The Split replacement policy for caches with prefetch block

Abstract prefetched and cached before they are requested on the
assumption of spatial locality - data access patternsrelat

N h Th h I t ol | to the logical/physical placement ordering of the blocks.
storage caches. € cache replacement policy plays g prefetch block is a future block that relates to a re-

key role in the performance of prefetching techniques, . !
since a miss oceurs if a prefetch block is evicted be_cent request access sequence. For example, if the first
fl th IS | futh ! g d : Vlt for th few blocks of a file are read sequentially, then contigu-
ore the arrival ot the on-cemand user request Tor NG, 1, s could be prefetched on the assumption that
block. Prefetch blocks display spatial locality, but exist : e .

: L ; the sequential access of this file will continue.

ing cache replacement policies are designed for blocks h he is full and block i be i
that display temporal locality. This paper develops a new W den ha cac he 1S llj and a ne\lly ((j)c IS .to € Ihn'-h
replacement policy calle@plit for caches that imple- sertﬁ étble clz(ac e rep acemEnt po |cyf et(re]rmmest\)/lv 'E
ment prefetching. The relative performances of Split andached block to ejec_t to_ma_(_a space for the new block.
other replacement policies, such as LRU, are evaluated "€ "eéplacement policy is critical to the performance of .
using simulation and theoretical analysis. The evaluatior?ac_hes’ and SIO thlere are a Iar?e_ nuLnberl;)f pagers Ion ti:]:s
shows that the Split replacement policy gets a higher hi{opdlc.hSevelrlal rep acetr)nenlt pO.If(.:IZS. ave been deve ople '
rate and a lower response time than any of the other conf2nd the policies can be classified into 4 types, namely,

pared policies, at the cost of slightly more disk accesseé.:”:o (LIFO): based on time of insertion into the cache;
LRU (MRU): based on time of last access (recency);

LFU: based on frequency of access; and LRU-2 [22, 23],
1 Introduction 2Q [15], LIRS [13], LRFU [16], MQ [30], ARC [21]:

based on both recency and frequency of access. An un-
The memory hierarchy model is integral to computer sys-derlying theme to all these policies, with the exception of
tems, and the success of this model hinges on the perfoFIFO, is that they are designed for data blocks with tem-
mance of caches. When a user requests data, the daparal locality. These policies are not necessarily optimal
have to be uploaded to the user’s level. The speed of théor prefetch blocks with spatial locality.
upload depends on the distanée.( levels) separating The majority of prior research in prefetching has
the data-user from the data-store. The closer the data i®cused on the prefetching technique itself, namely,
to the user, the faster the upload. In order to facilitatewhat to prefetch, when to prefetch and how much to
fast upload, caches are placed at each level of the menprefetch [8, 11, 18, 19, 26, 27, 28]. Surprisingly,
ory hierarchy, and data predicted to be needed in the neahere are no papers on replacement policies for blocks
future are kept in the caches. with spatial locality. It has been recommended that a

The request predictions are based on the adage, higprefetch block be evicted immediately on a hit since

tory repeats itself, and result in two types of blocks be-prefetch blocks have low temporal locality [24]. Sev-
ing stored in a cache. The first type, knownrager-  eral papers have analyzed the optimum size of a prefetch
enceblocks are data blocks that recently received on-cache [4, 10, 12, 17, 18, 25]. Most of these papers de-
demand requests. They are stored in the cache on thermine the optimum size based on the location of hits
assumption of temporal locality - blocks may be refer-in the prefetch cache [4, 12, 17, 18]. SARC [10] is also
enced multiple times during a time period. The sec-about prefetch cache sizing, but unlike previous papers,
ond type, known aprefetchblocks are data blocks that this paper compares the number of hits in the prefetch
have not received on-demand requests. These blocks acache and the reference cache to determine whether to

Prefetching is an inbuilt feature of file system and



eject a block from the prefetch list or the reference list.condition, performance depends on both the replacement
A couple of papers [10, 29] have mentioned, in passingpolicy and the prefetch technique.

that a prefetch access sequence should be considered asVhile this paper names and evaluates the StreamLRU
a single unit by a replacement policy. However, the re-policy, the policy has been used in prior papers [10, 29].
placement policy was not the focus of these papers, stn fact, SARC uses StreamLRU policy to determine
they did not delve further. which block to evict, and so SARC reduces to the

Contributions: This paper develops a replacement StreamLRU policy if the reference list is removed from
policy calledSplitLRU, for caches with prefetch blocks. consideration.

As the name suggests, the replacement policy is a com- In the rest of the paper, StreamLRU and SplitLRU
bination of Split and LRU. The LRU policy determines are sometimes written simply as Stream and Split. The
which prefetch sequence to evict, while the Split pol-next three sections present the LRU, Stream and Split
icy determines which blocks, if any, to evict from the policies. Section 5 presents a theoretical comparison of
sequence chosen for eviction. Thus, the SplitLRU rethe three replacement policies. In Section 6, the per-
placement policy addresses both the temporal localitformances of the replacement policies are compared via
displayed by sequences and the spatial locality displayedimulation.

by prefetch blocks of the sequence.

