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Abstract
The performance of a prefetch cache is dependent on
both the prefetch technique and the cache replacement
policy. Both these algorithms execute independently of
each other, but they share a data structure - the cache
replacement queue. The replacement queue captures the
impact of prefetching and caching. This paper shows that
even with a simple sequential prefetch technique, there
is an increase in hit rate and a decrease in response time
when the LRU replacement queue is split into two equal
sized queues. A more significant performance improve-
ment is possible with sophisticated prefetch techniques
and by splitting the queue unequally.

1 Introduction

Prefetching and caching refers to a cache system that
loads data blocks not yet requested by the cache work-
load. The goal is to ensure that the cache contains blocks
that will be requested in the near-future. Prefetching and
caching software essentially consists of two algorithms,
namely, the prefetch technique and the replacement pol-
icy. The software is responsible for leveraging thespatial
andtemporal locality of reference in the cache workload.

A prefetch technique is the software responsible for
identifying access patterns in the cache workload and
loading data blocks from these patterns into the cache
before the blocks are requested. The task of a prefetch
technique is to determine what data blocks to prefetch
and when to prefetch the blocks. For example, if a file is
being read sequentially, the sequential prefetch technique
associated with the file system cache may prefetch sev-
eral blocks contiguous to the requested file block. The
replacement policy is the cache software that determines
which block is evicted from the cache when a new block
is to be loaded into a full cache. Thus, the replacement
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policy is responsible for keeping a prefetch block in the
cache until it is requested.

The prefetch technique and the replacement policy are
standalone - capable of executing independently of each
other - the prefetch technique does not decide when a
prefetched block is evicted; the replacement policy does
not decide when a block is prefetched. The two al-
gorithms together determine the contents of the cache.
Consequently, even though the algorithms are indepen-
dent, the performance of a prefetch technique cannot be
studied in isolation of the replacement policy and vice
versa. The performance - cache hit ratio, response time
- of a prefetch cache depends on the combined impact of
both algorithms.

Prefetching and caching are fundamental to computer
and network systems, so this topic has been exten-
sively researched. However, this topic is not well un-
derstood since it is complex. There are several issues
to be considered - for prefetch techniques: how much
to prefetch, when to prefetch, what to prefetch; what re-
placement policy to use with a particular prefetch tech-
nique, and what prefetch technique to use with a par-
ticular replacement policy. A prefetch/replacement pol-
icy that works well with one workload could perform
poorly with another workload. Relative performances
vary in a seemingly arbitrary manner [6], so there are
no optimal prefetch techniques nor optimal replacement
policies for prefetch caches. Some papers have devel-
oped integrated prefetch and replacement algorithms, but
these algorithms requires a priori knowledge of the work-
load for optimum performance. Most modern file system
and storage caches implement separate prefetching tech-
niques and replacement policies, not an integrated algo-
rithm combining prefetch and cache replacement.

What this paper does: This paper looks at prefetch-
ing and caching from a different perspective than that
of prior papers. We view prefetching and caching as a
synchronization problem, similar to problems such as
producer-consumer, reader-writer, and dining philoso-



phers [26]. In all these problems, there are standalone
algorithms that access a common resource. Similarly, in
prefetching and caching, the prefetch technique and the
replacement policy operate in unison on the cache. From
a software perspective, the common resource is encapsu-
lated in the replacement queue. The cache replacement
queue orders cache blocks by eviction priority and it is
the meta-data used by caching software. The prefetch
technique controls what prefetch blocks are inserted into
the replacement queue and when they are inserted, while
the replacement policy controls where a prefetch block
is placed in the replacement queue. This paper leverages
the replacement queue to improve the performance of
prefetching and caching, without changing the prefetch-
ing technique or the replacement policy.

Contributions: By analyzing the role of the replace-
ment queue, the paper shows that the performance of a
prefetch cache can be improved by merely splitting the
single replacement queue into two queues. Both algo-
rithms, the prefetch technique and the replacement pol-
icy, stay the same. This paper demonstrates theSplit
queue approach using the sequential prefetch technique
and LRU, the most common of the prefetch techniques
and the replacement policies [8]. The paper proves that
the the Split queue always has a higher hit rate than the
single queue, regardless of the workload. Evidence via
simulation shows that Split results in lower response time
and higher hit rate than the single queue.

