
Removing Belady’s Anomaly from Caches with Prefetch Data

Elizabeth Varki

University of New Hampshire

varki@cs.unh.edu

Abstract

Belady’s anomaly occurs when a small cache gets more

hits than a larger cache, given identical input conditions

regarding the workload and caching algorithms. The

implication of this anomaly is that upgrading a cache

could result in a lowering of performance. This paper

proves that Belady’s anomaly may occur with almost all

combinations of prefetch techniques and cache replace-

ment policies. The repercussions of the ubiquity of this

anomaly is that it is very difficult to evaluate the perfor-

mance of a cache with prefetching. This paper analyzes

why Belady’s anomaly is an inherent feature of caching

and prefetching systems. The anomaly occurs because

the content and ordering of the cache replacement queue

are dependent on the prefetch cache size. Based on this

evaluation, the paper presents a prefetch technique and

an LRU variant that does not exhibit the anomaly.

1 Introduction

The file system cache is an integral part of operating

systems. A user read request is first submitted to the

file system cache. If the requested data block is in the

cache, a hit occurs. A user read request is submitted to

the lower level cache/storage device only upon a cache

miss. The missed data blocks are loaded into the file sys-

tem cache on the assumption that more user requests for

these blocks will arrive in the near future.

The file system’s cache workload is a sequence of re-

quests for data blocks ordered by the time at which the

requests arrive at the cache. Thus, the workload submit-

ted to a cache is a sequence of (logical) block numbers,

where a block’s position in the sequence refers to the rel-

ative time at which it was requested. For example, in

the workload sequence < 2, 5, 4, 7, 2, 10, 3 >, block 2

was first requested before block 5; block 2 was requested

again at a later point in time (after block 7). A cache con-

tains blocks that are requested by the workload. Caches

are small, so they may hold only a small fraction of the

requested data blocks.

When a new data block has to be loaded into a full

cache, the cache replacement policy determines which

cached block to evict. The goal of a replacement policy is

to keep blocks that may receive user requests in the near

future. The hit ratio of a cache is defined to be the ratio of

the total number of requests that hit in the cache to the to-

tal number of requests in the workload. The higher the hit

ratio, the better is the performance. The cache workload,

the cache size, and the cache replacement policy collec-

tively determine the hit ratio of the cache. Some of the

common replacement policies are LRU (Least Recently

Used), FIFO (First In First Out), LFU (Least Frequently

Used), and their variants.

For a fixed workload and replacement policy, the hit

ratio is a function of the cache size. One would nat-

urally assume that the hit ratio would not decrease as

the cache size increases. Belady et al. [1] demonstrated

that this assumption is false by using the workload <

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5> and the FIFO replacement

policy. Here, a cache of size 3 blocks gets three hits while

a cache of size 4 blocks gets only two hits. Belady’s

anomaly refers to this seemingly illogical scenario of a

small cache getting more hits than a larger cache.

The purpose of upgrading a system is to improve per-

formance. Belady’s anomaly is antithetical to this objec-

tive since increasing the cache size results in a worsening

of performance. For a given workload and cache size,

the contents of the cache are entirely dependent on the

cache replacement policy. Hence, one can conclude that

Belady’s anomaly is caused by the replacement policy.

Mattson et al. proved that the anomaly does not occur

with the LRU replacement policy [9]. That is, with LRU

and any workload, it is guaranteed that the hit ratio is a

non-decreasing function of the cache size,

Almost all file system caches implement sequential

prefetching (i.e., read-ahead). Here, data blocks contigu-

ous to the requested data block, are loaded into the cache

1

on the assumption that user requests for the prefetched

blocks will arrive in the near future. Prefetching is han-

dled by the cache prefetch technique.

The inclusion of prefetching changes the status quo

of caches; the hit ratio depends not only on the work-

load, cache size and replacement policy but also on the

prefetch technique. Prior work has demonstrated that

Belady’s anomaly may occur with the LRU replace-

ment policy when a cache implements prefetching [7].

While it is well documented that the interaction between

prefetching and caching is complex [3, 4, 5], there is

very little documentation on why Belady’s anomaly oc-

curs with prefetching or how the anomaly could be re-

moved. An understanding of why Belady’s anomaly oc-

curs may shed light on some aspects of the complex re-

lationship between prefetch techniques and replacement

policies, thereby paving the way for better prefetching

and caching systems.

Contributions: This paper analyzes Belady’s

anomaly in the context of file system caches with

sequential prefetching and LRU. Most file system caches

implement LRU or a variant of LRU [6]. Sequential

prefetching is common in file system and storage caches

since files are often read sequentially [6]. An LRU

cache without prefetching does not exhibit Belady’s

anomaly. Unfortunately, the addition of prefetching

causes an LRU cache to exhibit the anomaly. While

Belady’s anomaly is a rare event in caches without

prefetching, the anomaly is quite common in prefetch

caches using LRU [7]. The paper shows that Belady’s

anomaly is inherent to (1) all but one class of prefetching

techniques, regardless of the replacement policy; and (2)

the LRU replacement policy, regardless of the prefetch

technique. This paper then presents a prefetch and

replacement algorithm that is free of Belady’s anomaly.