The Split policy can be combined with any of the tem-
poral replacement policies mentioned above. In this pa
gﬁ(rj’ EVSUlIrgils]cc;u::nir;??:ﬁatge:::nfomﬁlnatlon of S.p“t Sequential prefetching is the most widely used prefetch-

: P policies are Va”ant‘?ng technique. Here, we describe a version of sequential
of LRU. The Split approach has the computational com- L o .

. . . ; prefetching implemented in file system caches. For uni-
plexity of its partner, so SplitLRU has LRU’s constant formity. the unit used in the paper is blocks - a cache size
complexity. This paper analyzes Split with respect to.orml Y, bap

. is C blocks, a read request is for x blocks, etc.

sgquential p_ref(_atching since this type of prefetching IS Read-ahead.€., prefetch) is performed by most file
widely used in file system and storage device caches. h When a read request misses in the file
The contributions of this paper are the following: system caches. g
system cache, synchronougprefetch request for one or
1. proof that LRU ejects prefetch blocks (and se-more blocks contiguous to the missed blocks is issued.
For example, if an on-demand request for block 1 misses
in the cache, a read request for bloekd, 1a, 15, 1¢ >
2. formalization and analysis of the replacement pol-may be issued, where blocks 1a, 1b and 1c are contigu-
icy that treats prefetch blocks from a sequence a®us to block 1. Th@refetch degreenhich is the number
a single stream unit [10, 29]. The paper combinesof blocks prefetched, is 3. The prefetch degree may be
this approach with LRU; we name the ensuing pol-fixed or varying, depending on the prefetch technique.
icy StreamLRU Typically, a prefetch is not initiated on a hit of every
prefetched block. Instead, one of the prefetched blocks is
3. development of the Split replacement policy for marked as a trigger block, and a prefetch is issued only if
caches with prefetch blocks; the trigger block gets a hit. Referring back to the above
example, suppose blodk is the trigger. When an on-
demand request for blodk arrives, it receives a hit, but
prefetch is not initiated. When an on-demand request for
block 1b arrives, it receives a hit, and asynchronous
5. proof that the hit rate of SplitLRU is an upper bound Prefetch for blocks< 1d, le,1f,1g > may be issued.
for the hit rate of StreamLRU: The trigger is reset to blockf. In this example, the
prefetch degree varies since 3 blocks are prefetched on
6. evidence via simulation that SplitLRU results in miss, 0 blocks are prefetched on hit of non-trigger block,
lower response time and higher hit rate than LRUand 4 blocks are prefetched on hit of trigger block.
and StreamLRU.

2 Sequential prefetch

guences) in FIFO order;

4. proof that the SplitLRU cache holds more se-
guences than either the LRU cache or the
StreamLRU cache;

Definition 1 An access sequence is an ordered series of
A sidebar contribution of this paper is a demonstrationcontiguous block addresses in increasing order.
of the complexity of comparing two replacement poli-
cies when the cache implements prefetching. The papdn the above example, the access sequence is
shows that a comparison between two prefetch cachere< 1,1a,1b,1¢,1d,1e,1f,1g >. The /O work-
placement policies is valid only if the prefetch techniqueload submitted to a cache consists of inter-
does not depend on the replacement policy. Without thideaved requests from various accesses, such as,



< 1,5,1a,2,2a,6,9,5a,2b,10, ..... >. On-demand
requests for blocks from a sequence are interleaved

amongst blocks from other accesses. From a S€QUERAple 1: LRU vs. StreamLRU - LRU better: Prefetch

tial prefetch technique’s viewpoint, the VQ workload technique ensures that the next 2 contiguous blocks re-
presented in the above example, potentially, has th%ted to each on-demand block is in the cache.

following access sequences< 1,1a,1b,1c,.. >, Prefetch cache size = 4, LRU

< 5,5a,5b,5¢,... >, <  2,2a,2b,2c,... >, hits h1 h2 h3

< 6, 6a,6b,6¢, ... >and< 9,9a,9b,9c, ... >. workload 1l 21 1al 3 2al 41 2b
Prefetching is all about access sequences - thEGche 1al| 2al 1c | 3a | 2b | 4a | 2d

prefetching technique implicitly or explicitly identifies 101 2b | 2al 30| 2¢ | 4b | 4a

a sequential access stream and prefetches contiguops 1a 1 2b | 1c | 3a | 2b | 4b

blocks on the assumption that the sequential access wit
continue. The prefetched blocks are inserted into the
cache along with the missed blocks. The cache co
tains both reference blocks and prefetch blocks. Whe
an on-demand request arrives for a prefetch block, it get
a prefetch hit; the hit block is now a reference block.

b | 1b| 2a|3b| 2c | 2c
Eject 2b | 1c | 3a
1b 3b

[

Prefetch cache size = 4, StreamLRU

hits hl h2
Definition 2 A prefetch hit is the first hit of a prefetch | Workload | 1) 2] 1a) 3 |2a| 4|2b
block; once the block has been referenced, any further Cache laj2a|1b|3a|2b|4a]|2c
hits to the block are counted as reference hits. 1b|2b| 1c|3b|2c| 4b | 2d

la|2a|1b | 3a| 2b| 4a
lb|2b|1c | 3b| 2c | 4b
Eject 2a | 1b | 3a
2b | 1c | 3b

3 LRU vs. StreamLRU

Prefetching techniques make the following two assumpt
tions about the workload:

Assumption 1 Each prefetch block is associated with an
access sequence.