2 Sequential locality

Prefetching is carried out by caches at all levels of the
memory hierarchy; this papers discusses prefetching in
the context of file system and storage caches. The oper-
ating system maps user read requests for bytes into read
requests for blocks. Therefore, the unit of measurement
used is blocks: a cache size isC blocks; the cache work-
load consists of user requests, where each request is for
a single block.

Workload: A file/storage cache workload consists of
interleaved requests from various users [2, 8, 20]. A
file/storage cache workload with sequentiality is of the
form:

< 1001, 64, 1002, 72345, 65, 323, 66>
The workload is a sequence of block numbers that rep-
resent user requests; the position in the sequence rep-
resents the relative time at which the request arrives at
the cache. That is, requests for blocks 1001, 64, 1002,
72345, 65, 323, 66 arrive at timest1, t2, t3, t4, t5, t6, t7,
respectively.

At first glance, it is difficult to see the sequentiality
in the workload. There are two interleavedstreams of
sequential requests:< 1001, 1002>, < 64, 65, 66>.

The lone requests< 72345>, < 323 > may also be
considered as streams - they represent the start of streams
whose future requests arrive after the observation period.
Thus, the example workload has four streams, namely,

stream 1:< 1001, 1002>,
stream 2:< 64, 65, 66>,
stream 3:< 72345>, and
stream 4:< 323>.

To make it easier to identify the sequentiality in the work-
load, we represent block numbers in a stream as follows:

stream 1:< 1, 1a>,
stream 2:< 2, 2a, 2b>,
stream 3:< 3 >, and
stream 4:< 4 >.

Thus, each block number is mapped to its stream num-
ber and its sequential position within the stream. Using
this new notation, the example workload is written as fol-
lows:

< 1, 2, 1a, 3, 2a, 4, 2b>
A numberi in the workload represents the first request
from streami; the variableia represents the next request
in streami, and so on.

Sequential prefetch techniques are broadly classified
into two types [20]:Prefetch on Miss (PM) andPrefetch
Always (PA). The PM technique generates synchronous
prefetch requests for blocks contiguous to the missed
block whenever a user request misses in the cache. The
basic PA technique generates prefetch requests when-
ever a user request arrives at the cache. A synchronous
prefetch request is generated when a read request misses
in the cache. If this synchronously prefetched block gets
a hit, then an asynchronous prefetch request is generated
for the next block. If a future stream block is already in
the cache, both PM and PA do not fetch it again.

There are several versions of PA. In a common version
of PA, implemented in Linux and BSD, a synchronous
prefetch request is generated on every miss, but an asyn-
chronous prefetch request is not generated on every hit.
Several blocks are prefetched at a time, and one of the
prefetched blocks in each stream is marked as atrigger
block. An asynchronous prefetch for this stream is initi-
ated only when the trigger block gets a hit.

Reconsider the example workload: The maximum
number of sequential prefetch hits possible is three -
for blocks 1a, 2a, 2b. We now present examples that
illustrate that for a given workload, the prefetch tech-
nique determines (1) the order in which blocks are in-
serted into the cache, and (2) the number of prefetch hits
that can be achieved. The examples assume that (1) the
cache is large enough so that no blocks are evicted, and
(2) prefetched blocks are instantaneously loaded into the
cache.



Let the first prefetch technique ensure that for each
user request, the next two contiguous blocks are
prefetched. For the example workload,< 1, 2, 1a, 3,
2a, 4, 2b>, the order in which requests - user requests
or prefetch requests - arrive at the cache is:

< 1, 1a, 1b, 2, 2a, 2b, 1a*, 1c, 3, 3a, 3b, 2a*, 2c, 4,
4a, 4b, 2b*, 2d >.
The requests in italics are the prefetched requests. When
user request 1 arrives, 1a, 1b are prefetched into the
cache; when user request 1a arrives, only 1c is prefetched
since 1b is already in the cache. The * represents a
prefetch hit.

Now, consider a second technique that prefetches 2
blocks on miss, and prefetches 2 blocks on hit of only
the last cached block of the corresponding stream. For
the example workload, the order in which user/prefetch
requests arrive at the cache is:

< 1, 1a, 1b, 2, 2a, 2b, 1a*, 3,3a, 3b, 2a*, 4,4a, 4b,
2b*, 2c, 2d >.
There is no prefetching action when user request 1a ar-
rives since 1b is in the cache; when user request 2b ar-
rives, 2c and 2d are prefetched.

