
The Split replacement policy for caches with prefetch blocks

Abstract

Prefetching is an inbuilt feature of file system and
storage caches. The cache replacement policy plays a
key role in the performance of prefetching techniques,
since a miss occurs if a prefetch block is evicted be-
fore the arrival of the on-demand user request for the
block. Prefetch blocks display spatial locality, but exist-
ing cache replacement policies are designed for blocks
that display temporal locality. This paper develops a new
replacement policy calledSplit for caches that imple-
ment prefetching. The relative performances of Split and
other replacement policies, such as LRU, are evaluated
using simulation and theoretical analysis. The evaluation
shows that the Split replacement policy gets a higher hit
rate and a lower response time than any of the other com-
pared policies, at the cost of slightly more disk accesses.

1 Introduction

The memory hierarchy model is integral to computer sys-
tems, and the success of this model hinges on the perfor-
mance of caches. When a user requests data, the data
have to be uploaded to the user’s level. The speed of the
upload depends on the distance (i.e., levels) separating
the data-user from the data-store. The closer the data is
to the user, the faster the upload. In order to facilitate
fast upload, caches are placed at each level of the mem-
ory hierarchy, and data predicted to be needed in the near
future are kept in the caches.

The request predictions are based on the adage, his-
tory repeats itself, and result in two types of blocks be-
ing stored in a cache. The first type, known asrefer-
enceblocks are data blocks that recently received on-
demand requests. They are stored in the cache on the
assumption of temporal locality - blocks may be refer-
enced multiple times during a time period. The sec-
ond type, known asprefetchblocks are data blocks that
have not received on-demand requests. These blocks are

prefetched and cached before they are requested on the
assumption of spatial locality - data access patterns relate
to the logical/physical placement ordering of the blocks.
A prefetch block is a future block that relates to a re-
cent request access sequence. For example, if the first
few blocks of a file are read sequentially, then contigu-
ous blocks could be prefetched on the assumption that
the sequential access of this file will continue.

When a cache is full and a new block is to be in-
serted, the cache replacement policy determines which
cached block to eject to make space for the new block.
The replacement policy is critical to the performance of
caches, and so there are a large number of papers on this
topic. Several replacement policies have been developed,
and the policies can be classified into 4 types, namely,
FIFO (LIFO): based on time of insertion into the cache;
LRU (MRU): based on time of last access (recency);
LFU: based on frequency of access; and LRU-2 [22, 23],
2Q [15], LIRS [13], LRFU [16], MQ [30], ARC [21]:
based on both recency and frequency of access. An un-
derlying theme to all these policies, with the exception of
FIFO, is that they are designed for data blocks with tem-
poral locality. These policies are not necessarily optimal
for prefetch blocks with spatial locality.

The majority of prior research in prefetching has
focused on the prefetching technique itself, namely,
what to prefetch, when to prefetch and how much to
prefetch [8, 11, 18, 19, 26, 27, 28]. Surprisingly,
there are no papers on replacement policies for blocks
with spatial locality. It has been recommended that a
prefetch block be evicted immediately on a hit since
prefetch blocks have low temporal locality [24]. Sev-
eral papers have analyzed the optimum size of a prefetch
cache [4, 10, 12, 17, 18, 25]. Most of these papers de-
termine the optimum size based on the location of hits
in the prefetch cache [4, 12, 17, 18]. SARC [10] is also
about prefetch cache sizing, but unlike previous papers,
this paper compares the number of hits in the prefetch
cache and the reference cache to determine whether to

1

eject a block from the prefetch list or the reference list.
A couple of papers [10, 29] have mentioned, in passing,
that a prefetch access sequence should be considered as
a single unit by a replacement policy. However, the re-
placement policy was not the focus of these papers, so
they did not delve further.

Contributions: This paper develops a replacement
policy calledSplitLRU, for caches with prefetch blocks.
As the name suggests, the replacement policy is a com-
bination of Split and LRU. The LRU policy determines
which prefetch sequence to evict, while the Split pol-
icy determines which blocks, if any, to evict from the
sequence chosen for eviction. Thus, the SplitLRU re-
placement policy addresses both the temporal locality
displayed by sequences and the spatial locality displayed
by prefetch blocks of the sequence.

The Split policy can be combined with any of the tem-
poral replacement policies mentioned above. In this pa-
per, we limit our analysis to the combination of Split
and LRU since most replacement policies are variants
of LRU. The Split approach has the computational com-
plexity of its partner, so SplitLRU has LRU’s constant
complexity. This paper analyzes Split with respect to
sequential prefetching since this type of prefetching is
widely used in file system and storage device caches.

The contributions of this paper are the following:

1. proof that LRU ejects prefetch blocks (and se-
quences) in FIFO order;

2. formalization and analysis of the replacement pol-
icy that treats prefetch blocks from a sequence as
a single stream unit [10, 29]. The paper combines
this approach with LRU; we name the ensuing pol-
icy StreamLRU.

3. development of the Split replacement policy for
caches with prefetch blocks;

4. proof that the SplitLRU cache holds more se-
quences than either the LRU cache or the
StreamLRU cache;

5. proof that the hit rate of SplitLRU is an upper bound
for the hit rate of StreamLRU;

6. evidence via simulation that SplitLRU results in
lower response time and higher hit rate than LRU
and StreamLRU.

A sidebar contribution of this paper is a demonstration
of the complexity of comparing two replacement poli-
cies when the cache implements prefetching. The paper
shows that a comparison between two prefetch cache re-
placement policies is valid only if the prefetch technique
does not depend on the replacement policy. Without this

condition, performance depends on both the replacement
policy and the prefetch technique.

While this paper names and evaluates the StreamLRU
policy, the policy has been used in prior papers [10, 29].
In fact, SARC uses StreamLRU policy to determine
which block to evict, and so SARC reduces to the
StreamLRU policy if the reference list is removed from
consideration.

In the rest of the paper, StreamLRU and SplitLRU
are sometimes written simply as Stream and Split. The
next three sections present the LRU, Stream and Split
policies. Section 5 presents a theoretical comparison of
the three replacement policies. In Section 6, the per-
formances of the replacement policies are compared via
simulation.

2 Sequential prefetch

Sequential prefetching is the most widely used prefetch-
ing technique. Here, we describe a version of sequential
prefetching implemented in file system caches. For uni-
formity, the unit used in the paper is blocks - a cache size
is C blocks, a read request is for x blocks, etc.