Assumption 2 The later blocks of a sequence are likely Table 2: LRU vs. StreamLRU - LRU worse: Prefetch
to have a later first access time than the blocks that pretechnique prefetches 2 blocks on miss; prefetches 2

cede them. blocks on hit if the block is the last block in the sequence.
Same workload as Table 1

Standard replacement policies like LRU, FIFO and LFU Prefetch cache size = 4, LRU

ignore access sequences. The LRU policy evicts the leasthits hi h2

recently used block, and does not distinguish between workload 11 21 1al 31 2al 4] 2b

reference blocks and prefetch blocks. Since a prefetchCache la| 2a| 2a| 3a | 3a | 4a | 2¢

block, by definition, has never been accessed, the last af- bl 2b1 201 3b | 3b | 4b | 2d

cess time of a prefetch block is the time it was prefetched 1la| 1b| 2a | 2b | 3a | 4a

and inserted into the MRU end of the replacement queus:. 1b 2b 3b | 4b

When a prefetch block gets a hit, the LRU policy moves
the referenced block to the MRU end of the replacement
queue, but leaves the re;t of t.he prefetched blocks from Prefetch cache size = 4, StreamLRU
the hit block’s sequence in their replacement queue pos}- hits hi ho h3
tion. Referring to the example in Section 2, when block
; . X workload | 1| 2| 1la| 3| 2a| 4| 2b
la receives a hit, the LRU policy movés to the MRU
: . o Cache la|2a|1b| 3a|2b| 4a| 2c
end, but blockdb, 1¢ retain their position in the replace-
. lb|2b| 2a|3b | 2c | 4b | 4a
ment queue. A prefetched block reaches the eviction en a2 b1 3a1 20 7
when its access tima.¢., prefetch time) is the oldest. a a

Eject 1b 2b

Thus, if an evicted block is a prefetch block, it is guaran-—. 1b 2a | 3b | 2¢
teed that it is the oldest prefetch block in the cache. Eject 2b | 1b g‘;‘

Result 1 The LRU replacement policy ejects prefetch
blocks in FIFO order.



Table 3: LRU vs. StreamLRU - equal hits: Prefetch tech_replacement policy and the prefetching technique is com-

) tatches 1 block on hit iss. S K J;Iex and barely charted [7]. For the same workload,
nique pretetcnes ockon hitormiss. same workioad,,q prefetching techniqgue may result in LRU getting
as previous tables.

more hits than Stream while another prefetching tech-

: Prefetch cache size = 2, LRU nigue may reverse this result. This scenario is demon-
hits hi h2 strated in Tables 1, 2 and 3. Using the same workload,
workload | 1| 2)1a) 3| 2a) 4|2b LRU gets more hits than Stream in Table 1, LRU gets
Cache laj2aj1b|3a|2b]|4a|2c less hits than Stream in Table 2, and LRU gets the same

. laj2a|1b| 3a | 2b| 4a number of hits as Stream in Table 3.

Eject 2a| 1b | 3a The tables demonstrate that the relative performances
of replacement policies vary with the prefetch technique.
Prefetch cache size = 2, StreamLRU It is easy to demonstrate this dependence with other re-
hits hl h2 placement policies too. While it is easy to come up with
workload | 1| 2|1a| 3| 2a| 4| 2b any number of examples that demonstrate the interaction
Cache la|2a|1b|3a|2b|4a| 2c between the replacement policy and the prefetch tech-
la|2a|1lb| 3a| 2b| 4a nique, it is hard to quantify the dependence and its im-
Eject 2a| 1b | 3a pact on performance. The next section presents the Split

policy and more examples that demonstrate the inconsis-
tent performance of replacement policies when caches
For clarity of exposition, in the rest of this paper, we implement prefetching.
assume that the cache is partitioned into a prefetch and

reference cache. Upon a hit in the prefetch cache, the hi :
block is ejected from the prefetch listand may be inserted& SplittRU vs. LRU & StreamLRU

into the reference list. Split is a new replacement approach along the lines

The standard replacement policies can be modified t¢f StreamLRU - it is an improved version of Stream.
incorporate Assumptions 1 and 2 by doing the following stream stores sequences as a unit, so this scheme gives
simple step: on a hit, the hit block and all blocks fol- equal priority to all blocks within a sequence. An as-
lowing it in the sequence are moved in the replacemen§ymption made by prefetching techniques is that an ear-
queue. The blocks preceding the referenced block arger plock of a sequence has a higher probability of get-
not moved on a hit, since sequential prefetching anticiting accessed before a later block of the sequence (ref-
pates requests to arrive for following blocks, not precederence Section 3). Split incorporates this assumption
ing blocks. Note that this condition may be relaxed sopy evicting the later blocks of all the cached sequences
that all blocks in the current prefetch windowe(, the  pefore it starts evicting the earlier blocks of these se-
set of blocks in an access sequence that must be kept g,ences. Thus, unlike Stream, Split integrates the spatial
cache [5]) are moved upon a hit. In this paper, we limit|ocglity of prefetch blocks. We explain the policy below.
our analysis to the LRU policy, and the modified scheme aAs mentioned in Section 2, a common prefetching ap-
is called StreamLRU. The policy evicts blocks from the proach is to prefetch several blocks from a sequence at
Least Recently Used sequence. a time. One of these blocks is marked the trigger block.