With a PM technique, where 1 block is prefetched on
each miss, the order of requests is:

< 1, 1a, 2, 2a, 1a*, 3,3a, 2a*, 4,4a, 2b,2c >.
Note that with this last technique, the workload only gets
2 prefetch hits.

Replacement policybecomes relevant when the cache is
too small to hold all the blocks. For the example work-
load, consider a cache of size 4 blocks. Table 1 demon-
strates the ordering of the LRU replacement queue with
the first prefetch technique. The example workload does
not display temporal (rereference) locality, so a prefetch
block is moved out of the cache as soon as it receives a
hit.

The LRU policy is designed for workloads that dis-
play temporal locality, but even so, the prefetch cache
achieves the maximum prefetch hit rate of 3. How-
ever, in general, it can be argued that the prefetch cache
would perform better if the replacement policy is aware
of prefetching and sequential locality. Consequently, file
system and storage caches often implement a prefetch
aware version of LRU - all blocks of a stream are placed
contiguously in the replacement queue and moved as a
unit [10]. When a block gets a hit, all prefetched blocks
from the stream are moved to the MRU end of the re-
placement queue. The least recently used stream blocks
are evicted from the cache when a new stream is to be
inserted. This version of LRU, called StreamLRU, is
presented in Table 2. The computational complexity of
StreamLRU is the same as that of LRU.

Note that for the example workload and this prefetch
technique, LRU gets 3 prefetch hits while StreamLRU

only gets 2 hits. In general, however, StreamLRU gets
more prefetch hits than LRU since StreamLRU recog-
nizes the temporal locality of streams and keeps the most
recently used stream blocks in the cache. In fact, for the
second prefetch technique presented earlier - prefetch 2
blocks on miss, prefetch 2 blocks on hit of last stream
block - LRU gets 2 prefetch hits, while StreamLRU gets
3 prefetch hits.

3 Replacement queue

The replacement queue is the link between the prefetch
technique and the replacement policy. The name “re-
placement” queue is misleading since it suggests that the
queue belongs to (i.e., is controlled by) the replacement
policy. However, the prefetch technique determines what
blocks are loaded into the queue, while the replacement
policy determines what blocks are evicted. Therefore,
both the prefetch technique and the replacement policy
manipulate the queue. The queue captures the combined
impact of prefetching and caching. Using this insight,
our next step is to use the queue to improve the perfor-
mance of prefetching and caching.

StreamLRU captures the temporal locality of streams
by moving all blocks from the most recently accessed
stream to the non-eviction end of the replacement queue.
In order to amortize the cost of prefetching - reduce the
traffic at the disks - a prefetch technique loads several
blocks at a time. Not all these blocks are expected to re-
ceive user requests immediately. In fact, the sequential
access pattern dictates that blocks are accessed contigu-
ously, in sequence. When there are 2 prefetched blocks,
as in our examples, the first block is expected to receive
an user request before the second block. Therefore, while
inserting the blocks in the replacement queue, give place-
ment priority to the first block of every stream, thereby
ensuring that the second block is evicted before the first
block. The materialization of this idea to the queue is
done by splitting the replacement queue into two queues
and inserting the first block in the higher priority queue
and the second block into the lower priority queue - we
call this the split queue technique.

3.1 Split

Split divides the single replacement queue into two
queues, the Up queue and the Down queue - a block
evicted from the LRU end of the Up queue is inserted
into the MRU end of the Down queue; all evictions from
the prefetch cache are from the LRU end of the Down
queue. When two blocks of a stream are prefetched, the
earlier (i.e., first) block of the stream is inserted into the
Up queue; if any block is evicted from the LRU end of
the Up queue then this block is inserted into the MRU



Table 1: LRU, 1st prefetch technique: ensures that for
each request the next 2 contiguous blocks are loaded.