Read-ahead (i.e., prefetch) is performed by most file
system caches. When a read request misses in the file
system cache, asynchronousprefetch request for one or
more blocks contiguous to the missed blocks is issued.
For example, if an on-demand request for block 1 misses
in the cache, a read request for blocks< 1, 1a, 1b, 1c >
may be issued, where blocks 1a, 1b and 1c are contigu-
ous to block 1. Theprefetch degree, which is the number
of blocks prefetched, is 3. The prefetch degree may be
fixed or varying, depending on the prefetch technique.
Typically, a prefetch is not initiated on a hit of every
prefetched block. Instead, one of the prefetched blocks is
marked as a trigger block, and a prefetch is issued only if
the trigger block gets a hit. Referring back to the above
example, suppose block1b is the trigger. When an on-
demand request for block1a arrives, it receives a hit, but
prefetch is not initiated. When an on-demand request for
block 1b arrives, it receives a hit, and anasynchronous
prefetch for blocks< 1d, 1e, 1f, 1g > may be issued.
The trigger is reset to block1f . In this example, the
prefetch degree varies since 3 blocks are prefetched on
miss, 0 blocks are prefetched on hit of non-trigger block,
and 4 blocks are prefetched on hit of trigger block.

Definition 1 An access sequence is an ordered series of
contiguous block addresses in increasing order.

In the above example, the access sequence is
< 1, 1a, 1b, 1c, 1d, 1e, 1f, 1g >. The I/O work-
load submitted to a cache consists of inter-
leaved requests from various accesses, such as,

2

< 1, 5, 1a, 2, 2a, 6, 9, 5a, 2b, 1b, >. On-demand
requests for blocks from a sequence are interleaved
amongst blocks from other accesses. From a sequen-
tial prefetch technique’s viewpoint, the I/O workload
presented in the above example, potentially, has the
following access sequences:< 1, 1a, 1b, 1c, .. >,
< 5, 5a, 5b, 5c, ... >, < 2, 2a, 2b, 2c, ... >,
< 6, 6a, 6b, 6c, ... > and< 9, 9a, 9b, 9c, ... >.

Prefetching is all about access sequences - the
prefetching technique implicitly or explicitly identifies
a sequential access stream and prefetches contiguous
blocks on the assumption that the sequential access will
continue. The prefetched blocks are inserted into the
cache along with the missed blocks. The cache con-
tains both reference blocks and prefetch blocks. When
an on-demand request arrives for a prefetch block, it gets
a prefetch hit; the hit block is now a reference block.

Definition 2 A prefetch hit is the first hit of a prefetch
block; once the block has been referenced, any further
hits to the block are counted as reference hits.

3 LRU vs. StreamLRU

Prefetching techniques make the following two assump-
tions about the workload:

Assumption 1 Each prefetch block is associated with an
access sequence.

Assumption 2 The later blocks of a sequence are likely
to have a later first access time than the blocks that pre-
cede them.

Standard replacement policies like LRU, FIFO and LFU
ignore access sequences. The LRU policy evicts the least
recently used block, and does not distinguish between
reference blocks and prefetch blocks. Since a prefetch
block, by definition, has never been accessed, the last ac-
cess time of a prefetch block is the time it was prefetched
and inserted into the MRU end of the replacement queue.
When a prefetch block gets a hit, the LRU policy moves
the referenced block to the MRU end of the replacement
queue, but leaves the rest of the prefetched blocks from
the hit block’s sequence in their replacement queue posi-
tion. Referring to the example in Section 2, when block
1a receives a hit, the LRU policy moves1a to the MRU
end, but blocks1b, 1c retain their position in the replace-
ment queue. A prefetched block reaches the eviction end
when its access time (i.e., prefetch time) is the oldest.
Thus, if an evicted block is a prefetch block, it is guaran-
teed that it is the oldest prefetch block in the cache.

Result 1 The LRU replacement policy ejects prefetch
blocks in FIFO order.

Table 1: LRU vs. StreamLRU - LRU better: Prefetch
technique ensures that the next 2 contiguous blocks re-
lated to each on-demand block is in the cache.

Prefetch cache size = 4, LRU
hits h1 h2 h3
workload 1 2 1a 3 2a 4 2b
Cache 1a 2a 1c 3a 2b 4a 2d

1b 2b 2a 3b 2c 4b 4a
1a 2b 1c 3a 2b 4b
1b 1b 2a 3b 2c 2c

Eject 2b 1c 3a
1b 3b

Prefetch cache size = 4, StreamLRU
hits h1 h2
workload 1 2 1a 3 2a 4 2b
Cache 1a 2a 1b 3a 2b 4a 2c

1b 2b 1c 3b 2c 4b 2d
1a 2a 1b 3a 2b 4a
1b 2b 1c 3b 2c 4b

Eject 2a 1b 3a
2b 1c 3b

Table 2: LRU vs. StreamLRU - LRU worse: Prefetch
technique prefetches 2 blocks on miss; prefetches 2
blocks on hit if the block is the last block in the sequence.
Same workload as Table 1

Prefetch cache size = 4, LRU
hits h1 h2
workload 1 2 1a 3 2a 4 2b
Cache 1a 2a 2a 3a 3a 4a 2c

1b 2b 2b 3b 3b 4b 2d
1a 1b 2a 2b 3a 4a
1b 2b 3b 4b

Eject 1b 2b

Prefetch cache size = 4, StreamLRU
hits h1 h2 h3
workload 1 2 1a 3 2a 4 2b
Cache 1a 2a 1b 3a 2b 4a 2c

1b 2b 2a 3b 2c 4b 4a
1a 2b 1b 3a 2b 4b
1b 2a 3b 2c

Eject 2b 1b 3a
3b

3

Table 3: LRU vs. StreamLRU - equal hits: Prefetch tech-
nique prefetches 1 block on hit or miss. Same workload
as previous tables.

Prefetch cache size = 2, LRU
hits h1 h2
workload 1 2 1a 3 2a 4 2b
Cache 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a
Eject 2a 1b 3a

Prefetch cache size = 2, StreamLRU
hits h1 h2
workload 1 2 1a 3 2a 4 2b
Cache 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a
Eject 2a 1b 3a

For clarity of exposition, in the rest of this paper, we
assume that the cache is partitioned into a prefetch and
reference cache. Upon a hit in the prefetch cache, the hit
block is ejected from the prefetch list and may be inserted
into the reference list.

The standard replacement policies can be modified to
incorporate Assumptions 1 and 2 by doing the following
simple step: on a hit, the hit block and all blocks fol-
lowing it in the sequence are moved in the replacement
queue. The blocks preceding the referenced block are
not moved on a hit, since sequential prefetching antici-
pates requests to arrive for following blocks, not preced-
ing blocks. Note that this condition may be relaxed so
that all blocks in the current prefetch window (i.e., the
set of blocks in an access sequence that must be kept in
cache [5]) are moved upon a hit. In this paper, we limit
our analysis to the LRU policy, and the modified scheme
is called StreamLRU. The policy evicts blocks from the
Least Recently Used sequence.

