the prefetch technique and the replacement policy are
distinct standalone algorithms, they share this data structure. The prefetch tech-
nique controls what prefetch blocks are inserted into the replacement queue and
when they are inserted, while the replacement policy controls where a prefetch
block is placed in the replacement queue. The cache replacement queue encap-
sulates the combined impact of the two algorithms, and ultimately determines
the performance of the prefetch cache.

Contribution: This paper shows that the performance of a prefetch cache
can be improved by merely splitting the single replacement queue into two
queues. The replacement policy should be aware of the two queues and of the
prefetched blocks. This paper demonstrates the Split queue approach using the
sequential prefetch technique and the LRU replacement policy.

2 Sequential Locality

Prefetching is carried out by caches at all levels of the memory hierarchy; this
papers discusses prefetching in the context of file system and storage caches. The
operating system maps user read requests for bytes into read requests for blocks.
Therefore, the unit of measurement used is blocks: a cache size is C blocks; the
cache workload consists of user requests, where each request is for a single block.

Workload: We explain Split using an example workload that displays sequential
locality:

< 1001, 64, 1002, 72345, 65, 323, 66 >

The workload is a sequence of block numbers that represent user requests; the
position in the sequence represents the relative time at which the request arrives
at the cache. That is, requests for blocks 1001, 64, 1002, 72345, 65, 323, 66 arrive
at times t1, t2, t3, t4, t5, t6, t7, respectively.

At first glance, it is difficult to see the sequentiality in the workload. There are
two interleaved streams of sequential requests: < 1001, 1002 >, < 64, 65, 66 >.
The lone requests < 72345 >, < 323 > may also be considered as streams - they
represent the start of streams whose future requests arrive after the observation
period. Thus, the example workload has four streams, namely, stream 1: < 1001,
1002 >, stream 2: < 64, 65, 66 >, stream 3: < 72345 >, and stream 4: < 323
>. To make it easier to identify the sequentiality in the workload, we represent
block numbers in a stream as follows: stream 1: < 1, 1a >, stream 2: < 2, 2a, 2b
>, stream 3: < 3 >, and stream 4: < 4 >. Thus, each block number is mapped
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to its stream number and its sequential position within the stream. Using this
new notation, the example workload is written as follows:

< 1, 2, 1a, 3, 2a, 4, 2b >

A number i in the workload represents the first request from stream i; the
variable ia represents the next request in stream i, and so on.

Sequential prefetch techniques are broadly classified into two types [5]: Prefetch
on Miss (PM) and Prefetch Always (PA). The PM technique generates syn-
chronous prefetch requests for blocks contiguous to the missed block whenever
a user request misses in the cache. The basic PA technique generates prefetch
requests whenever a user request arrives at the cache. A synchronous prefetch re-
quest is generated when a read request misses in the cache. If this synchronously
prefetched block gets a hit, then an asynchronous prefetch request is generated
for the next block.

There are several versions of PA. In a common version of PA, implemented in
Linux and BSD, a synchronous prefetch request is generated on every miss, but
an asynchronous prefetch request is not generated on every hit. Several blocks
are prefetched at a time, and one of the prefetched blocks in each stream is
marked as a trigger block. An asynchronous prefetch for this stream is initiated
only when the trigger block gets a hit.

Reconsider the example workload: The maximum number of sequential prefetch
hits possible is three - for blocks 1a, 2a, 2b. We now present examples that illus-
trate that for a given workload, the prefetch technique determines (1) the order
in which blocks are inserted into the cache, and (2) the number of prefetch hits
that can be achieved. The examples assume that (1) the cache is large enough so
that no blocks are evicted, and (2) prefetched blocks are instantaneously loaded
into the cache.

Let the first prefetch technique ensure that for each user request, the next
two contiguous blocks are prefetched. For the example workload, the order in
which requests - user requests or prefetch requests - arrive at the cache is:

< 1, 1a, 1b, 2, 2a, 2b, 1a*, 1c, 3, 3a, 3b, 2a*, 2c, 4, 4a, 4b, 2b*, 2d >.
The requests in italics are the prefetched requests. The * represents a prefetch
hit.

Now, consider a second technique that prefetches 2 blocks on miss, and
prefetches 2 blocks on hit of last cached block of the corresponding stream.
For the example workload, the order in which user/prefetch requests arrive at
the cache is:

< 1, 1a, 1b, 2, 2a, 2b, 1a*, 3, 3a, 3b, 2a*, 4, 4a, 4b, 2b*, 2c, 2d >.
With a PM technique, where 1 block is prefetched on each miss, the order of

requests is:
< 1, 1a, 2, 2a, 1a*, 3, 3a, 2a*, 4, 4a, 2b, 2c >.

Note that with this last technique, the workload only gets 2 prefetch hits.