Prefetch cache size = 4, LRU
hits h1 h2 h3
workload 1 2 1a 3 2a 4 2b
rep.Queue 1a 2a 1c 3a 2b 4a 2d

1b 2b 2a 3b 2c 4b 4a
1a 2b 1c 3a 2b 4b
1b 1b 2a 3b 2c 2c

eject 2b 1c 3a
1b 3b

Table 2: StreamLRU, 1st prefetch technique: ensures
that for each request the next 2 contiguous blocks are
loaded.

Prefetch cache size = 4, StreamLRU
hits h1 h2
workload 1 2 1a 3 2a 4 2b
rep.Queue 1a 2a 1b 3a 2b 4a 2c

1b 2b 1c 3b 2c 4b 2d
1a 2a 1b 3a 2b 4a
1b 2b 1c 3b 2c 4b

eject 2a 1b 3a
2b 1c 3b

Table 3: SplitLRU, 1st prefetch technique: ensures that
for each request the next 2 contiguous blocks are loaded.
Split gives the same number of hits as LRU and more hits
than StreamLRU.

Prefetch cache size = 4, SplitLRU
hits h1 h2 h3
workload 1 2 1a 3 2a 4 2b
rep.Up Q 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a

rep.Down Q 1b 2b 1c 3b 2c 4b 2d
1b 2b 2a 1b 3a 4b

eject 1c 3b 2c 3a
2b 1b

Table 4: SplitLRU, 2nd prefetch technique: ensures that
2 contiguous blocks are prefetched on miss and on hit of
last cached stream block. Split gives the same number of
hits as StreamLRU and more hits than LRU

Prefetch cache size = 4, SplitLRU
hits h1 h2 h3
workload 1 2 1a 3 2a 4 2b
rep.Up Q 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a

rep.Down Q 1b 2b 2b 3b 2c 4b 2d
1b 2a 1b 3a 4b

eject 2b 3b 2c 3a
1b

end of the Down queue; finally, the later (i.e., second)
block of the newly prefetched stream is inserted into the
MRU end of the Down queue. Split, like StreamLRU,
assumes that the replacement policy recognizes streams,
but unlike StreamLRU (and like LRU), Split does not re-
quire that all stream blocks be placed together in the re-
placement queue.

Table 3 demonstrates Split LRU using the example
workload and the first prefetch technique presented in the
last section. In the example, when a request arrives for
prefetched block1a, the block1a is removed from the
prefetch cache (since it is now referenced). The prefetch
cache contains block1b. Since the replacement policy is
prefetch aware LRU, block1b is moved from the Down
queue to the insertion end of the Up queue, and the newly
prefetched block1c is inserted into the insertion end of
the Down queue. When a request arrives for block3,
blocks3a, 3b are prefetched; block3a is inserted into the
Up queue which results in block2a being evicted from
the Up queue; this block is inserted into the Down queue,
and then the second block from stream 3,3b, is inserted
into the Down queue.

Table 4 demonstrates Split LRU using the example
workload and the second prefetch technique presented
in the last section. Due to space limitations, LRU
and StreamLRU’s performance with this second prefetch
technique is not shown. With this prefetch technique too,
Split achieves the maximum prefetch hit rate of 3.

Summarizing, Split incorporates the assumptions
made by the replacement policy and the prefetch tech-
nique. The replacement policy, StreamLRU, assumes
that recently accessed streams will receive requests
again; the prefetch technique prefetches several blocks
to reduce cost of prefetch, but assumes that earlier stream
blocks will receive requests before the later blocks. By
moving the later blocks in a stream to the lower priority
queue, Split mimics Belady’s optimum MIN replacement
policy [4] - first throw out the block needed in the most
distant future. The power of Split lies in the recognition
that the queue captures the actions of both algorithms,
so the independent actions of the two algorithms can be
synchronized to work toward the common goal of keep-
ing blocks required in the near future in the cache.

4 Theory

We theoretically compare the performances of LRU,
StreamLRU and SplitLRU. The prefetch technique en-
sures thatx ≥ 2 blocks contiguous to the latest work-
load request are in the cache. For simplicity, letx be an
even number,x/2 stream blocks are loaded into the Up
queue, while the latterx/2 stream blocks are loaded into
the Down queue. We refer to the firstx/2 blocks of a
stream as the first half, and the secondx/2 blocks as the



last half of the stream. The cache size isC blocks, where
C is a multiple ofx/2.