Prefetch sequences display temporal locality, since re-
cently accessed sequences generally have a higher prob-
ability of getting future requests than sequences with no
recent accesses. The Stream policy captures this behav-
ior by moving all blocks in the hit sequence to the MRU
end of the replacement queue. The LRU policy ignores
access sequences in the workload and just moves the hit
block to the MRU end. As a result, the Stream policy
performs better than the LRU policy for workloads with
access sequences that display temporal locality. It is pos-
sible to find workloads more suitable for LRU, and Ta-
ble 1 presents such a scenario where Stream gets less hits
than LRU.

Another factor that must be taken into consideration
when evaluating the performances of LRU and Stream is
the prefetching technique. The interaction between the

replacement policy and the prefetching technique is com-
plex and barely charted [7]. For the same workload,
one prefetching technique may result in LRU getting
more hits than Stream while another prefetching tech-
nique may reverse this result. This scenario is demon-
strated in Tables 1, 2 and 3. Using the same workload,
LRU gets more hits than Stream in Table 1, LRU gets
less hits than Stream in Table 2, and LRU gets the same
number of hits as Stream in Table 3.

The tables demonstrate that the relative performances
of replacement policies vary with the prefetch technique.
It is easy to demonstrate this dependence with other re-
placement policies too. While it is easy to come up with
any number of examples that demonstrate the interaction
between the replacement policy and the prefetch tech-
nique, it is hard to quantify the dependence and its im-
pact on performance. The next section presents the Split
policy and more examples that demonstrate the inconsis-
tent performance of replacement policies when caches
implement prefetching.

4 SplitLRU vs. LRU & StreamLRU

Split is a new replacement approach along the lines
of StreamLRU - it is an improved version of Stream.
Stream stores sequences as a unit, so this scheme gives
equal priority to all blocks within a sequence. An as-
sumption made by prefetching techniques is that an ear-
lier block of a sequence has a higher probability of get-
ting accessed before a later block of the sequence (ref-
erence Section 3). Split incorporates this assumption
by evicting the later blocks of all the cached sequences
before it starts evicting the earlier blocks of these se-
quences. Thus, unlike Stream, Split integrates the spatial
locality of prefetch blocks. We explain the policy below.

As mentioned in Section 2, a common prefetching ap-
proach is to prefetch several blocks from a sequence at
a time. One of these blocks is marked the trigger block.
When a trigger block gets a hit, the prefetching technique
jumps into action and prefetches several future blocks
from the sequence. The trigger blocks demarcates each
sequence into 2 parts, theprefixand thesuffix; the trigger
block can be included in either the prefix or the suffix,
but not both. If the trigger is in the suffix, then the prefix
of a sequence is from the start to the block preceding the
trigger; the suffix is from the trigger block to the end of
the sequence. For prefetch techniques without a trigger,
an arbitrary block in the sequence can be chosen as the
point of demarcation of a sequence into the prefix and
suffix. If a sequence has only one block loaded in the
cache, then the sequence just has a prefix.

Stream evicts all the blocks of the least recently used
sequence before it starts evicting blocks from the next
sequence in the LRU list. Split, on the other hand, evicts

4

the suffix of the least recently used sequence and then
moves to the suffix of the next sequence in the LRU
list. (Note that when a trigger is evicted, the trigger
moves to the preceding block in the sequence.) The pre-
fix of a sequence gets ejected only when the suffixes
of all sequences in the cache are ejected. In Split, se-
quences stay longer in the cache than they would in the
Stream scheme.

Table 4: Demonstrating Split’s performance, using the
same workload and prefetch technique presented in Ta-
ble 1: Split gives the same number of hits as LRU and
more hits than StreamLRU

Prefetch cache size = 4, SplitLRU
hits h1 h2 h3
workload 1 2 1a 3 2a 4 2b
Up Q 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a

Down Q 1b 2b 1c 3b 2c 4b 2d
1b 2b 2a 1b 3a 4b

Eject 1c 3b 2c 3a
2b 1b

Table 5: Demonstrating Split’s performance, using the
same workload and prefetch technique presented in Ta-
ble 2: Split gives the same number of hits as StreamLRU
and more hits than LRU

Prefetch cache size = 4, SplitLRU
hits h1 h2 h3
workload 1 2 1a 3 2a 4 2b
Up Q 1a 2a 1b 3a 2b 4a 2c

1a 2a 1b 3a 2b 4a

Down Q 1b 2b 2b 3b 2c 4b 2d
1b 2a 1b 3a 4b

Eject 2b 3b 2c 3a
1b

We demonstrate the mechanics of Split in Tables 4
and 5. These examples correspond to Tables 1 and 2 that
compare the performances of LRU versus StreamLRU.
In Split, the replacement queue is divided into two
queues, the Up queue and the Down queue. When a se-
quence is inserted into the cache, the prefix of the se-
quence is loaded into the MRU end of the Up queue
while its suffix is loaded into the MRU end of the Down
queue. For clarity, let’s assume that the prefix (suffix)
of each sequence fit into one block. Therefore, each
prefetch request is for at most 2 blocks. When 2 blocks
are prefetched, the first block is loaded into the Up queue
and the second block is loaded into the Down queue.
When a block is ejected from the LRU end of the Up

Table 6: Split vs. LRU: demonstrating that Split may
perform worse than LRU. Prefetch 2 blocks on miss;
prefetch on hit of last block in sequence

Prefetch cache size = 6, SplitLRU
hits h1 h2
workload 1 2 3 2a 1a 4 5 3a
Up Q 1a 2a 3a 2b 1b 4a 5a 3b

1a 2a 3a 2b 1b 4a 5a
1a 1a 3a 2b 1b 4a

Down Q 1b 2b 3b 3b 3b 4b 5b 3c
1b 2b 1b 3a 2b 1b

1b 3b 4b 5b
Eject 3a 2b

3b 4b

Prefetch cache size = 6, LRU
hits h1 h2 h3
workload 1 2 3 2a 1a 4 5 3a
Cache 1a 2a 3a 3a 3a 4a 5a 3b

1b 2b 3b 3b 3b 4b 5b 5a
1a 2a 2b 2b 3a 4a 5b
1b 2b 1a 1b 3b 4b 4a

1a 1b 2b 3a 4b
1b 1b 3b

Eject 2b
1b

Table 7: Split vs. StreamLRU: demonstrating that
StreamLRU may perform better than SplitLRU. Prefetch
2 blocks on miss; no prefetch on hit

