I mprove Prefetch Performance by Splitting the Cache Replacement Queue

Elizabeth Varki Allen Hubbe Arif Merchant
University of New Hampshire EMC Google
var ki @cs.unh.edu Allen.Hubbe@emc.com aamerchant@google.com
Abstract technique does not decide when a prefetched block is

The performance of a prefetch cache is dependent 0ﬁwcted; the replacement policy does not decide when a

both the prefetch technique and the cache replacemengf)Ck is prefetched. The two algorithms together deter-
: . : ine the contents of the cache.

policy. Both these algorithms execute independently of " Both the prefetch techniaue and the replacement pol-

each other, but they share a data structure - the cache P q P P

. .. ICy have a say in the contents of the cache via the re-
replacement queue. This paper shows that even with 8 y

simple prefetch technique, there is an increase in hit ratglacement queue. The cache replacement queue orders
pie p que, cache blocks by eviction priority and it is the meta-data

V\{hen the LRU replacem_ent_queue is splitinto tv_vo equalused by caching software. Even though the prefetch tech-

sized queues. A more significant performance improve- . . L

: ! : o . “nigue and the replacement policy are distinct standalone

ment is possible with a sophisticated prefetch technlqueI ith h h his d h fetch
and by splitting the queue unequally agorl_t ms, they share this data structure. T e pre gtc
' technique controls what prefetch blocks are inserted into

the replacement queue and when they are inserted, while
1 Introduction the replacement policy controls where a prefetch block is

placed in the replacement queue. The cache replacement

A prefetch technique is the software responsible for idendueue encapsulates the combined impact of the two al-

tifying access patterns in the cache workload and loadin@orithms, and ultimately determines the performance of

data blocks from these patterns into the cache before thi&e prefetch cache.

blocks are requested. For example, if a file is being read Contribution: This paper shows that the performance

sequentially, the prefetch technique associated with th€f a prefetch cache can be improved by merely splitting

file system cache may prefetch several blocks contiguthe single replacement queue into two queues. The re-

ous to the requested file block. Thus, a prefetch techPlacement policy should be aware of the two queues and

nique is responsible for leveraging thetial locality of ~ Of the prefetched blocks. This paper demonstrates the

reference in the cache workload. Split queue approach using the sequential prefetch tech-
The task of a prefetch technique is to determine whafique and the LRU replacement policy.

data blocks to prefetch and when to prefetch the blocks.

The prefetch technique, however, does not control wherp Sequential locality

a prefetched block is evicted from the cache. The re-

placement policy is the cache software that determine®refetching is carried out by caches at all levels of the

which block is evicted from the cache when a newmemory hierarchy; this papers discusses prefetching in

block is to be loaded into a full cache. Therefore, it isthe context of file system and storage caches. The oper-

the replacement policy that is responsible for keeping ating system maps user read requests for bytes into read

prefetch block in the cache until it is requested. requests for blocks. Therefore, the unit of measurement
The goal of cache software is to ensure that the cachased is blocks: a cache sizeGdblocks; the cache work-

contains blocks that will be requested in the near-futureload consists of user requests, where each request is for

The cache software essentially consists of two algoa single block.

rithms, namely, the prefetch technique and the replace-

ment policy. The two algorithms are standalone - capabl&Vorkload: We explain Split using an example workload

of executing independently of each other - the prefetctthat displays sequential locality:

< 1001, 64, 1002, 72345, 65, 323, 66 cache is large enough so that no blocks are evicted, and
The workload is a sequence of block numbers that repf2) prefetched blocks are instantaneously loaded into the
resent user requests; the position in the sequence repache.
resents the relative time at which the request arrives at Let the first prefetch technique ensure that for each
the cache. That is, requests for blocks 1001, 64, 1002jser request, the next two contiguous blocks are
72345, 65, 323, 66 arrive at times t», t3, ty4, ts, tg, t7, prefetched. For the example workload, the order in

respectively. which requests - user requests or prefetch requests - ar-
At first glance, it is difficult to see the sequentiality rive at the cache is:
in the workload. There are two interleavetleams of < 1, 1a, 1b, 2, 23, 2b, 1la*, 1c, 3, 3a, 3b, 2a*, 2c, 4,