Prefetching is about streams, so all results pertain to
streams. If earlier blocks of a stream are evicted from
the cache, but the cache holds later blocks of the stream
then the next workload request for a block from this
stream will miss; thus, the stream is effectively evicted
from the cache. Let#Stream, #Split and#LRU represent
the number of streams in the cache when the replace-
ment policy is StreamLRU, SplitLRU and LRU, respec-
tively. Let {Stream}, {Split} and{LRU} represent the
set of streams in the cache when the replacement policy
is StreamLRU, SplitLRU and LRU, respectively.

We provide informal explanations for all the results,
but due to space limitations, we provide proofs only
when the informal explanation is insufficient. The next
result follows from the definition of StreamLRU, namely,
moving the entire stream to the MRU end upon a hit.

Result 1 StreamLRU ensures that the most recently ac-
cessed ⌈C

x
⌉ streams are in the cache.

#Stream = ⌈
C

x
⌉

Result 2 Split LRU ensures that at least ⌈C
x
⌉ and at most

⌈C
x
⌉ + ⌊ C

2x
⌋ of the most recently accessed streams are in

the cache.

⌈
C

x
⌉ ≤ #Split ≤ ⌈

C

x
⌉ + ⌊

C

2x
⌋

Proof: We prove the result by showing that between two
accesses to a stream it is possible to have⌈C

x
⌉+ ⌊ C

2x
⌋−1

accesses to unique streams.
The Up queue size contains⌈C

x
⌉× x

2
blocks, while the

Down queue contains⌊C
x
⌋ × x

2
blocks.

The Split policy ensures that the first half of the most
recently accessed⌈C

x
⌉ are in the Up queue. With each

new first half stream insertion into the Up queue, an
Up block movesx/2 positions toward the eviction end.
Hence, the first half of a stream stays in the Up queue for
at least⌈C

x
⌉ − 1 unique stream accesses.

When a block is ejected from the Up queue, it is
moved to the Down queue, behind the second half of the
newly inserted stream. When a new stream is inserted, 2
stream halves are inserted into the Down queue - the sec-
ond half from the new stream and the first half evicted
from the Up queue. Therefore, with each stream inser-
tion, every Down block movesx positions downward to-
ward the eviction end. Thus, a block stays in the Down
queue for⌊ C

2x
⌋ unique stream accesses.

�

The next results follow directly from Results 1 and 2.

Corollary 1 With respect to streams, the StreamLRU
cache is a subset of the Split cache. That is, {Stream} ⊆
{Split}.

Theorem 1 The hit rate of a Split LRU cache is an upper
bound to the hit rate of a StreamLRU cache.

We now compare LRU against SplitLRU and
StreamLRU. The prefetch technique ensures thatx
blocks contiguous to the workload request are loaded
in the cache. New prefetch blocks are inserted into the
MRU end of the cache, but if the cache already contains a
contiguous block, this block retains its position in the re-
placement queue. In Table 1, when the workload request
is 1a, the prefetch technique loads 1c into the MRU end,
but block 1b retains its position at the eviction end of the
queue. The prefetch blocks are evicted in FIFO order by
LRU. The older contiguous blocks would get evicted be-
fore the newer contiguous blocks. Thus, LRU may evict
the first half of a stream before the second half of this
stream. As a result, it is possible for a workload request
to get a miss even though a later block of the stream is
present in the cache. A consequence of evicting prefetch
blocks in FIFO order is:

Result 3 LRU evicts streams in FIFO order and holds at
most ⌈C

x
⌉ streams in the cache.

#LRU ≤ ⌈
C

x
⌉

Note that StreamLRU and SplitLRU keep the most re-
cently accessed streams in the cache. The LRU pol-
icy evicts streams in FIFO order, so the streams in the
LRU cache are not necessarily the most recently ac-
cessed streams. The theoretical analysis in this section
allows one to understand the essential traits of LRU,
StreamLRU and SplitLRU. However, we need to evalu-
ate whether the superior hit rate of Split translates into
lower response time. In the next section, we address
this issue by a simulation analysis of the relative perfor-
mances of the single queue and split queue approach.