Prefetch cache size = 4, SplitLRU
hits h1 h2 h3
workload 1 3 2 1a 4 4a 5 1b 5a 6 4b
Up Q 1a 3a 2a 2a 4a 4b 5a 1c 1c 6a 4c

1a 3a 3a 2a 2a 4b 5a 1c 6a

Down Q 1b 3b 2b 2b 4b 3a 5b 1d 1d 6b 4d
1b 1a 3a 2a 4b 4b 1d 1c

Eject 3b 2b 3a 2a 4b 6b
1b 3a 1d

Prefetch cache size = 4, StreamLRU
hits h1 h2 h3 h4
workload 1 3 2 1a 4 4a 5 1b 5a 6 4b
Cache 1a 3a 2a 1b 4a 4b 5a 5a 5b 6a 6a

1b 3b 2b 1c 4b 1b 5b 5b 4b 6b 6b
1a 3a 2a 1b 1c 4b 4b 5b 5b
1b 3b 2b 1c 1b 4b

Eject 1a 3a 2a
1b 3b 2b

5

Table 8: Demonstrating 2 anomalies: Using the same
workload and prefetch technique as in Table 7, show-
ing that Split gives more hits than StreamLRU when the
cache size is increased. Also demonstrating Belady’s
anomaly with StreamLRU: 4 hits when cache size is 4
(Table 7), while 3 hits when cache size is 5

Prefetch cache size = 5, SplitLRU
hits h1 h2 h3 h4
workload 1 3 2 1a 4 4a 5 1b 5a 6 4b
Up Q 1a 3a 2a 2a 4a 4b 5a 1c 1c 6a 6a

1a 3a 3a 2a 2a 4b 5a 4b 1c 1c
1a 3a 3a 2a 4b 4b

Down Q 1b 3b 2b 2b 4b 2b 5b 1d 1d 6b 6b
1b 3b 3b 2b 3a 2a 2a 1d 1d

Eject 1b 3b 2b 5b 2a
3a

Prefetch cache size = 5, StreamLRU
hits h1 h2 h3
workload 1 3 2 1a 4 4a 5 1b 5a 6 4b
Cache 1a 3a 2a 2a 4a 4b 5a 1c 5b 6a 4c

1b 3b 2b 2b 4b 2a 5b 1d 1c 6b 4d
1a 3a 3a 2a 2b 4b 5a 1d 5b 6a
1b 3b 3b 2b 3a 2a 5b 4b 1c 6b

1a 3a 2b 4b 1d 5b
Eject 1b 3a 2a 4b 1c

2b 1d

queue, it is inserted into the Down queue, behind the
block that was just inserted into the Down queue (the
second position from the MRU end of Down queue). All
evictions from the cache are from the Down queue. Thus,
the Split policy allows sequences to stay longer in the
cache than the Stream approach. The SplitLRU policy
has the computational complexity of LRU.

When the Split policy is viewed from a single queue
perspective, a newly inserted sequence is inserted into
the top two MRU positions of the LRU queue. This re-
sults in the ejection of 2 blocks from the LRU end of
the queue. If the block to be ejected is the suffix of a
sequence, then it is evicted; if the block is a prefix and
it is appearing at the LRU end for the first time, then
this block is re-inserted into the LRU queue just after the
newly inserted sequence (that caused the eviction of this
block). When the prefix of a sequence appears at the
LRU end for the second time, it gets evicted. Thus, the
Split approach gives sequences a second chance.

The examples presented in Table 4 and 5 show that,
in each case, Split does as well as the better of the
Stream and LRU policies (reference Tables 1 and 2).
SplitLRU uses the underlying principle that the later
blocks in a sequence are expected to receive hits later
than the earlier blocks. Sequences are given a longer life
in the cache than in the traditional StreamLRU and LRU
approaches, so the superior hit rate of SplitLRU is not
surprising. This reasoning would lead one to believe that
the hit rate of SplitLRU is an upper bound to the hit rate

of LRU and LRUseq. Unfortunately, this is not the case,
as demonstrated by the examples in Tables 6 and 7.

Table 6 presents a scenario where LRU results in more
hits than Split. The reason for LRU’s superior perfor-
mance is that the workload is biased to the FIFO replace-
ment policy, and LRU evicts prefetched blocks in FIFO
order. Table 7 presents a scenario where StreamLRU gets
more hits than Split. Table 8 presents a rather bizarre
scenario: when the cache size is increased, StreamLRU
gets less hits than Split using the same workload and
prefetch technique as in Table 7. The advantage that
Stream has over Split is lost when the cache size is in-
creased. Therefore, in addition to the prefetch tech-
nique, the cache size is another factor that determines
the relative performances of replacement policies. On a
side note, Tables 7 and 8 demonstrate the occurrence of
Belady’s anomaly [3] with StreamLRU since the large
cache gets less hits than the smaller cache. This contra-
dicts an assumption made in an earlier paper [10] about
StreamLRU being foolproof to Belady’s anomaly.

The examples in Sections 3 and 4 show that the rela-
tive performances of prefetch cache replacement policies
vary with the workload, the prefetch technique, and the
size of the cache. It is hard to understand how one re-
placement policy compares with another when there are
so many factors to consider. This raises the question,
how does one determine the optimal replacement policy
when performance is so erratic? We answer this question
in the next two Sections.

5 Replacement policy invariant prefetch

In order to compare two replacement policies, all other
parameters must be identical - the same cache size, the
same prefetch technique, the same input workload. In the
examples given so far, all these parameters are identical,
but one is unable to draw any conclusion regarding the
relative performances of the replacement policies. The
reason is that the action of a prefetch technique is af-
fected by the replacement policy. For example, consider
a prefetch technique that only prefetches on misses: sup-
pose an on-demand request gets a miss with one replace-
ment policy and a hit with another. The miss results in
a prefetch of contiguous blocks, while the hit results in
no prefetch. On a hit/miss, the prefetch action may load
different blocks into the two caches, but the prefetching
of different blocks may result in a hit in one cache and
a miss in another. That is, the hits/misses are a result
of the combined action of the replacement policy and
prefetch technique. Instead of evaluating the relative per-
formances of replacement policies, one is really evaluat-
ing the relative performances of the replacement policy
and prefetch technique combination.