sequential requestsc 1001, 1002>, < 64, 65, 66>. 4a, 4b, 2b*, 2d >.
The lone requests. 72345>, < 323 > may also be The requests in italics are the prefetched requests. The *
considered as streams - they represent the start of streamepresents a prefetch hit.
whose future requests arrive after the observation period. Now, consider a second technique that prefetches 2
Thus, the example workload has four streams, namelyhlocks on miss, and prefetches 2 blocks on hit of last
stream 1:< 1001, 1002>, stream 2:< 64, 65, 66>, cached block of the corresponding stream. For the exam-
stream 3:< 72345>, and stream 4x 323>. To make ple workload, the order in which user/prefetch requests
it easier to identify the sequentiality in the workload, we arrive at the cache is:
represent block numbers in a stream as follows: stream < 1, 1a, 1b, 2, 2a, 2b, 1a*, 3,3a, 3b, 2a*, 4, 4a, 4b,
1: < 1, 1a>, stream 2:< 2, 2a, 2b>, stream 3:< 3 2b*, 2¢, 2d >.
>, and stream 4< 4 >. Thus, each block number is With a PM technique, where 1 block is prefetched on
mapped to its stream number and its sequential positioeach miss, the order of requests is:
within the stream. Using this new notation, the example <« 1,1a, 2,2a, 1a*, 3,3a, 2a*, 4,4a, 2b,2c >.
workload is written as follows: Note that with this last technique, the workload only gets
<1,2,1a,3,2a,4,2b 2 prefetch hits.
A numberi in the workload represents the first request
from stream; the variablea represents the next request Rep|acen']ent p0||cy becomes relevant when the cache is
in stream;, and so on. too small to hold all the blocks. For the example work-
load, consider a cache of size 4 blocks. Table 1 demon-
Sequential prefetch techniques are broadly classified strates the ordering of the LRU replacement queue with
into two types [5]: Prefetch on Miss (PM) andPrefetch the first prefetch technique. The example workload does
Always (PA). The PM technique generates synchronousot displaytemporal (rereference) locality, so a prefetch
prefetch requests for blocks contiguous to the missedblock is moved out of the cache as soon as it receives a
block whenever a user request misses in the cache. Thut.
basic PA technique generates prefetch requests when- The LRU policy is designed for workloads that dis-
ever a user request arrives at the cache. A synchronoysay temporal locality, but even so, the prefetch cache
prefetch request is generated when a read request missashieves the maximum prefetch hit rate of 3. How-
in the cache. If this synchronously prefetched block getsver, in general, it can be argued that the prefetch cache
a hit, then an asynchronous prefetch request is generatagbuld perform better if the replacement policy is aware
for the next block. of prefetching and sequential locality. Consequently, file
There are several versions of PA. In a common versiorsystem and storage caches often implement a prefetch
of PA, implemented in Linux and BSD, a synchronousaware version of LRU - all blocks of a stream are placed
prefetch request is generated on every miss, but an asyeentiguously in the replacement queue and moved as a
chronous prefetch request is not generated on every hitinit [3]. When a block gets a hit, all prefetched blocks
Several blocks are prefetched at a time, and one of th&om the stream are moved to the MRU end of the re-
prefetched blocks in each stream is marked &$gger placement queue. The least recently used stream blocks
block. An asynchronous prefetch for this stream is initi- are evicted from the cache when a new stream is to be
ated only when the trigger block gets a hit. inserted. This version of LRU, called StreamLRU, is
Reconsider the example workload: The maximumpresented in Table 2. The computational complexity of
number of sequential prefetch hits possible is three StreamLRU is the same as that of LRU.
for blocks 1a, 2a, 2b. We now present examples that Note that for the example workload and this prefetch
illustrate that for a given workload, the prefetch tech-technique, LRU gets 3 prefetch hits while StreamLRU
nique determines (1) the order in which blocks are in-only gets 2 hits. In general, however, StreamLRU gets
serted into the cache, and (2) the number of prefetch hiteore prefetch hits than LRU since StreamLRU recog-
that can be achieved. The examples assume that (1) thzes the temporal locality of streams and keeps the most

recently used stream blocks in the cache. In fact, for th
second prefetch technique presented earlier - prefetch
blocks on miss, prefetch 2 blocks on hit of last stream
block - LRU gets 2 prefetch hits, while StreamLRU gets
3 prefetch hits.