Replacement policy becomes relevant when the cache is too small to hold all
the blocks. For the example workload, consider a cache of size 4 blocks. Table 1
demonstrates the ordering of the LRU replacement queue with the first prefetch



4 Elizabeth Varki, Allen Hubbe, and Arif Merchant

technique. The example workload does not display temporal (rereference) local-
ity, so a prefetch block is moved out of the cache as soon as it receives a hit.

The LRU policy is designed for workloads that display temporal locality,
but even so, the prefetch cache achieves the maximum prefetch hit rate of 3.
However, in general, it can be argued that the prefetch cache would perform
better if the replacement policy is aware of prefetching and sequential locality.
Consequently, file system and storage caches often implement a prefetch aware
version of LRU - all blocks of a stream are placed contiguously in the replacement
queue and moved as a unit [3]. When a block gets a hit, all prefetched blocks
from the stream are moved to the MRU end of the replacement queue. The least
recently used stream blocks are evicted from the cache when a new stream is
to be inserted. This version of LRU, called StreamLRU, is presented in Table 2.
The computational complexity of StreamLRU is the same as that of LRU.

Note that for the example workload and this prefetch technique, LRU gets 3
prefetch hits while StreamLRU only gets 2 hits. In general, however, StreamLRU
gets more prefetch hits than LRU since StreamLRU recognizes the temporal
locality of streams and keeps the most recently used stream blocks in the cache.
In fact, for the second prefetch technique presented earlier - prefetch 2 blocks
on miss, prefetch 2 blocks on hit of last stream block - LRU gets 2 prefetch hits,
while StreamLRU gets 3 prefetch hits.

3 Split

This is a how-to section that explains the mechanics of Split queue with respect
to sequential prefetch and LRU. The next section presents experimental evidence
of Split’s superior performance when the workload displays sequential locality.
Section 5 presents the intuition behind Split and explains why the Split queue
is better than the single queue.

Split divides the single replacement queue into two queues, the Up queue
and the Down queue - a block evicted from the LRU end of the Up queue is
inserted into the MRU end of the Down queue; all evictions from the prefetch
cache are from the LRU end of the Down queue. When two blocks of a stream
are prefetched, the earlier (i.e., first) block of the stream is inserted into the Up
queue; if any block is evicted from the LRU end of the Up queue then this block
is inserted into the MRU end of the Down queue; finally, the later (i.e., second)
block of the newly prefetched stream is inserted into the MRU end of the Down
queue. Split, like StreamLRU, assumes that the replacement policy recognizes
streams, but unlike StreamLRU (and like LRU), Split does not require that all
stream blocks be placed together in the replacement queue.

Table 3 demonstrates Split LRU using the example workload and the first
prefetch technique presented in the last section. In the example, when a request
arrives for prefetched block 1a, the block 1a is removed from the prefetch cache
(since it is now referenced). The prefetch cache contains block 1b. Since the
replacement policy is prefetch aware LRU, block 1b is moved from the Down
queue to the insertion end of the Up queue, and the newly prefetched block 1c
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Table 1. LRU, 1st prefetch technique: ensures that for each request the next 2 con-
tiguous blocks are loaded.

Prefetch cache size = 4, LRU

hits h1 h2 h3

workload 1 2 1a 3 2a 4 2b

rep.Queue 1a 2a 1c 3a 2b 4a 2d

1b 2b 2a 3b 2c 4b 4a

1a 2b 1c 3a 2b 4b

1b 1b 2a 3b 2c 2c

eject 2b 1c 3a

1b 3b

Table 2. StreamLRU, 1st prefetch technique: ensures that for each request the next 2
contiguous blocks are loaded.

Prefetch cache size = 4, StreamLRU

hits h1 h2

workload 1 2 1a 3 2a 4 2b

rep.Queue 1a 2a 1b 3a 2b 4a 2c

1b 2b 1c 3b 2c 4b 2d

1a 2a 1b 3a 2b 4a

1b 2b 1c 3b 2c 4b

eject 2a 1b 3a

2b 1c 3b

Table 3. SplitLRU, 1st prefetch technique: ensures that for each request the next 2
contiguous blocks are loaded. Split gives the same number of hits as LRU and more
hits than StreamLRU.