In a sense, comparing two prefetch cache replacement

6

policies is like trying to compare apples and oranges,
even when the cache size, the workload, and the prefetch
technique are identical. The reason is that the blocks
prefetched by a prefetch technique depends on whether
an on-demand request hits or misses in the cache. Instead
of comparing replacement policies against the backdrop
of identical prefetch techniques, one should compare
policies against the backdrop ofidentical prefetch ac-
tions. That is, a fixed number of blocks should be
prefetched upon arrival of an on-demand request, inde-
pendent of whether the request gets a hit or a miss. If
some of the blocks to be prefetched are already present in
the cache, then they are not prefetched again. A prefetch
technique that prefetches a fixed number of blocks upon
arrival of each on-demand request, regardless of whether
the on-demand request hits or misses, is impervious to
the replacement policy.

Classify prefetch techniques into two groups depend-
ing on whether the prefetch degree (i.e., the number of
blocks prefetched upon arrival of an on-demand request)
is fixedor variable. The technique in Table 1 belongs
to the fixed class since the prefetch technique ensures
that two blocks contiguous to the arriving on-demand
request are in the cache. The prefetch technique in Ta-
ble 2 belongs to the variable class: on miss, the prefetch
technique ensures that 2 blocks contiguous to the missed
block are in cache; on hit of non-trigger block, there is 0
prefetch; on hit of trigger block, the prefetch technique
ensures that 2 contiguous blocks are loaded in cache. The
trigger block is the suffix of the sequence, but if the suffix
is evicted, the trigger moves to the prefix (i.e.,the trigger
is the last in-cache block of the sequence). Techniques
that prefetch only on hit or only on miss, and techniques
that prefetch on hit of trigger blocks are all examples of
variable class prefetch techniques.

In this section, we theoretically compare the perfor-
mances of LRU, StreamLRU and SplitLRU when the
prefetch technique belongs to the fixed class. The
prefetch actions are identical in all caches, so perfor-
mance variations are a result of the replacement policy
alone. Consequently, we are able to isolate the perfor-
mance characteristics of the replacement policies with
regard to prefetch blocks. While it is true that commonly
used prefetch techniques belong to the variable class, the
performance is a result of the interaction between the
prefetch technique and the replacement policy. In or-
der to evaluate the integrated performance of a variable
prefetch technique and a specific replacement policy, it is
necessary to first isolate the performance characteristics
of the replacement policy.

5.1 Assumptions & notation

The measurement unit used in the paper is blocks. The
prefetch technique ensures thatx ≥ 2 blocks contigu-
ous to the newest on-demand request are in the cache. A
minimum of 2 blocks must be prefetched in order to see
differences between the three replacement policies. For
simplicity, let x be an even number, and let the prefix
and suffix of a sequence contain equal number of blocks,
x/2.

The key to modeling and analysis is the ability to keep
essential features of the system being modeled, while
blocking out the noise. In this spirit, we impose sim-
plifying assumptions:

1. The cache size isC blocks, whereC is a multiple
of x/2. This assumption ensures that the cache, in-
cluding the Up queue and Down queue, does not
store/evict partial prefixes/suffixes.

2. When a block receives a hit, the hit block is evicted
from the prefetch cache. The hit block may be
moved to the reference cache. With this assumption,
the analysis focuses on the prefetch blocks, without
the distraction of reference blocks.

3. The prefetch technique is from the fixed class.

4. The on-demand workload follows Assumption 2
(refer to Section 3), namely, that later blocks of a se-
quence have a later first access time than the blocks
that precede them. A consequence of this assump-
tion is that if earlier blocks of a sequence are evicted
from the cache, but the cache holds later blocks of
the sequence, then the next on-demand request for
a block from this sequence will miss. That is, the
sequence is effectively evicted from the cache.

Prefetching is all about access sequences, so all results
pertain to sequences. Let#Stream, #Split and#LRU rep-
resent the number of sequences in the cache when the re-
placement policy is StreamLRU, SplitLRU and LRU, re-
spectively. Let{Stream}, {Split} and{LRU} represent
the set of sequences in the cache when the replacement
policy is StreamLRU, SplitLRU and LRU, respectively.

5.2 Analysis

We provide informal explanations for all the results, but
due to space limitations, we provide proofs only when
the informal explanation is insufficient. The next result
follows from the definition of StreamLRU, namely, mov-
ing the entire sequence to the MRU end upon a hit.

Result 2 The StreamLRU policy ensures that the most

7

recently accessed⌈C
x
⌉ sequences are in the cache.

#Stream = ⌈
C

x
⌉

Result 3 The SplitLRU policy ensures that at least⌈C
x
⌉

and at most⌈C
x
⌉ + ⌊ C

2x
⌋ of the most recently accessed

sequences are in the cache.

⌈
C

x
⌉ ≤ #Split ≤ ⌈

C

x
⌉ + ⌊

C

2x
⌋

Proof: We prove the result by showing that between two
accesses to a sequence it is possible to have⌈C

x
⌉+⌊ C

2x
⌋−

1 accesses to unique sequences.
The Up queue size contains⌈C

x
⌉× x

2
blocks, while the

Down queue contains⌊C
x
⌋ × x

2
blocks.

The Split policy ensures that the prefixes of the most
recently accessed⌈C

x
⌉ are in the Up queue. With each

new prefix insertion into the Up queue, an Up block
movesx/2 positions toward the eviction end. Hence, a
prefix stays in the Up queue for at least⌈C

x
⌉ − 1 unique

sequence accesses.
When a prefix is ejected from the Up queue, it is

moved to the Down queue, behind the suffix of the newly
inserted sequence. With access of each new sequence, 2
prefix/suffix are inserted in the Down queue - the suffix
from the new sequence and the prefix evicted from the
Up queue. Therefore, with each sequence insertion, ev-
ery Down block movesx positions downward toward the
eviction end. Thus, a prefix stays in the Down queue for
⌊ C

2x
⌋ unique sequence accesses.

�

The next results follow directly from Results 2 and 3.

Corollary 1 With respect to sequences, the StreamLRU
cache is a subset of the Split cache. That is,{Stream} ⊆
{Split}.

Theorem 1 The hit rate of a SplitLRU cache is an upper
bound to the hit rate of a StreamLRU cache.

We now compare LRU against Split and Stream. The
prefetch technique ensures thatx blocks contiguous to
the on-demand request are loaded in the cache, but
the LRU policy ignores these access sequences. New
prefetch blocks are inserted into the MRU end of the
cache, but if the cache already contains a contiguous
block, this block retains its position in the replacement
queue. The prefetch blocks are evicted in FIFO order
by the LRU replacement policy. The older contiguous
blocks would get evicted before the newer contiguous

blocks. Thus, the LRU policy may evict the prefix of
a sequence before the suffix of this sequence. As a re-
sult, it is possible for an on-demand request to get a miss
even though a later block of the sequence is present in
the cache. If a later block of a sequence is present in
the cache, but the earlier block is evicted, then the corre-
sponding sequence is said to be evicted from the cache.
A consequence of evicting prefetch blocks in FIFO order
is:

Result 4 The LRU policy evicts sequences in FIFO or-
der and holds at most⌈C

x
⌉ access sequences in the cache.