Prefetch sequences display temporal locality, since rewhen a trigger block gets a hit, the prefetching technique
cently accessed sequences generally have a higher prgmps into action and prefetches several future blocks
ability of getting future requests than sequences with ndrom the sequence. The trigger blocks demarcates each
recent accesses. The Stream policy captures this behagequence into 2 parts, theefixand thesuffix the trigger
ior by moving all blocks in the hit sequence to the MRU block can be included in either the prefix or the suffix,
end of the replacement queue. The LRU policy ignoreshut not both. If the trigger is in the suffix, then the prefix
access sequences in the workload and just moves the hif a sequence is from the start to the block preceding the
block to the MRU end. As a result, the Stream policy trigger; the suffix is from the trigger block to the end of
performs better than the LRU policy for workloads with the sequence. For prefetch techniques without a trigger,
access sequences that display temporal locality. Itis posan arbitrary block in the sequence can be chosen as the
sible to find workloads more suitable for LRU, and Ta- point of demarcation of a sequence into the prefix and
ble 1 presents such a scenario where Stream gets less hiisffix. If a sequence has only one block loaded in the
than LRU. cache, then the sequence just has a prefix.

Another factor that must be taken into consideration Stream evicts all the blocks of the least recently used
when evaluating the performances of LRU and Stream isequence before it starts evicting blocks from the next
the prefetching technique. The interaction between thesequence in the LRU list. Split, on the other hand, evicts



the suffix of the least recently used sequence and then

moves to the suffix of the next sequence in the LRU

list. (Note that when a trigger is evicted, the Wigger o g, Split vs. LRU: demonstrating that Split may

fix of a sequence gets ejected only when the suffixe

moves to the preceding block in the sequence.) The pr%

erform worse than LRU. Prefetch 2 blocks on miss;
refetch on hit of last block in sequence

of all sequences in the cache are ejected. In Split, s&= Prefetch cache size = 6, SpHtLRU
guences stay longer in the cache than they would in th hits hil h2
Stream scheme. workload | 1| 2| 3|2a|la| 4| 5] 3a
UpQ la|2a|3a|2b|1b|4a| 5a| 3b
Table 4: Demonstrating Split's performance, using the la|2a|3a|2b|1b| 4a | 5a
same workload and prefetch technique presented in Ta- la|la|3a|2b| 1b | 4a
ble 1: Split gives the same number of hits as LRU and pownQ [ 1b| 2b| 3b|3b|3b| 4b]| 5b | 3c
more hits than StreamLRU
Prefetch cache size = 4, SplitLRU 1b ig 1b gg 4213 ég
hits hl h2 h3 Eject 32 1 2b
workload | 1| 2| 1la| 3| 2a| 4| 2b 3b | 4b
UpQ la|2a|{1b|3a|2b|4a| 2c
laj2a|1b|3a|2b|4a Prefetch cache size = 6, LRU
Down Q b 2b|1c|3b| 2c | 4b | 2d hits hll h2 h3
_ 1b| 2b|2a| 1b| 3a | 4b workload | 1| 2| 3] 2a|1a| 4| 5] 3a
Eject lc | 3b | 2c | 3a Cache la|2a|3a|3a|3a|4a|5a]| 3b
2b 1b b [ 2b|3b|3b| 3b| 4b | 5b | 5a
laj|2a|2b|2b|3a| 4a | 5b
lb|2b|l1a|1b| 3b| 4b | 4a
Table 5: Demonstrating Split's performance, using th 1‘3 1b ig 23 4b
same workload and prefetch technique presented in Ta-—
ble 2: Split gives the same number of hits as StreamLRU Eject 2b
and more hits than LRU 1b

Prefetch cache size = 4, SplitLRU
hits hl h2 h3
workload | 1| 2| 1la| 3|2a| 4| 2b
UpQ la|2a|{1b|3a|2b|4a| 2c
la|2a|1b| 3a| 2b| 4a . )
DownQ | 1b| 2b| 2b]| 3b | 2¢ | 4b | 2d Table 7: Split vs. StreamLRU: dempnstratlng that
1o 52 10 | 3a | 4b StreamLRU may perform betterth:_;m SplitLRU. Prefetch
- 2 blocks on miss; no prefetch on hit
EJeCt 2b | 3b i(t:) 3a Prefetch cache size = 4, SplitLRU
hits h1 h2 h3
workload | 1| 3| 2|1a| 4|4a| 5|1b|5a| 6| 4b
U la|3a|2a|2a|4a|4b|5a| 1lc | 1c | 6a | 4c
We demonstrate the mechanics of Split in Tables 4 ne la|3a|3a|2a|2a|4b|5a 1c | 6a
and 5. These examples correspond to Tables 1 and 2 thaPownQ | 1b|3bj2b| 2b | 4b|3a|5b| 1d | 1d | 6b | 4d
compare the performances of LRU versus StreamLRU ¢ 1b ég‘ 22 g: ‘212 4b Allg ég
In Split, the replacement queue is divided into two b 3a 1d
gueues, the Up queue and the Down queue. When a se- _
quence is inserted into the cache, the prefix of the ser Prefetch cache S|ze=:]1,1$treamLhI;U . o
guence is loaded into the MRU end of the Up queueryomoad T 11T 3T 211 2 4al 5 1o 5a 6 b
while its suffix is loaded into the MRU end of the Down [ Cache la|3a|2a|1b|4a|4b|5a| 5a | 5b| 6a | 6a
queue. For clarity, let's assume that the prefix (suffix) ib|3b|2b|1lc|4b|1b|5b|5b|4b| 6b | 6b
of each sequence fit into one block. Therefore, each 1l i’ Lo ‘112 4b ig Sb
prefetch request is for at most 2 blocks. When 2 blocks Eject 1a | 3a | 2a
are prefetched, the first block is loaded into the Up queue 1b [ 3b | 2b