Prefetch cache size = 4, SplitLRU

hits h1 h2 h3

workload 1 2 1a 3 2a 4 2b

rep.Up Q 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a

rep.Down Q 1b 2b 1c 3b 2c 4b 2d

1b 2b 2a 1b 3a 4b

eject 1c 3b 2c 3a

2b 1b

Table 4. SplitLRU, 2nd prefetch technique: ensures that 2 contiguous blocks are
prefetched on miss and on hit of last cached stream block. Split gives the same number
of hits as StreamLRU and more hits than LRU

Prefetch cache size = 4, SplitLRU

hits h1 h2 h3

workload 1 2 1a 3 2a 4 2b

rep.Up Q 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a

rep.Down Q 1b 2b 2b 3b 2c 4b 2d

1b 2a 1b 3a 4b

eject 2b 3b 2c 3a

1b
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is inserted into the insertion end of the Down queue. When a request arrives
for block 3, blocks 3a, 3b are prefetched; block 3a is inserted into the Up queue
which results in block 2a being evicted from the Up queue; this block is inserted
into the Down queue, and then the second block from stream 3, 3b, is inserted
into the Down queue.

Table 4 demonstrates Split LRU using the example workload and the second
prefetch technique presented in the last section. Due to space limitations, LRU
and StreamLRU’s performance with this second prefetch technique is not shown.
With this prefetch technique too, Split achieves the maximum prefetch hit rate
of 3.

4 Experimental Evaluation

We developed a simulator to evaluate Split; the front end model is our cache
simulator, while the back end storage model is the Disksim 4.0 simulator. Table 5
gives the setup used for our experiments. The replacement policy is LRU, and
the prefetch technique is the 2nd one presented in Section 2: prefetch the next
2 contiguous blocks on miss and on hit of last cached stream block.

Table 5. Storage simulator setup

Disksim parameter Value

disk type cheetah9LP

disk capacity 17783240 blocks

mean disk read seek time 5.4 msec

maximum disk read seek time 10.63 msec

disk revolutions per minute 10045 rpm

Workload: Sequential prefetching is effective only if the workload has some se-
quential locality. The workload used in our experiments contains no re-references
to ensure that all hits are prefetch block hits. Our cache workload generator is
composed of sequence generators; we have three types of sequence generators
- single sequential, multiple sequential, and random. Example output from the
three types of sequence generators:
single sequential: < 234, 235, 236, 237, .... >; a single sequence of requests for
contiguous blocks.
multiple sequential: < 100, 101, 102, 103, ...., 4567, 4568, 4569, ..., 95489, 95490,
95491, ... >; two or more subsequences of requests for contiguous blocks; the
number of requests in each subsequence is drawn from a Poisson distribution.
random sequence: < 45, 1982, 99999, 247, 8174, .... >; a single sequence of
requests for random blocks.
Each of our experiment’s workload traces is composed of a total of 100,000
requests from 100 independent, concurrent sequence generators; all generators
start up at the beginning of the simulation. For each sequence, the request
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Fig. 1. Workload with 90 multiple sequential sequences and 10 random sequences.
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Fig. 2. Workload with 50 single sequential and 50 random sequences.
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Fig. 3. Workload with 10 single sequential, 40 multiple sequential, 50 random se-
quences.
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interarrival times are drawn from an exponential distribution. Therefore, the
final workload submitted to our cache simulator are interleaved requests from
the 100 sequence generators. An example of a workload containing the above 3
interleaved sequences is:

< 100, 45, 234, 235, 101, 236, 102, 103, 104, 1982, 99999, 237, 238, 105, 4567,
247, 8174, 4568, ... >.

Note that from the perspective of PA or PM, this example workload contains
several (more than 3) interleaved streams: < 100, 101, 102,... >, < 234, 235, ...
> < 45 >, < 1982 >, < 9999 >, ...... Each request from the random sequence
is viewed by a prefetch technique as a start of a stream, and therefore, each
random request results in a (wasted) prefetch. The last request in a subsequence
of a multiple sequential stream also results in a wasted prefetch.

Performance metrics: The goal of this experimental evaluation is to verify
that a Split queue improves the performance of a prefetch cache. The mean
response time is the performance metric of relevance to end users. In a cache
without prefetching, the higher the cache hit rate, the lower is the mean response
time. In a cache with prefetching, this simple relationship between hit rate and
response time need not hold due to varying intensity of disk traffic generated by
each prefetch technique. For example, PM has a lower prefetch hit rate than PA,
but PM piggybacks prefetch requests onto missed requests and generates less
traffic at the disks which may result in a lower response time for PM. Therefore,
our experiments measure both the prefetch hit rate and the mean response time.
The prefetch hit rate is the ratio of the number of hits to the total number of
user requests in the cache workload. The mean response time is the product of
miss rate (1 - prefetch hit rate) and mean disk response time.

Experiments: In our experiments, we evaluate the single queue with regards to
both LRU and streamLRU since streamLRU is the version of LRU that recog-
nizes prefetch blocks. We measure hit rate and response time for a fixed workload
as the cache size varies. The cache size is increased until the maximum prefetch
hit ratio for the workload is achieved. The workload has no rereferences of blocks,
so a prefetch block is evicted from the cache as soon as it gets a hit (similar to
the examples presented in the last section).