#LRU ≤ ⌈
C

x
⌉

Note that the StreamLRU and SplitLRU policies keep
the most recently accessed sequences in the cache. The
LRU policy evicts sequences in FIFO order, so the se-
quences in the LRU cache are not necessarily the most
recently accessed sequences. As a result, even though
the LRU cache may hold less sequences, the LRU cache
need not be a subset of the SplitLRU cache or the
StreamLRU cache. In the LRU cache, between two ac-
cesses of a sequence, it is possible to have2 ∗ ⌈C

x
⌉ − 2

unique sequence accesses. Table 1 demonstrates that
even though the LRU cache may contain less sequences
than the Stream cache, it is possible for a LRU cache
to get more hits than the Stream cache. The reason
for LRU’s superior performance is that the workload,<
1, 2, 1a, 3, 2a >, is biased toward the FIFO policy. In or-
der to show that LRU may get more hits than Split, con-
sider the workload< 2, 3, 4, 1, 2a, 3a, 4a, 5, 6, 7, 1a >
when the cache sizeC=16 blocks and the degree of
prefetchx = 4. LRU gets 4 hits while Split gets 3 hits
since the workload is biased to the FIFO policy. While
we have provided specific scenarios where LRU gets
more hits than Split and Stream, these cases are atypical.
Since Split and Stream hold at least as many sequences
as LRU, the Split and Stream policies are expected to get
more hits than the LRU cache.

The theoretical analysis in this section allows one to
understand the essential traits of LRU, StreamLRU and
SplitLRU. However, there are a couple of major issues
that have not been addressed here. The first issue is
whether the superior hit rate of Split translates into lower
response time. The response time is determined not only
by the hit rate but also by the workload traffic submitted
from the cache to the lower level. Even though Split has
a higher hit rate, it does evict and then reload the suf-
fixes of sequences. It is important to theoretically and
experimentally evaluate the impact of the traffic submit-
ted from the cache to the lower level. The second is-
sue is to evaluate the relative performances of the three

8

Table 9: Storage simulator setup

Disksim parameter Value

disk type cheetah9LP
disk capacity 17783240 blocks

mean disk read seek time5.4 msec
maximum disk read seek time10.63 msec

disk revolutions per minute 10045 rpm

policies against a variable class technique. If the relative
performances violate the analysis here, then the causal
agent is the prefetch technique. It would be easier to un-
derstand the interaction between the replacement policy
and the prefetch technique, now that the properties of the
replacement policy are known. In the next section, we
address both these issues by a simulation analysis of the
relative performances of the three replacement policies
when combined with a popular variable class prefetch
technique.

6 Experimental evaluation

The performances of replacement policies LRU,
StreamLRU and SplitLRU are evaluated when the
prefetch technique is from the variable class. We point
out that SARC is a combination of StreamLRU and
adaptive sizing of prefetch versus reference cache. To
avoid conflating the effects of adaptive resizing of the
prefetch cache with Split, the paper compares Split with
LRU and StreamLRU.

Since the focus of this study is replacement policies,
not prefetch techniques, we simulate a simple version of
a common prefetch technique, namely, the trigger based
prefetch. If a requested block misses in the prefetch
cache, then an additional two blocks are prefetched syn-
chronously, and piggy-backed with the missed disk re-
quest. If a requested block hits in the prefetch cache,
and the following block in the sequence is not present
in the prefetch cache, two blocks are prefetched asyn-
chronously. That is, the last in-cache block of a sequence
is the trigger block. No prefetch is initiated if a non-
trigger block receives a hit.

We developed an event driven simulator to evaluate the
prefetch cache replacement techniques. The front end
model is our cache simulator, while the back end stor-
age model is a single disk simulated by the Disksim 4.0
simulator [6]. Table 9 gives the setup used for our ex-
periments. We chose a simple disk setup in favor of a
more complicated RAID configuration, because the per-
formance of a single disk is more predictable. By mini-
mizing idiosyncrasies of the back end storage model, we
more effectively isolate the performance impact of the
cache replacement policy.

Performance metrics: The hit rate, mean response
time, wastage rate and disk rate are measured. The hit
rate is the ratio of the number of hits to the total number
of on-demand requests to the prefetch cache; the mean
response time is the product of miss rate and mean disk
response time; wastage rate is the ratio of the number
of prefetches that get misses (due to early eviction) to
the total number of on-demand requests to the prefetch
cache; disk rate is the ratio of number of requests to disks
to the total number of on-demand requests to prefetch
cache.

Input parameters: The cache size and the I/O work-
load are varied in our experiments. The cache size and
I/O workload have to be set in tandem; if the cache is too
large or too small for the workload, replacement policies
will have little impact on performance.

Workload characteristics:Using real workload traces
is not an option since prefetching depends on timing [9,
10, 18]. Synthetic workload traces are generated based
on published SPC1 and SPC2 specifications for read only
workloads. SPC1 [1, 14, 20] and SPC2 [2] are popu-
lar benchmark that simulate sequential access patterns of
business and desktop applications, respectively. Each of
our workload traces is composed of several independent,
concurrent sequences of requests with exponentially dis-
tributed inter-arrival times. Three distinct types of work-
load sequences are generated, completely random, com-
pletely sequential, and partially sequential. Completely
random sequences issue requests with random block ad-
dresses. Completely sequential sequences request a ran-
dom starting block address, and subsequent requests se-
quentially increment the block address by one. Partially
sequential sequences request a random starting block ad-
dress, followed by a number of requests for sequential
block addresses, then restart at another random starting
block address. Thus, a partially sequential sequence con-
sists of a number of sequentialruns. The run length is
sampled exponentially resulting in sequences with both
short and long runs.

Cache size:The cache size is varied across the range
appropriate for each workload. For a workload of 100
sequences and two blocks prefetched per sequence, the
cache performance is evaluated up to a cache size of
300 blocks, because performance metrics for all replace-
ment techniques level when the cache size approaches
this value. In Split replacement policy, we also vary the
relative sizes of the Up and Down queues. In the default
Split configuration, the Up and Down queue are the same
size, each half of the total cache capacity. In the Split23
configuration, the Up queue is two thirds, and the Down
queue is the remaining one third of the cache capacity.
The ability to vary the relative cache sizes provides a
simple mechanism to tune the behavior of the replace-
ment policy.