5 Experiments

We developed a simulator to evaluate Split; the front end
model is our cache simulator, while the back end storage
model is the Disksim 4.0 simulator. Table 5 gives the
setup used for our experiments. The replacement pol-
icy is LRU, and the prefetch technique is the 2nd one
presented in Section 2: prefetch the next 2 contiguous
blocks on miss and on hit of last cached stream block.
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Figure 1: Workload with 90 multiple sequential sequences and 10 random sequences.
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Figure 2: Workload with 50 single sequential and 50 random sequences.
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Figure 3: Workload with 10 single sequential, 40 multiple sequential, 50 random sequences.
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Figure 4: The Up queue is twice as long as the Down Queue in Split23; Workload with 80 multiple sequential and 20
random sequences.

Table 5: Storage simulator setup

Disksim parameter Value

disk type cheetah9LP
disk capacity 17783240 blocks

mean disk read seek time5.4 msec
maximum disk read seek time10.63 msec

disk revolutions per minute 10045 rpm

Workload: Sequential prefetching is effective only if the
workload has some sequential locality. We follow the ap-
proach used in earlier papers [9, 10, 20] and generate a
workload based on SPC2 specifications [2]. The cache
workload generator is composed of sequence generators;
based on SPC2 specifications, there are three types of se-
quence generators - single sequential, multiple sequen-
tial, and random. Example output from the three types of
sequence generators:
single sequential:< 234, 235, 236, 237, ....>; a single
sequence of requests for contiguous blocks.
multiple sequential:< 100, 101, 102, 103, ...., 4567,
4568, 4569, ..., 95489, 95490, 95491, ...>; two or
more subsequences of requests for contiguous blocks;
the number of requests in each subsequence is drawn
from a Poisson distribution.
random sequence:< 45, 1982, 99999, 247, 8174, ....>;
a single sequence of requests for random blocks.
Each of the experiment’s workload traces is composed
of 100,000 requests from 100 independent, concurrent
sequence generators; all generators start up at the be-
ginning of the simulation. For each sequence, the re-
quest interarrival times are drawn from an exponential

distribution. Therefore, the final workload submitted to
the cache simulator consists of interleaved requests from
the 100 sequence generators. An example of a workload
containing the above 3 interleaved sequences is:

< 100, 45, 234, 235, 101, 236, 102, 103, 104, 1982,
99999, 237, 238, 105, 4567, 247, 8174, 4568, ...>.
Note that from the perspective of PA or PM, this exam-
ple workload contains several (more than 3) interleaved
streams:< 100, 101, 102,...>, < 234, 235, ... > <
45 >, < 1982>, < 99999>, ...... Each request from
the random sequence is viewed by a prefetch technique
as a start of a stream, and therefore, each random request
results in a (wasted) prefetch. The last request in a sub-
sequence of a multiple sequential stream also results in a
wasted prefetch.
Performance metrics: The goal of this experimental
evaluation is to verify that a Split queue improves the per-
formance of a prefetch cache. The mean response time
is the performance metric of relevance to end users. In a
cache without prefetching, the higher the cache hit rate,
the lower is the mean response time. In a cache with
prefetching, this simple relationship between hit rate and
response time need not hold due to varying intensity of
disk traffic generated by each prefetch technique. For
example, PM has a lower prefetch hit rate than PA, but
PM piggybacks prefetch requests onto missed requests
and generates less traffic at the disks which may result
in a lower response time for PM. Therefore, the exper-
iments measure both the prefetch hit rate and the mean
response time. The prefetch hit rate is the ratio of the
number of hits to the total number of user requests in the
cache workload. The mean response time is the product
of miss rate (1 - prefetch hit rate) and mean disk response



time.
Experiments: The experiments evaluate the single
queue with regards to both LRU and streamLRU since
streamLRU is the version of LRU that recognizes
prefetch blocks. We measure hit rate and response time
for a fixed workload as the cache size varies. The cache
size is increased until the maximum prefetch hit ratio for
the workload is achieved.

In the first experiment shown in Figure 1, the work-
load consists of 90 interleaved multiple sequential se-
quences and 10 random sequences. From the prefetch
technique’s viewpoint, every random request is the start
of a new stream, every start of a new subsequence in a
multiple sequential sequence is a new stream. Therefore,
there are more than 100 streams in the workload from
the viewpoint of the prefetch technique. The cache size
is varied from 10 to 200 blocks. When the cache size
is 110 blocks, the hit rate of Split is approximately 30%
greater than that of LRU and StreamLRU; resulting in a
25% decrease in response time of Split.