and the second block is loaded into the Down queue.
When a block is ejected from the LRU end of the Up



) . . . of LRU and LRUseq. Unfortunately, this is not the case,
Table 8: Demonstrating 2 anomalies: Using the SaM&,¢ yemonstrated by the examples in Tables 6 and 7.

yvorkload a_nd _prefetch teghmque as in Table 7, show- Table 6 presents a scenario where LRU results in more
ing that Split gives more hits than StreamLRU when thehits than Split. The reason for LRU's superior perfor-

cache size is increased. Also demonstrating I?’el"’ldy,?‘nance is that the workload is biased to the FIFO replace-
ment policy, and LRU evicts prefetched blocks in FIFO

anomaly with StreamLRU: 4 hits when cache size is 4
Table 7), while 3 hits when cache size is 5 order. Table 7 presents a scenario where StreamLRU gets

Prefetch cache size = 5, SplitLRU

hits hi h2 h3 ha more hits than Split. Table 8 presents a rather bizarre
workload | 1| 3| 2)1a| 4)4a| 5|1b|5a)| 6|4b scenario: when the cache size is increased, StreamLRU
UpQ 1a iz g: gz ‘2‘: ‘2‘2 4512 ég ig (152 ‘152 gets less hits than Split using the same workload and
1a 3a | 3a 2a | 2b b prefetch technique a_s.in Table 7. The advantagg tr_lat
DownQ |1b|3b|2b|2b|4b|2b|5b| 1d] 1d| 6b| 6b Stream has over Split is lost when the cache size is in-
1b | 3b|3b|2b 3a|2a|2a|ld) 1d creased. Therefore, in addition to the prefetch tech-

Eject 1b 3b 2b | 5b 2a

nique, the cache size is another factor that determines

3a . ..
the relative performances of replacement policies. On a
Prefetch cache size = 5, StreamLRU side note, Tables 7 and 8 demonstrate the occurrence of
hits hi h2 h3 Belady’s anomaly [3] with StreamLRU since the large
workload | 1| 3| 2|1la| 4|4a| 5|1b|5a| 6| 4b h | hi h h I h hi
Cache | 1al3a| 2al2a 4al4bl5alic|5bl6alac cac e gets less .|tst ant e smaller cache. This contra-
1b|3b| 2b | 2b| 4b | 2a|5b| 1d | ic | 6b | 4d dicts an assumption made in an earlier paper [10] about
ig gg gz ;g ;b ‘2”3 gg ig ib gz StreamLRU being foolproof to Belady’s anomaly.
a a Cc . .
Ta % 512 1aT5h _ The examples in Sections 3 and 4 show that the r_e_la-
Eject b 3a | 2a 2b | 1c tive performances of prefetch cache replacement policies
2b 1d vary with the workload, the prefetch technique, and the

size of the cache. It is hard to understand how one re-
placement policy compares with another when there are
queue, it is inserted into the Down queue, behind theso many factors to consider. This raises the question,
block that was just inserted into the Down queue (thehow does one determine the optimal replacement policy
second position from the MRU end of Down queue). All when performance is so erratic? We answer this question
evictions from the cache are from the Down queue. Thusin the next two Sections.
the Split policy allows sequences to stay longer in the

cache than the Stream approach. The SplitLRU polic PPN ;
has the computational complexity of LRU. 5 Replacement policy invariant prefetch

When the Split policy is viewed from a single queue |n order to compare two replacement policies, all other
perspective, a newly inserted sequence is inserted intgarameters must be identical - the same cache size, the
the top two MRU positions of the LRU queue. This re- same prefetch technique, the same input workload. In the
sults in the ejection of 2 blocks from the LRU end of examples given so far, all these parameters are identical,
the queue. If the block to be ejected is the suffix of abut one is unable to draw any conclusion regarding the
sequence, then it is evicted; if the block is a prefix andrelative performances of the replacement policies. The
it is appearing at the LRU end for the first time, then reason is that the action of a prefetch technique is af-
this block is re-inserted into the LRU queue just after thefected by the replacement policy. For example, consider
newly inserted sequence (that caused the eviction of thig prefetch technique that only prefetches on misses: sup-
block). When the prefix of a sequence appears at thgose an on-demand request gets a miss with one replace-
LRU end for the second time, it gets evicted. Thus, thement policy and a hit with another. The miss results in
Split approach gives sequences a second chance. a prefetch of contiguous blocks, while the hit results in