eEable 1: LRU, 1st prefetch technique: ensures that for

each request the next 2 contiguous blocks are loaded.
Prefetch cachesize=4, LRU

hits hl h2 h3

wor kload 1| 2|1a| 3|2a| 4| 2b

rep.Queue | la| 2a|1c|3a|2b|4a| 2d

1b| 2b|2a|3b| 2c | 4b | 4a

3 Split la|2b| 1c [3a|2b]| 4b
1b| 1b| 2a|3b| 2c| 2c

This is a how-to section that explains the mechanics| gect 2b | 1c | 3a

of Split queue with respect to sequential prefetch and 1b 3b

LRU. The next section presents experimental evidence

of Split's superior performance when the workload dis- _ o
plays sequential locality. Section 5 presents the intitio 120l 2: StreamLRU, 1st prefetch technique: ensures

behind Split and explains why the Split queue is bettefthat for each request the next 2 contiguous blocks are

; loaded.
than the .S|.ngle queue-.) Prefetch cache size = 4, StreamLRU
Split divides the single replacement queue into two hits hi ho

queues, the Up queue and the Down queue - a block workioad 1T 21 1al 31 2al 21 2
evicted from the LRU end of the Up queue is inserted rep.Queue | 1a | 2a | 1b | 3a | 2b | 4a | 2¢
into the MRU end of the Down queue; all evictions from o T2b 1 1c T3b [2c | 4b | 2d
the prefetch cache are from the LRU end of the Down 1a2a1b [3a | 2b | 2a
gueue. When two blocks of a stream are prefetched, th 16 72b [1c T3b | 2c | 4b
earlier {.e,, first) block of the stream is inserted into the .

Up queue; if any block is evicted from the LRU end of gect 2a | 1b | 3a
the Up queue then this block is inserted into the MRU 2b|ic | 3b
end of the Down queue; finally, the latdre(, second)

block of the newly prefetched stream is inserted into theraple 3: SplitLRU, 1st prefetch technique: ensures that
MRU end of the Down queue. Split, like StreamLRU, for each request the next 2 contiguous blocks are loaded.

assumes that the replacement policy recognizes streamgp|it gives the same number of hits as LRU and more hits
but unlike StreamLRU (and like LRU), Split does not re- han StreamLRU.

quire that all stream blocks be placed together in the re Prefetch cachesize = 4, SplitLRU
placement queue. hits h1l h2 h3
Table 3 demonstrates Split LRU using the example| workload 1| 2|1a| 3|2a| 4| 2b
workload and the first prefetch technique presented in the rep.Up Q la|2a|1b|3a|2b|4a| 2c
last section. In the example, when a request arrives fof la|2a|1b|3a|2b| 4a

prefetched blocKa, the blockla is removed from the IL rep.DownQ | 1b] 2b | 1c | 3b | 2c | 4b | 2d
prefetch cache (since it is now referenced). The prefetc 1b| 2b| 2a | 1b | 3a | 4b
cache contains block. Since the replacement policy is gect 1c 1 30 | 2¢c | 3a
prefetch aware LRU, blockb is moved from the Down b 1o
gueue to the insertion end of the Up queue, and the newly
prefetched blocK ¢ is inserted into the insertion end of
the Down queue. When a request arrives for bléck Table 4: SplitLRU, 2nd prefetch technique: ensures that
blocks3a, 3b are prefetched; blocka is inserted into the 2 contiguous blocks are prefetched on miss and on hit of
Up queue which results in blocks being evicted from last cached stream block. Split gives the same number of
the Up queue; this block is inserted into the Down queuehits as StreamLRU and more hits than LRU

and then the second block from streans, is inserted Prefetch cache size = 4, SplitL RU
into the Down queue. hits hl h2 h3
Table 4 demonstrates Split LRU using the examplg_Workload 1] 2|1a| 3|2a| 4|2b
workload and the second prefetch technique presentad’ &-UP Q laj2a)|1b)3a|2b]|4a | 2c
in the last section. Due to space limitations, LRU laj2a|1b|3a|2b|4a
and StreamLRU'’s performance with this second prefetch rep.DownQ | 1b | 2b| 2b | 3b | 2c | 4b | 2d
technique is not shown. With this prefetch technique too 1b 2a | 1b | 3a | 4b
Split achieves the maximum prefetch hit rate of 3. g ect 2b | 3|2 | 3a
1b