9

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

0

20

40

60

80

100

H
it

 r
a
te

 (
%

)

Hit Rate:

Split

StreamLRU

LRU

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

0

2

4

6

8

10

12

R
e
sp

o
n
se

 t
im

e
 (

m
ill

is
e
co

n
d
s)

Response Time:

Split

StreamLRU

LRU

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

0

20

40

60

80

100

W
a
st

e
d
 p

re
fe

tc
h
 (

%
)

Wasted Prefetch Rate:

Split

StreamLRU

LRU

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

0.5

0.6

0.7

0.8

0.9

1.0

D
is

k
u
se

 (
ra

ti
o
 o

f
fe

tc
h
e
s

p
e
r

re
q
u
e
st

)

Disk Use:

Split

StreamLRU

LRU

Figure 1: SPC2-like workload with 100 sequential sequences

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

cache capacity (cache lines)

0

10

20

30

40

50

H
it

 r
a
te

 (
%

)

Hit Rate:

Split

StreamLRU

LRU

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

cache capacity (cache lines)

5

6

7

8

9

10

11

R
e
sp

o
n
se

 t
im

e
 (

m
ill

is
e
co

n
d
s)

Response Time:

Split

StreamLRU

LRU

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

cache capacity (cache lines)

0

10

20

30

40

50

W
a
st

e
d
 p

re
fe

tc
h
 (

%
)

Wasted Prefetch Rate:

Split

StreamLRU

LRU

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

cache capacity (cache lines)

0.75

0.80

0.85

0.90

0.95

1.00

D
is

k
u
se

 (
ra

ti
o
 o

f
fe

tc
h
e
s

p
e
r

re
q
u
e
st

)

Disk Use:

Split

StreamLRU

LRU

Figure 2: SPC2-like workload with 50 sequential sequences and 50 random sequences

10

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

0

2

4

6

8

10

12

14

16

H
it

 r
a
te

 (
%

)

Hit Rate:

Split

StreamLRU

LRU

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

10.0

10.5

11.0

R
e
sp

o
n
se

 t
im

e
 (

m
ill

is
e
co

n
d
s)

Response Time:

Split

StreamLRU

LRU

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

2

4

6

8

10

12

14

16

18

W
a
st

e
d
 p

re
fe

tc
h
 (

%
)

Wasted Prefetch Rate:

Split

StreamLRU

LRU

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

cache capacity (cache lines)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

D
is

k
u
se

 (
ra

ti
o
 o

f
fe

tc
h
e
s

p
e
r

re
q
u
e
st

)

Disk Use:

Split

StreamLRU

LRU

Figure 3: SPC1-like workload with 80 random sequences and 20partly sequential sequences

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

cache capacity (cache lines)

0

10

20

30

40

50

60

70

80

H
it

 r
a
te

 (
%

)

Hit Rate:

Split

StreamLRU

LRU

Split23

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

cache capacity (cache lines)

2

3

4

5

6

7

8

9

10

11

R
e
sp

o
n
se

 t
im

e
 (

m
ill

is
e
co

n
d
s)

Response Time:

Split

StreamLRU

LRU

Split23

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

cache capacity (cache lines)

0

10

20

30

40

50

60

70

80

W
a
st

e
d
 p

re
fe

tc
h
 (

%
)

Wasted Prefetch Rate:

Split

StreamLRU

LRU

Split23

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

cache capacity (cache lines)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
is

k
u
se

 (
ra

ti
o
 o

f
fe

tc
h
e
s

p
e
r

re
q
u
e
st

)

Disk Use:

Split

StreamLRU

LRU

Split23

Figure 4: Adding the Split23 replacement policy: 50 Sequential, 20 random and 30 partly sequential sequences

11

Analysis: Figures 1, 2, 3 and 4 show that the Split
policy consistently gets a higher hit rate and a lower re-
sponse time than either of the other policies. This result
is not surprising given that Split holds more sequences
than either of the other policies. Split has a higher disk
use rate than the other two policies since fewer blocks per
sequence remain in the cache compared to the other poli-
cies. However, Split also has a lower wastage rate than
other policies since the evicted suffixes of sequences are
prefetched when their corresponding prefixes get a hit.
Consequently, the early evictions are prefetched again
before the arrival of corresponding on-demand requests.
Therefore, in Split, the higher disk rate is counter bal-
anced by a lower wastage rate.

By varying the relative sizes of the Up and Down
queues, one can tune the Split replacement policy to
the workload. When the size of the Up queue is larger
than the Down queue, the prefix of each sequence re-
mains longer in the cache at the cost of evicting the suffix
sooner. The result is a higher cache hit rate and disk use
rate, and a lower wastage rate and response time (Fig-
ure 4). The Split policy degenerates to single block read
ahead as the size of the Up queue approaches the to-
tal cache size. A long Up queue may be undesirable
for workloads with higher request rates because the ef-
ficiency of prefetching multiple blocks is lost. On the
other hand, a long Up queue may benefit workloads with
a large number of intermittent sequences.

The Split Up and Down queues can be used to dynam-
ically extract information regarding the sequentiality of
the workload. If the number of hits in the Down queue
is greater than the number of hits in the Up queue, it in-
dicates that sequences may be getting evicted too soon.
This can be addressed in the Split replacement policy by
increasing the size of the Up queue. External to the re-
placement policy, the degree of prefetch can be reduced,
or prefetching can be disabled until a sequential sequence
is detected. These approaches may be used individually
or cooperatively. By extracting this information, the Split
policy and the prefetch technique can be tuned dynam-
ically to optimize the cache to react to changes in the
workload.

7 Conclusion

The Split replacement policy is unique in that it incorpo-
rates both the temporal and spatial locality of workloads.
Theoretical analysis and simulation studies demonstrate
that a Split cache has a lower response time and higher hit
rate than a LRU cache and a StreamLRU cache. Since the
StreamLRU policy is used by SARC to determine which
block to evict, the Split prefetch cache performs better
than the SARC prefetch cache.

The paper reinforces the conclusion drawn in an ear-
lier paper [7], namely, the interaction between prefetch-
ing and caching is complex. A contribution of this pa-
per is a demonstration of the importance of using a fixed
class prefetch technique while comparing the relative
performances of replacement policies. Without enforce-
ment of this rule, the cache performance is the combined
impact of the replacement policy and the prefetch tech-
nique.