In the first experiment shown in Figure 1, the workload consists of 90 inter-
leaved multiple sequential sequences and 10 random sequences. From the prefetch
technique’s viewpoint, every random request is the start of a new stream, every
start of a new subsequence in a multiple sequential sequence is a new stream.
Therefore, there are more than 100 streams in the workload from the viewpoint
of the prefetch technique. The cache size is varied from 10 to 200 blocks. When
the cache size is 110 blocks, the hit rate of Split is approximately 27% greater
than that of LRU and StreamLRU; resulting in a 23% decrease in response time
of Split.

In the next experiment (Figure 2), the workload is generated by 50 single
sequential sequence generators and 50 random sequence generators. Therefore,
the maximum hit rate for this workload is 0.5. Since 2 blocks are prefetched into
the cache for every random request, the cache contains a lot of useless blocks.
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The maximum hit rate is achieved when the cache approaches 400 blocks. The
greater the randomness in the workload, the larger is the cache size required to
achieve the maximum prefetch hit rate. In the last experiment - Figure 3 - the
workload consists of 40 multiple sequential sequences, 10 sequential sequences,
and 50 random sequences. Again, Split queue performs better than the single
queue. When the cache size is 150 blocks, the hit rate of Split is 38% greater
than that of LRU and SplitLRU. The Split queue achieves maximal performance
for the workload before the single queue.

5 Analysis

In all our experiments, the Split queue performs better than the single queue. In
order to understand why the Split queue performs better than the single queue,
it is necessary to explain sequential (spatial) locality in relation to the actions
of a prefetch technique. In order to amortize the cost of prefetching - reduce the
traffic at the disks - several blocks are prefetched at a time. Not all these blocks
are expected to receive user requests immediately. In fact, the sequential access
pattern dictates that blocks are accessed contiguously, in sequence. Therefore,
when there are 2 prefetched blocks, as in our examples and experiments, the
first block is expected to receive an user request before the second block. Split
incorporates this characteristic by inserting the 1st block in the Up queue and
the 2nd block in the Down queue. Even if the 2nd block gets evicted, the first
block remains in the cache longer than it would in the single queue approach; if
the first block gets a prefetch hit, there is time to prefetch the 2nd block.

The Split queue performs better than the single queue since it incorporates
both the temporal and spatial locality of streams. By evicting blocks from the
least recently used stream, StreamLRU incorporates the temporal locality of
streams. For the workloads considered, StreamLRU performs better than LRU,
but their performances are close, almost statistically identical. This is somewhat
surprising given that LRU does not recognize streams. A possible reason for
the similarity between LRU and StreamLRU’s performance may be found by
looking at the replacement queues in Tables 1 and 2 (Section 2): when user
request for 3 is processed, LRU’s replacement queue contains streams 3, 1, 2,
while StreamLRU’s replacement queue only contains 3 and 1. Since LRU does
not keep stream blocks together, it is possible for LRU’s replacement queue to
hold more streams than StreamLRU’s replacement queue. In general, the Split
queue holds more streams than the single queue and consequently, Split performs
better.

Summarizing, this paper shows that given a prefetch technique and LRU,
performance is improved by simply splitting the replacement queue. Prior work
has shown that the performance of a prefetch technique cannot be studied in
isolation of the replacement policy and vice versa [1] [2] [4]. The intuition be-
hind Split is the recognition that this dependency is a result of the shared data
structure - the cache replacement queue - that both algorithms update. Instead
of targeting the prefetch technique or the replacement policy, Split manipulates
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the queue to maximize performance. In fact, the Split queue is a single queue
with the 2nd prefetched block being inserted midway in the replacement queue.

6 Conclusion

The impact of prefetching and caching is encapsulated in the cache replace-
ment queue. This paper shows that by splitting the queue, the performance of
a prefetch cache improves, without changing the prefetch technique or the re-
placement policy. In the experiments, the lengths of the Up and Down queue are
equal. By setting the Up queue to twice the length of the Down queue, we have
found that there is a greater improvement of Split’s performance. This paper
analyzes the Split queue with a basic prefetch technique that prefetches at most
2 blocks. The Split queue improves performance more significantly if more blocks
are prefetched per stream. Incorporating a combination of the above - increasing
length of Up queue and using a more sophisticated prefetch technique that varies
the amount of prefetch may result in greater improvement of performance.

We plan to evaluate the Split queue approach with other replacement policies.
The Split policy is evaluated here for single-level caches. However, the Split
policy with its 2-queue structure is naturally geared for multiple-level cooperative
caches and it would be interesting to analyze Split in a multiple-level setting.
Other issues that could be addressed include analysis of traffic generation by
the policies, theoretical analysis of Split, and prefetch cache sizing based on hit
rates in Up and Down queues.
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