Response Time:

Prefetch Hit Rate:

. MQN ,U U,
w wQQN 4 - m 024 - m v; 024
z 152 4] H € v 1 %6e | E v 1 %6e
1%z (%) He © v 4%, Heo © V; 4%,
o — = 0 DO S = 0 DO €
m.m 1%; @ m Ha 5z v H%e £ Ha 5 z v 1%
A& \Qhwum S HHwn v 3 v 1% Y . Hwn v 3 vd {%cc
. \Qkym w E\H v v \NN%N % E\H .y ﬁh \Nwm,
J 10,9 8 g4 & v 1% 0 & gHé 4 v 1{%:
05, < = 1% S @ =H v %
1% ¢ e = Oe, © = 0,
{07 8 1% 8 2 - 1%
7y O o [} Jo&L & | 1o
lop, = k=l 0 €& 3 m. 0 €&
> c c %5 = cr 192>
{06 .w m m. i Q@N 9 .m m.\ \ Q@N
1% 3§ n H%; o G 0 %,
lo, ®© Q los ® - (O8N {o
< O o S © o Sr
1% o nﬁ \Q%N m w - \Q%N
H10s G o 1%: g - 192,
Jog 8 m 40 O .m - 10
Hoc S R w« I 3 R w«
40 %l 1 Q% < I 7 Q%
o,) %€ = r 1%
! ! ! ! ! —_— ! I \QN < L I I \QN
=) © © <« ~ =) © < ~ =) Q ~ =) © © < ~ =)
— = > — —
(spuodasijjiw) awi} asuodsay m (Spuodasi|jiw) awi} asuodsay m (spuodasijjiw) awn asuodsay
S (]
g Q
()]
% % = c =
1o Q =
Q@N o o] H 02y n L v < H 02,
1%, = vy c | Os, o - v IS H %;
{0, S Ly o5 _[os o SRS 5 _ ot
—_ " = o iy e . = o
1%, 5 IS r,A D..UW\Q%%% = - r,< D..UW\Q%%
\Q@/u& o N A,w SSL\Q&,M = Lk A,q. SSL\Q%%
\evwm () I M « YH% 5 kel 9r 1 * v %
Jos = © <« v H PR Qo,w 9] 1] © | PR H P oo,w
o = A v c \ v
los £ e o 9%s 5 L - 9%
z 9 =) © A |
1%, 8 T I ~ s Tl
1%; %, % < > = <l
log = O [6} o Ol
o ~ +—J @ .. e
= 106 8 5 9 o N Q1
©
m . QN w W m_l.. o m m_l.. L
€ {09 o o @ S al
© doc § —] 2 =
= Y8 g i
2 5 105 © [} o =
0w n oo 5 L
H Y 40 2 I
4 v 10, LL H
— , , ,
© ~

20
10
0

o o o
n < m

o
o
(%) 3384 3IH Yyo1349.4d (%) @184 UH Y2313431d (%) @184 WH Y2313431d

cache capacity (cache blocks)

cache capacity (cache blocks)
Figure 3: Workload with 10 single sequential, 40 multiplgusential, 50 random sequences.

sequence of a multiple sequential stream also results in a
wasted prefetch.
Performance metrics. The goal of this experimental

Table 5: Storage simulator setup
Disksim parametef Value |

disk type | cheetah9LP evaluation is to verify that a Split queue improves the per-

disk capacity| 17783240 blocks formance of a prefetch cache. The mean response time

mean disk read seek time5.4 msec is the performance metric of relevance to end users. In a
maximum disk read seek time 10.63 msec cache without prefetching, the higher the cache hit rate,
disk revolutions per minute 10045 rpm the lower is the mean response time. In a cache with

prefetching, this simple relationship between hit rate and
response time need not hold due to varying intensity of
disk traffic generated by each prefetch technique. For

example, PM has a lower prefetch hit rate than PA, but

We deyeloped asiml_JIatorto evaI_uate Split; the front ends), piggybacks prefetch requests onto missed requests
model is our cache simulator, while the back end storage,q generates less traffic at the disks which may result
model is the Disksim 4.0_S|mulator. Table 5 gives the;, o |ower response time for PM. Therefore, our exper-
setup used for our experiments. The replacement POk, ents measure both the prefetch hit rate and the mean
icy is LRU, and the pr(.afetch technique is the 2n_d ON€esponse time. The prefetch hit rate is the ratio of the
presented in Section 2: prefetch the next 2 contiguougy; mher of hits to the total number of user requests in the
blocks on miss and on hit of last cached stream block. .o -he workload. The mean response time is the product

workload has some sequential locality. The workloadjme.