The examples presented in Table 4 and 5 show thato prefetch. On a hit/miss, the prefetch action may load
in each case, Split does as well as the better of thelifferent blocks into the two caches, but the prefetching
Stream and LRU policies (reference Tables 1 and 2)of different blocks may result in a hit in one cache and
SplitLRU uses the underlying principle that the later a miss in another. That is, the hits/misses are a result
blocks in a sequence are expected to receive hits latesf the combined action of the replacement policy and
than the earlier blocks. Sequences are given a longer lifprefetch technique. Instead of evaluating the relative per
in the cache than in the traditional StreamLRU and LRUformances of replacement policies, one is really evaluat-
approaches, so the superior hit rate of SplitLRU is noting the relative performances of the replacement policy
surprising. This reasoning would lead one to believe thatind prefetch technique combination.
the hit rate of SplitLRU is an upper bound to the hit rate In a sense, comparing two prefetch cache replacement



policies is like trying to compare apples and oranges5.1 Assumptions & notation

even when the cache size, the workload, and the prefetch ) ) .

technique are identical. The reason is that the blockd N€ measurement unit used in the paper is blocks. The
prefetched by a prefetch technique depends on wheth&efetch technique ensures that> 2 blocks contigu-

an on-demand request hits or misses in the cache. InsteQ4'S t0 the newest on-demand request are in the cache. A
of comparing replacement policies against the backdrofinimum of 2 blocks must be prefetched in order to see
of identical prefetch techniques, one should compardlifférences between the three replacement policies. For
policies against the backdrop @fentical prefetch ac- SIMPlicity, etz be an even number, and let the prefix
tions That is, a fixed number of blocks should be and suffix of a sequence contain equal number of blocks,

prefetched upon arrival of an on-demand request, inde@/z' ) o -

pendent of whether the request gets a hit or a miss. If The key to modeling and analysis is the ability to keep
some of the blocks to be prefetched are already present gsSential features of the system being modeled, while
the cache, then they are not prefetched again. A prefetcRlocking out the noise. In this spirit, we impose sim-
technique that prefetches a fixed number of blocks upo®!ifying assumptions:

arrival of each on-demand request, regardless of whether
the on-demand request hits or misses, is impervious to
the replacement policy.

1. The cache size i€ blocks, whereC is a multiple
of 2/2. This assumption ensures that the cache, in-
cluding the Up queue and Down queue, does not
store/evict partial prefixes/suffixes.

Classify prefetch techniques into two groups depend- 2 \when a block receives a hit, the hit block is evicted

ing on whether the prefetch degréee(, the number of from the prefetch cache. The hit block may be
blocks prefetched upon arrival of an on-demand request)  moved to the reference cache. With this assumption,
is fixed or variable The technique in Table 1 belongs the analysis focuses on the prefetch blocks, without

to the fixed class since the prefetch technique ensures the distraction of reference blocks.

that two blocks contiguous to the arriving on-demand

request are in the cache. The prefetch technique in Ta- 3. The prefetch technique is from the fixed class.

ble 2 belongs to the variable class: on miss, the prefetch

technique ensures that 2 blocks contiguous to the missed4. The on-demand workload follows Assumption 2
block are in cache; on hit of non-trigger block, there is 0 (refer to Section 3), namely, that later blocks of a se-
prefetch; on hit of trigger block, the prefetch technique guence have a later first access time than the blocks
ensures that 2 contiguous blocks are loaded in cache. The that precede them. A consequence of this assump-
trigger block is the suffix of the sequence, but if the suffix tion is that if earlier blocks of a sequence are evicted
is evicted, the trigger moves to the prefixe(,the trigger from the cache, but the cache holds later blocks of
is the last in-cache block of the sequence). Techniques the sequence, then the next on-demand request for
that prefetch only on hit or only on miss, and techniques a block from this sequence will miss. That is, the
that prefetch on hit of trigger blocks are all examples of sequence is effectively evicted from the cache.

variable class prefetch techniques. o
Prefetching is all about access sequences, so all results

pertain to sequences. L#siream, #split aNd#Lru rep-
In this section, we theoretically compare the perfor-resem the number of sequences in the cache when the re-

mances of LRU, StreamLRU and SplitLRU when the placement policy is StreamLRU, SplitLRU and LRU, re-

prefetch technique belongs to the fixed class. ThePectively. Lef{Stream}, {Split} and{LRU} represent

prefetch actions are identical in all caches, so perfor-the set of sequences in the cache when the replacement

mance variations are a result of the replacement policypm'cy is StreamLRU, SplitLRU and LRU, respectively.
alone. Consequently, we are able to isolate the perfor-

mance characteristics of the replacement policies withg 2 Analysis

regard to prefetch blocks. While it is true that commonly

used prefetch techniques belong to the variable class, thé/e provide informal explanations for all the results, but
performance is a result of the interaction between thelue to space limitations, we provide proofs only when
prefetch technique and the replacement policy. In orthe informal explanation is insufficient. The next result
der to evaluate the integrated performance of a variabléollows from the definition of StreamLRU, namely, mov-
prefetch technique and a specific replacement policy, it isng the entire sequence to the MRU end upon a hit.
necessary to first isolate the performance characteristics