In the next experiment (Figure 2), the workload is gen-
erated by 50 single sequential sequence generators and
50 random sequence generators. Therefore, the maxi-
mum hit rate for this workload is 0.5. Since 2 blocks are
prefetched into the cache for every random request, the
cache contains a lot of useless blocks. The maximum hit
rate is achieved when the cache approaches 400 blocks.
The greater the randomness in the workload, the larger is
the cache size required to achieve the maximum prefetch
hit rate. In the last experiment - Figure 3 - the work-
load consists of 40 multiple sequential sequences, 10 se-
quential sequences, and 50 random sequences. Again,
Split queue performs better than the single queue. When
the cache size is 150 blocks, the hit rate of Split is 40%
greater than that of LRU and SplitLRU. The Split queue
achieves maximal performance for the workload before
the single queue. Note that with a more sophisticated
prefetch technique, one that prefetches more blocks from
recognized streams, the performance improvements in
Split could be greater.
Split23: By varying the relative sizes of the Up and
Down queues, one can improve the performance of Split.
When the size of the Up queue is larger than the Down
queue, the first half of each stream remains longer in the
cache at the cost of evicting the second half sooner. The
result is a higher cache hit rate and a lower response
time (Figure 4). A long Up queue may be undesirable
for workloads with higher request rates because the ef-
ficiency of prefetching multiple blocks is lost. On the
other hand, a long Up queue may benefit workloads with
a large number of intermittent streams. The Split Up and
Down queues can be adjusted to the sequentiality of the
workload. If the number of hits in the Down queue is
greater than the number of hits in the Up queue, it indi-

cates that streams may be getting evicted too soon. This
can be addressed by either increasing the size of the Up
queue, or by reducing the degree of prefetch.
Summary: The Split queue performs better than the sin-
gle queue since it incorporates both the temporal and spa-
tial locality of streams. By evicting blocks from the least
recently used stream, StreamLRU incorporates the tem-
poral locality of streams. For the workloads considered,
StreamLRU performs better than LRU, but their perfor-
mances are close, almost statistically identical. This is
somewhat surprising given that LRU does not recognize
streams.

6 Prior papers

The sequential access pattern is common in file/storage
cache workloads. Consequently, a large number of se-
quential prefetch techniques exist for file and storage
caches [5, 8, 11, 20, 22, 28, 31]. These papers differ
in when they initiate prefetch, and in how many blocks
they prefetch. Prefetching techniques that try to identify
other access patterns in the workload have also been de-
veloped [1, 12, 21, 27]. However, commercial storage
systems rarely implement these complex prefetch tech-
niques since they are computationally expensive and may
actually slow down the system [10].

The replacement policy is critical to the performance
of caches, and so there are a large number of papers on
this topic. Several replacement policies have been de-
veloped, and the policies can be classified into 4 types,
namely, FIFO (LIFO): based on time of insertion into
the cache; LRU (MRU): based on time of last access (re-
cency); LFU: based on frequency of access; and LRU-
2 [24, 25], 2Q [15], LIRS [14], LRFU [19], MQ [32],
ARC [23]: based on both recency and frequency of ac-
cess. An underlying theme to all these policies, with
the exception of FIFO, is that they are designed for data
blocks with temporal locality. These policies are not nec-
essarily optimal for prefetch blocks with spatial locality.

There are very few replacement policies that consider
the impact of prefetch blocks. The SARC technique
uses StreamLRU [10] as the replacement policy for the
prefetch cache. SARC focuses on prefetch cache siz-
ing, and compares the number of hits in the prefetch
cache and the reference cache to determine whether to
eject a block from the prefetch list or the reference list.
Since Split performs better than Stream, replacing the
StreamLRU policy by Split would improve the perfor-
mance of SARC. DULO [13] is a replacement policy
that accounts for both temporal and sequential locality;
DULO gives priority to random blocks over sequential
blocks since the cost of loading several sequential blocks
is less than the cost of loading random disk blocks. Con-
sequently, DULO increases temporal hit rate at the cost



of spatial hit rate.
Several papers analyze integrated prefetch and caching

algorithms. These algorithms normally have prior
knowledge of the workload [3, 7, 16, 17, 18, 29, 30].