The Split policy is evaluated here for single-level
caches. However, the Split policy with its 2-queue struc-
ture is naturally geared for multiple-level cooperative
caches and it would be interesting to analyze Split in a
multiple-level setting. Other issues that need to be ad-
dressed include a study of the impact of varying the sizes
of the Up and Down queues, analysis of traffic gener-
ation by the policies, theoretical analysis of Split when
combined with a variable-class prefetch technique, and
prefetch cache sizing based on hit rates in Up and Down
queues. As future work, we plan to look into these issues.

References

[1] SPC Benchmark-1(SPC-1) Official Specification, revision 1.10.1.
Tech. rep., Effective 27 Sept. 2006. http://www.
storageperformance.org/specs.

[2] SPC Benchmark-2(SPC-2) Official Specification, version1.2.1.
Tech. rep., Storage Performance Council, Effective 27 Sept.
2006. http://www.storageperformance.org/
specs.

[3] BELADY, L. A., NELSON, R. A., AND SHEDLER, G. S. An
anomaly in space-time characteristics of certain programsrun-
ning in a paging machine.Commun. ACM 12(June 1969), 349–
353.

[4] BHATIA , S., VARKI , E., AND MERCHANT, A. Sequential
prefetch cache sizing for maximal hit rate. In18th Annual
IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems(2010),
pp. 89 – 98.

[5] BOVET, D. P.,AND CESATI, M. Understanding the Linux Ker-
nel, Third Edition. O’Reilly Media, 2005.

[6] BUCY, J. S.,AND GANGER, G. R. The DiskSim simulation
environment version 4.0 reference manual. Tech. Rep. CMU-
PDL-08-101, Carnegie Mellon University, School of Computer
Science, May 2008.

[7] BUTT, A. R., GNIADY, C., AND HU, Y. C. The performance
impact of kernel prefetching on buffer cache replacement algo-
rithms. IEEE Transactions on Computers 56, 7 (2007), 889–908.

[8] GILL , B. S.,AND BATHEN, L. A. D. Optimal multistream se-
quential prefetching in a shared cache.ACM Transactions on
Storage (TOS) 3(2007).

[9] GILL , B. S., AND BATHEN, L. A. D. AMP: Adaptive multi-
stream prefetching in a shared cache. InProc. of USENIX 2007
Annual Technical Conference(Feb 2007), 5th USENIX Confer-
ence on File and Storage Technologies.

[10] GILL , B. S.,AND MODHA, D. S. SARC: Sequential prefetching
in adaptive replacement cache. InProc. of USENIX 2005 Annual
Technical Conference(2005), pp. 293–308.

12

[11] GINDELE, J. D. Buffer block prefetching method.IBM Tech
Disclosure Bull. 20, 2 (July 1977), 696 – 697.

[12] HARTSTEIN, A., SRINIVASAN , V., PUZAK , T. R.,AND EMMA ,
P. G. Cache miss behavior, is it

√

2? Proceedings of the 3rd
conference on computing frontiers(2006), 313 – 320.

[13] JIANG , S.,AND ZHANG, X. Lirs: an efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. InProceedings of the 2002 ACM SIGMETRICS inter-
national conference on Measurement and modeling of computer
systems(New York, NY, USA, 2002), SIGMETRICS ’02, ACM,
pp. 31–42.

[14] JOHNSON, S., MCNUTT, B., AND REITH, R. The making of
a standard benchmark for open system storage. InJ. Comput.
Resouce Management(Winter 2001), no. 101, pp. 26–32.

[15] JOHNSON, T., AND SHASHA, D. 2q: A low overhead high
performance buffer management replacement algorithm. InPro-
ceedings of the International conference on very large databases
(1994).

[16] LEE, D., CHOI, J., KIM , J., S.H. NOH, S. M., CHO, Y., AND

K IM , C. Lrfu: A spectrum of policies that subsumes the least re-
cently used and least frequently used policies.IEEE Transactions
on Computers(December 2001), 1352–1361.

[17] L I , C., AND SHEN, K. Managing prefetch memory for data-
intensive online servers. InProceedings of the 4th conference on
USENIX Conference on File and Storage Technologies(2005),
vol. 4, pp. 253 – 266.

[18] L I , M., VARKI , E., BHATIA , S., AND MERCHANT, A. TaP:
Table-based prefetching for storage caches. In6th USENIX Con-
ference on File and Storage Technologies (FAST ’08)(2008),
pp. 81–97.

[19] L IANG , S., JIANG , S., AND ZHANG, X. STEP: Sequential-
ity and thrashing detection based prefetching to improve perfor-
mance of networked storage servers. InDistributed Comput-
ing Systems, 2007. ICDCS ’07. 27th International Conference on
(2007), pp. 64–.

[20] MCNUTT, B., AND JOHNSON, S. A standard test of I/O cache.
In Proceedings on Computer Measurement Group’s 2001 Inter-
national Conference(2001).

[21] MEGIDDO, N., AND MODHA, D. Outperforming lru with an
adaptive replacement cache algorithm.Computer 37, 4 (2004),
58–65.

[22] O’NEIL , E. J., O’NEIL , P. E.,AND WEIKUM , G. The lru-k
page replacement algorithm for database disk buffering. InPro-
ceedings of the 1993 ACM SIGMOD international conference on
Management of data(New York, NY, USA, 1993), SIGMOD ’93,
ACM, pp. 297–306.

[23] O’NEIL , E. J., O’NEIL , P. E.,AND WEIKUM , G. An optimal-
ity proof of the lru-k page replacement algorithm.J. ACM 46
(January 1999), 92–112.

[24] PAPATHASIOU, A. E., AND SCOTT, M. L. Energy efficient
prefetching and caching. InProceedings of the USENIX Annual
Technical Conference(June,2004).

[25] SINGH, J., STONE, H., AND THIEBAUT, D. A model of work-
loads and its use in miss-rate prediction for fully associative
caches.IEEE Trans. on Computers 41, 7 (1992), 811–825.

[26] SMITH , A. J. Sequentiality and prefetching in database systems.
ACM Transanctions on Database Systems 3, 3 (1978), 223–247.

[27] SMITH , A. J. Cache memories.ACM Computing Surveys 14, 3
(1982), 473–530.

[28] VANDERWIEL, S. P.,AND L ILJA , D. J. Data prefetch mecha-
nisms.ACM Computer Survey 32, 2 (2000), 174–199.

[29] WILSON, P. R., KAKKAD , S. V., AND MUKHERJEE, S. S.
Anomalies and adaptation in the analysis and development of
prepaging policies.Journal of Systems and Software 27(1994),
147–153.

[30] ZHOU, Y., PHILBIN , J. F.,AND L I , K. The multi-queue replace-
ment algorithm for second level buffer caches. InProceedings of
the USENIX Annual Technical Conference(2001).

13