of the replacement policy. Result 2 The StreamLRU policy ensures that the most



recently accessebﬁ sequences are in the cache. blocks. Thus, the LRU policy may evict the prefix of
a sequence before the suffix of this sequence. As a re-
Hsiream = [E] sult, it is possible for an on-demand request to get a miss
X even though a later block of the sequence is present in
the cache. If a later block of a sequence is present in
the cache, but the earlier block is evicted, then the corre-
Result 3 The SplitLRU policy ensures that at Ieaiét] sponding sequence is said to be evicted from the cache.
and at most[%] + L%J of the most recently accessed A consequence of evicting prefetch blocks in FIFO order

sequences are in the cache. IS:
C C C Result 4 The LRU policy evicts sequences in FIFO or-
(;1 < Fsplit < f;] + LZJ der and holds atmos{t%} access sequences in the cache.
C
#LrU < (;1
Proof: We prove the result by showing that between two
accesses to a sequence it is possible to haye- | = | —
1 accesses to unique sequences. N _ Note that the StreamLRU and SplitLRU policies keep
The Up queue size tc:ontanﬁgs] x 5 blocks, while the  the most recently accessed sequences in the cache. The

Down queue contains; | x 5 blocks. LRU policy evicts sequences in FIFO order, so the se-

The Split policy ensures that the prefixes of the mostquences in the LRU cache are not necessarily the most
recently accesseff] are in the Up queue. With each recently accessed sequences. As a result, even though
new prefix insertion into the Up queue, an Up block the LRU cache may hold less sequences, the LRU cache
movesx/2 positions toward the eviction end. Hence, aneed not be a subset of the SplitLRU cache or the
prefix stays in the Up queue for at led$t] — 1 unique  StreamLRU cache. In the LRU cache, between two ac-
sequence accesses. cesses of a sequence, it is possible to Havg £ — 2

When a prefix is ejected from the Up queue, it is unique sequence accesses. Table 1 demonstrates that
moved to the Down queue, behind the suffix of the newlyeven though the LRU cache may contain less sequences
inserted sequence. With access of each new sequenceti¥an the Stream cache, it is possible for a LRU cache
prefix/suffix are inserted in the Down queue - the suffixto get more hits than the Stream cache. The reason
from the new sequence and the prefix evicted from theor LRU’s superior performance is that the workload,

Up queue. Therefore, with each sequence insertion, evt, 2 14, 3, 2a >, is biased toward the FIFO policy. In or-

ery Down block moves positions downward toward the  der to show that LRU may get more hits than Split, con-

eviction end. Thus, a prefix stays in the Down queue forsider the workload 2,3, 4,1, 2a, 3a, 4a,5,6,7, 1la >

|5 | unique sequence accesses. when the cache siz€=16 blocks and the degree of

u prefetchx = 4. LRU gets 4 hits while Split gets 3 hits

The next results follow directly from Results 2 and 3. since the workload is biased to the FIFO policy. While

L)/ve have provided specific scenarios where LRU gets

more hits than Split and Stream, these cases are atypical.

) Since Split and Stream hold at least as many sequences

{Split}. as LRU, the Split and Stream policies are expected to get
more hits than the LRU cache.

Theorem 1 The hit rate of a SplitLRU cache is an upper ~ The theoretical analysis in this section allows one to

bound to the hit rate of a StreamLRU cache. understand the essential traits of LRU, StreamLRU and
SplitLRU. However, there are a couple of major issues

We now compare LRU against Split and Stream. Thethat have not been addressed here. The first issue is
prefetch technique ensures thablocks contiguous to  whether the superior hit rate of Split translates into lower
the on-demand request are loaded in the cache, buesponse time. The response time is determined not only
the LRU policy ignores these access sequences. NeWwy the hit rate but also by the workload traffic submitted
prefetch blocks are inserted into the MRU end of thefrom the cache to the lower level. Even though Split has
cache, but if the cache already contains a contiguoua higher hit rate, it does evict and then reload the suf-
block, this block retains its position in the replacementfixes of sequences. It is important to theoretically and
gueue. The prefetch blocks are evicted in FIFO ordeexperimentally evaluate the impact of the traffic submit-
by the LRU replacement policy. The older contiguousted from the cache to the lower level. The second is-
blocks would get evicted before the newer contiguoussue is to evaluate the relative performances of the three

Corollary 1 With respect to sequences, the StreamLR
cache is a subset of the Split cache. Thaf$ream} C



Performance metrics: The hit rate, mean response

Table 9: Storage simulator setup time, wastage rate and disk rate are measured. The hit

Disksim paramete{ Value | rate is the ratio of the number of hits to the total number
disk type | cheetah9LP of on-demand requests to the prefetch cache; the mean
disk capacity| 17783240 blocks response time is the product of miss rate and mean disk
mean disk read seek time5.4 msec response time; wastage rate is the ratio of the number
maximum disk read seek time 10.63 msec of prefetches that get misses (due to early eviction) to
disk revolutions per minut¢ 10045 rpm the total number of on-demand requests to the prefetch

cache; disk rate is the ratio of number of requests to disks

- . , . . to the total number of on-demand requests to prefetch
policies against a variable class technique. If the redativ

performances violate the analysis here, then the causal Inpu't parameters: The cache size and the O work-
agentis the p_refetch _technique. It would be easier to UNfad are varied in olur experiments. The cache size and
derstand the Interaction between the replacemgnt pOIICWO workload have to be set in tandem; if the cache is too
and the prefetch technique, now that the properties of th?arge or too small for the workload, replacement policies

replacement policy are known. In the next section, we . o
will have little impact on performance.