used in our experiments contains no re-references to €Experiments. In our experiments, we evaluate the sin-
sure that all hits are prefetch block hits. Our cache work-, o queue with regards to both LRU and streamLRU
load generator is composed of sequence generators; i, ce streamLRU is the version of LRU that recognizes
have three types of sequence generators - single seqU&liafatch blocks. We measure hit rate and response time
tial, multiple sequential, and random. Example outputy, 5 fixed workload as the cache size varies. The cache
from the three types of sequence generators: size is increased until the maximum prefetch hit ratio for
single sequentialic 234, 235, 236, 237, ..>; asingle the workload is achieved. The workload has no rerefer-
sequence of requests for contiguous blocks. ences of blocks, so a prefetch block is evicted from the
multiple sequential:< 100, 101, 102, 103,, 4567, cache as soon as it gets a hit (similar to the examples
4568, 4569, ..., 95489, 95490, 95491, x>; two or presented in the last section).

more subsequences of requests for contiguous_ blocks; | the first experiment shown in Figure 1, the work-
the number of requests in each subsequence is drawBad consists of 90 interleaved multiple sequential se-

4 Experimental evaluation

from a Poisson distribution. quences and 10 random sequences. From the prefetch
random sequencex 45, 1982, 99999, 247, 8174, = technique’s viewpoint, every random request is the start
a single sequence of requests for random blocks. of a new stream, every start of a new subsequence in a

Each of our experiment’s workload traces is composed ofnultiple sequential sequence is a new stream. Therefore,
a total of 100,000 requests from 100 independent, conthere are more than 100 streams in the workload from
current sequence generators; all generators start up at tlige viewpoint of the prefetch technique. The cache size
beginning of the simulation. For each sequence, the reis varied from 10 to 200 blocks. When the cache size
quest interarrival times are drawn from an exponentiais 110 blocks, the hit rate of Split is approximately 27%
distribution. Therefore, the final workload submitted to greater than that of LRU and StreamLRU; resulting in a
our cache simulator are interleaved requests from the 1023% decrease in response time of Split.

sequence generators. An example of a workload contain- |n the next experiment (Figure 2), the workload is gen-

ing the above 3 interleaved sequences is: erated by 50 single sequential sequence generators and
< 100, 45, 234, 235, 101, 236, 102, 103, 104, 198250 random sequence generators. Therefore, the maxi-
99999, 237, 238, 105, 4567, 247, 8174, 4568;... mum hit rate for this workload is 0.5. Since 2 blocks are

Note that from the perspective of PA or PM, this exam-prefetched into the cache for every random request, the
ple workload contains several (more than 3) interleavedtache contains a lot of useless blocks. The maximum hit
streams:< 100, 101, 102,...>, < 234, 235, ...> < rate is achieved when the cache approaches 400 blocks.
45>, < 1982>, < 9999>, Each request from the The greater the randomness in the workload, the larger is
random sequence is viewed by a prefetch technique ahe cache size required to achieve the maximum prefetch
a start of a stream, and therefore, each random requehit rate. In the last experiment - Figure 3 - the work-

results in a (wasted) prefetch. The last request in a sudead consists of 40 multiple sequential sequences, 10 se-

guential sequences, and 50 random sequences. Agaistructure - the cache replacement queue - that both algo-
Split queue performs better than the single queue. Whenthms update. Instead of targeting the prefetch technique
the cache size is 150 blocks, the hit rate of Split is 38%or the replacement policy, Split manipulates the queue to
greater than that of LRU and SplitLRU. The Split gueuemaximize performance. In fact, the Split queue is a sin-
achieves maximal performance for the workload beforegle queue with the 2nd prefetched block being inserted
the single queue. midway in the replacement queue.