The prevalent approach to improving the performance
of a prefetch cache is to develop a new prefetch tech-
nique. Prior research has largely ignored the depen-
dency between the prefetch technique and the replace-
ment policy. Replacement policies are normally evalu-
ated in caches without prefetching; prefetch techniques
are evaluated with a fixed replacement policy, usually
LRU. A recent paper has demonstrated via simulations
that the relative performances of replacement policies are
unpredictable when combined with prefetching [6]. This
paper is the first to identify prefetching and caching as a
synchronization problem. By viewing the problem from
a different light, this paper shows that the performance of
prefetching and caching can be improved without modi-
fying the basic algorithms. In fact, by framing prefetch
caching as a synchronization problem, Split integrates
the actions of standalone prefetch and replacement al-
gorithms.

7 Discussion

Researchers have a good comprehension of prefetch
techniques and replacement policies, in isolation. How-
ever, we are a long way from understanding the com-
bined impact of the two algorithms. Relating to classical
synchronization problems such as reader-writer: it is not
the individual reader algorithm and writer algorithm that
is fascinating, it is the interaction between the two algo-
rithms that makes this problem interesting and challeng-
ing. Since prefetching and caching is inherent to today’s
computers, an understanding of the interaction between
the two key algorithms could lead to performance im-
provements without investing in new hardware/software
as demonstrated by Split. The Split queue is a single
queue with the 2nd prefetched block being inserted mid-
way in the replacement queue. It is simple, but simplicity
requires understanding.

It is not really surprising that prefetching and caching
has not been cast as a synchronization problem. In clas-
sical synchronization problems, the individual algorithm
is not very complex or interesting by itself; for exam-
ple, the reader and writer algorithms are pretty straight-
forward. In the prefetch cache problem, however, the
prefetch technique and the replacement policy are both
research problems, each in its own right. Each algorithm
has to deal with several parameters, and seemingly ar-
bitrary performance changes occur by tweaking any pa-
rameter [6]. Some of these parameters/issues are: the
cache size, the workload, identification of workload ac-
cess patterns, the number of blocks to prefetch, when to

prefetch, when to evict, and what to evict. Since there
are so many parameters, it is difficult to see anything, let
alone understand what and why. Belady’s anomaly [4],
a rare occurrence in caches without prefetching, is com-
mon in caches with prefetching. By focusing on the re-
placement queue as the software entity that captures the
impact of all the parameters involved in prefetching and
caching, it may be possible to understand and develop
better systems.

8 Conclusion

The impact of prefetching and caching is encapsulated in
the cache replacement queue. This paper shows that by
splitting the queue, the performance of a prefetch cache
improves, without changing the prefetch technique or the
replacement policy. The contributions of this paper are
the following:

1. formalization and analysis of StreamLRU;

2. development and analysis of Split;

3. proof that the SplitLRU cache holds more streams
than either the LRU cache or the StreamLRU cache;

4. proof that the hit rate of SplitLRU is an upper bound
for the hit rate of StreamLRU;

5. evidence via simulation that SplitLRU results in
lower response time and higher hit rate than LRU
and StreamLRU.

In most of the experiments, the lengths of the Up
and Down queue are equal. In future work, we plan
to show that adjusting the length of Up queue and us-
ing a more sophisticated prefetch technique that varies
the amount of prefetch results in greater improvement of
performance. We plan to evaluate Split queue with other
replacement policies and prefetch techniques. The Split
policy is evaluated here for single-level caches. How-
ever, the Split policy with its 2-queue structure is natu-
rally geared for multiple-level cooperative caches and it
would be interesting to analyze Split in a multiple-level
setting. Another interesting problem is prefetch cache
sizing based on hit rates in Up and Down queues.

While this paper is focused on the Split queue, the
real contribution of the paper is the identification of the
replacement queue as a significant player in the perfor-
mance of prefetching and caching. While it is a well
known fact that the performances of prefetch techniques
and replacement policies are dependent on each other, it
is not known how to evaluate this dependency. This is the
first paper to establish that the replacement queue could
be used to understand the dependency between the two
key algorithms behind prefetching and caching.
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