address both these issues by a simulation analysis of the o )

relative performances of the three replacement policies Workload ghargctenshchsmg real workload _tra_ces
when combined with a popular variable class prefetcHs not an option since prefetching depends on timing [9,
technique 10, 18]. Synthetic workload traces are generated based

on published SPC1 and SPC2 specifications for read only
workloads. SPC1 [1, 14, 20] and SPC2 [2] are popu-
6 Experimental evaluation lar benchmark that simulate sequential access patterns of
business and desktop applications, respectively. Each of
The performances of replacement policies LRU,ourworkload tracesis composed of several independent,
StreamLRU and SplitLRU are evaluated when theconcurrent sequences of requests with exponentially dis-
prefetch technique is from the variable class. We pointributed inter-arrival times. Three distinct types of werk
out that SARC is a combination of StreamLRU and load sequences are generated, completely random, com-
adaptive sizing of prefetch versus reference cache. Tpletely sequential, and partially sequential. Completely
avoid conflating the effects of adaptive resizing of therandom sequences issue requests with random block ad-
prefetch cache with Split, the paper compares Split withdresses. Completely sequential sequences request a ran-
LRU and StreamLRU. dom starting block address, and subsequent requests se-
Since the focus of this study is replacement policies guentially increment the block address by one. Partially
not prefetch techniques, we simulate a simple version osequential sequences request a random starting block ad-
a common prefetch technique, namely, the trigger basedress, followed by a number of requests for sequential
prefetch. If a requested block misses in the prefetciblock addresses, then restart at another random starting
cache, then an additional two blocks are prefetched synblock address. Thus, a partially sequential sequence con-
chronously, and piggy-backed with the missed disk re-sists of a number of sequentiains The run length is
quest. If a requested block hits in the prefetch cachesampled exponentially resulting in sequences with both
and the following block in the sequence is not presenshort and long runs.
in the prefetch cache, two blocks are prefetched asyn- Cache sizeThe cache size is varied across the range
chronously. Thatis, the last in-cache block of a sequenceappropriate for each workload. For a workload of 100
is the trigger block. No prefetch is initiated if a non- sequences and two blocks prefetched per sequence, the
trigger block receives a hit. cache performance is evaluated up to a cache size of
We developed an event driven simulator to evaluate th&00 blocks, because performance metrics for all replace-
prefetch cache replacement techniques. The front endhent techniques level when the cache size approaches
model is our cache simulator, while the back end storthis value. In Split replacement policy, we also vary the
age model is a single disk simulated by the Disksim 4.0relative sizes of the Up and Down queues. In the default
simulator [6]. Table 9 gives the setup used for our ex-Split configuration, the Up and Down queue are the same
periments. We chose a simple disk setup in favor of asize, each half of the total cache capacity. In the Split23
more complicated RAID configuration, because the perconfiguration, the Up queue is two thirds, and the Down
formance of a single disk is more predictable. By mini- queue is the remaining one third of the cache capacity.
mizing idiosyncrasies of the back end storage model, w& he ability to vary the relative cache sizes provides a
more effectively isolate the performance impact of thesimple mechanism to tune the behavior of the replace-
cache replacement policy. ment policy.
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Figure 2: SPC2-like workload with 50 sequential sequennds® random sequences
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Analysis: Figures 1, 2, 3 and 4 show that the Split The paper reinforces the conclusion drawn in an ear-
policy consistently gets a higher hit rate and a lower redier paper [7], namely, the interaction between prefetch-
sponse time than either of the other policies. This resuling and caching is complex. A contribution of this pa-
is not surprising given that Split holds more sequenceger is a demonstration of the importance of using a fixed
than either of the other policies. Split has a higher diskclass prefetch technique while comparing the relative
use rate than the other two policies since fewer blocks peperformances of replacement policies. Without enforce-
sequence remain in the cache compared to the other polinent of this rule, the cache performance is the combined
cies. However, Split also has a lower wastage rate thaimpact of the replacement policy and the prefetch tech-
other policies since the evicted suffixes of sequences amique.
prefetched when their corresponding prefixes get a hit. The Split policy is evaluated here for single-level
Consequently, the early evictions are prefetched agaisaches. However, the Split policy with its 2-queue struc-
before the arrival of corresponding on-demand requestsure is naturally geared for multiple-level cooperative
Therefore, in Split, the higher disk rate is counter bal-caches and it would be interesting to analyze Split in a
anced by a lower wastage rate. multiple-level setting. Other issues that need to be ad-

By varying the relative sizes of the Up and Down dressed include a study of the impact of varying the sizes
queues, one can tune the Split replacement policy t®f the Up and Down queues, analysis of traffic gener-
the workload. When the size of the Up queue is largemtion by the policies, theoretical analysis of Split when
than the Down queue, the prefix of each sequence resombined with a variable-class prefetch technique, and
mains longer in the cache at the cost of evicting the suffixorefetch cache sizing based on hit rates in Up and Down
sooner. The result is a higher cache hit rate and disk usgueues. As future work, we plan to look into these issues.
rate, and a lower wastage rate and response time (Fig-
ure 4). The Split policy degenerates to single block reacReferences
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