5 Analysis 6 Conclusion

In all our experiments, the Split queue performs betterThe impact of prefetching and caching is encapsulated in
than the single queue. In order to understand why théhe cache replacement queue. This paper shows that by
Split queue performs better than the single queue, it isplitting the queue, the performance of a prefetch cache
necessary to explain sequential (spatial) locality in-relaimproves, without changing the prefetch technique or the
tion to the actions of a prefetch technique. In order toreplacement policy. In the experiments, the lengths of the
amortize the cost of prefetching - reduce the traffic at theJp and Down queue are equal. By setting the Up queue
disks - several blocks are prefetched at a time. Not alto twice the length of the Down queue, we have found
these blocks are expected to receive user requests immtat there is a greater improvement of Split's perfor-
diately. In fact, the sequential access pattern dictatis th mance. This paper analyzes the Split queue with a basic
blocks are accessed contiguously, in sequence. Thergrefetch technique that prefetches at most 2 blocks. The
fore, when there are 2 prefetched blocks, as in our exSplit queue improves performance more significantly if
amples and experiments, the first block is expected tanore blocks are prefetched per stream. Incorporating a
receive an user request before the second block. Splitombination of the above - increasing length of Up queue
incorporates this characteristic by inserting the 1stlbloc and using a more sophisticated prefetch technique that
in the Up queue and the 2nd block in the Down queuevaries the amount of prefetch may result in greater im-
Even if the 2nd block gets evicted, the first block remainsprovement of performance.
in the cache longer than it would in the single queue ap- We plan to evaluate the Split queue approach with
proach; if the first block gets a prefetch hit, there is timeother replacement policies. The Split policy is evalu-
to prefetch the 2nd block. ated here for single-level caches. However, the Split
The Split queue performs better than the single queu@olicy with its 2-queue structure is naturally geared for
since it incorporates both the temporal and spatial loimultiple-level cooperative caches and it would be inter-
cality of streams. By evicting blocks from the least re- esting to analyze Split in a multiple-level setting. Other
cently used stream, StreamLRU incorporates the tempdssues that could be addressed include analysis of traffic
ral locality of streams. For the workloads considered,generation by the policies, theoretical analysis of Split,
StreamLRU performs better than LRU, but their per-and prefetch cache sizing based on hit rates in Up and
formances are close, almost statistically identical. ThisDown queues.
is somewhat surprising given that LRU does not rec-
ognize streams. A possible reason for the similarityRefer ences
between LRU and StreamLRU’s performance may be

found by looking at the replacement queues in Tables 1] BHATIA, S., VARKI, E., AND MERCHANT, A. Sequential
y 9 P q prefetch cache sizing for maximal hit rate. [8th Annual

and 2 (Section 2): when user request for 3 is processed, |ggg/acMm International Symposium on Modeling, Analysis and
LRU's replacement queue contains streams 3, 1, 2, while Smulation of Computer and Telecommunication Systems (2010),
StreamLRU’s replacement queue only contains 3 and pp. 89-98.

1. Since LRU does not keep stream blocks together, if2] BuTT, A. R., GNIADY, C.,AND Hu, Y. C. The performance im-
is possible for LRU’s replacement queue to hold more pact of kernel_prefetching on buffer cache replacementriigos.
streams than StreamLRU’s replacement queue. In gen- 'Cor Iansactionson Computers 56, 7 (2007), 889-908.

; ;] GILL, B. S.,AND MODHA, D. S. SARC: Sequential prefetching
eral, the Split queue holds more streams than the smgl@ in adaptive replacement cache, Rroc. of USENIX 2005 Annual

queue and_c_onseq_uently, Split performs _better. Technical Conference (2005), pp. 293—308.
Summarlzmg, this paper shows that givena prefetch 4] JIANG, S. Dulo: An effective buffer cache management scheme

tec_hr_]ique and LRU, performance is i_mproved by simply” o exploit both temporal and spatial localities.ImMUSENIX Con-
splitting the replacement queue. Prior work has shown ference on File and Storage Technologies (FAST (2005).

that the performance of a prefetch technique cannot be) Li, M., Varki, E., BHATIA, S., AND MERCHANT, A. TaP:
studied in isolation of the replacement policy and vice Table-based prefetching for storage caches6thnUSENIX Con-
versa [1, 2, 4]. The intuition behind Split is the recog- ~ frénce on File and Sorage Technologies (FAST "08) (2008),
nition that this dependency is a result of the shared data Pp- 81-97.