This paper presents the following:

1. documentation of the prevalence of Belady’s

anomaly in caches with prefetching - the anomaly

is an inherent feature of common prefetching tech-

niques;

2. presentation of a proof that Belady’s anomaly does

not occur with LRU and a prefetch technique that

prefetches exactly one block contiguous to the ar-

riving user request;

3. presentation of a proof that Belady’s anomaly can

occur in prefetch caches with the LRU replacement

policy and any prefetch technique that prefetches

more than one block contiguous to an arriving user

request;

4. formalization of an LRU variant that ensures the

stack property [9] of prefetch blocks - this policy

is named StreamLRU; demonstration that Belady’s

anomaly occurs even with StreamLRU;

5. presentation of a proof that Belady’s anomaly can

occur with all but one class of prefetch techniques

and LRU/StreamLRU; and

6. presentation of a proof that a caching system with

StreamLRU and a prefetch technique that ensures a

fixed number of blocks contiguous to each arriving

request are loaded in the cache is free of Belady’s

anomaly.

2 Workload

The operating system maps user read requests for bytes

into file system read requests for blocks. Since this pa-

per discusses file system caches, the unit of measurement

used is blocks: a cache size is C blocks, a request is for

one or more blocks. A cache workload consists of user

requests. For notational simplicity, we assume that each

user request is for a single block. Let tn represent the rel-

ative time instant at which the nth read request arrives.

The nth user read request submitted to the cache is de-

scribed by:

xn = i; i ∈ {1, 2, 3, · · · ,MaxBlocks}

where i is the block number to be read. The relative

time instant tn at which the read request xn arrives at

the cache is implicitly defined in the notation. The cache

workload of user requests is given by the sequence:

X =< x1, x2, x3, · · · , xN >

where N is the number of read requests that arrive during

the observation period. The notation xi is used inter-

changeably to represent both block xi and a request for

block xi; the distinction should be clear from the context

in which the notation is used.

Example 1 A file system’s cache workload: X = < 1,

51, 99, 151, 89, 2, 3, 152, 999, 52, 4, 5, 251, 799, 53, 6,

351, 299, 199, 899, 7, 54, 699, 599, 252, 499, 253, 3999,

352, 353, 451, 399, 8999, 7999, 6999, 254, 452, 8, 453,

501, 5999, 4999, 502 >

The workload appears as a single sequence of random

block numbers. A more careful examination reveals the

following interleaved requests to contiguous blocks:

Stream s1: 1, 2, 3, 4, 5, 6, 7, 8 at time instants t1, t6, t7,

t11, t12, t16, t21, t38;

Stream s2: 51, 52, 53, 54 at time instants t2, t10, t15, t22;

Stream s3: 151, 152 at time instants t4, t8;

Stream s4: 251, 252, 253, 254 at time instants t13, t25,

t27, t36;

2

Stream s5: 351, 352, 353 at time instants t17, t29, t30;

Stream s6: 451, 452, 453 at time instants t31, t37, t39;

Stream s7: 501, 502 at time instants t40, t43.

Definition 1 A stream is a sequential or interleaved se-

quential access pattern in a workload.

A typical file system/storage cache workload consists of

user requests from various streams. The workload ap-

pears random since the streams are interleaved. Dur-

ing the observation period (t1 to t43), there are 17 block

accesses that are not part of any of the above streams,

namely, 99, 89, 999, 899, 799, 299, 199, 699, 599, 499,

399, 299, 8999, 7999, 6999, 5999, 4999. These requests

may be for random blocks; they may also represent the

end of streams whose requests arrived prior to the ob-

servation period or the start of streams whose future re-

quests may arrive after the observation period. From this

perspective, every request in a cache workload can be

mapped to a stream. If every request is part of a stream,

then the cache workload can be viewed as a set of inter-

leaved requests from various streams.

It is difficult to extract streams from the seemingly

random workload presented in Example 1. In order to

quickly identify interleaved streams in an example work-

load, we reference contiguous blocks as:

i, ia, ib, ic, ..., i ∈ I, i ≥ 0

Example 2 A cache workload using the new notation:

< 2, 5, 4, 4a, 4b, 7g, 5a, 2, 5b, 10, 5c, 11b, 3, 3a, 4c, 2,

1, 1a, 4d, 4e >.

The workload contains the following interleaved

streams: <2>, <5, 5a, 5b, 5c>, < 4, 4a, 4b, 4c, 4d,

4e>, <7g>, <10>, <11b>, <3,3a>, <1, 1a>.

When referring to contiguous blocks that relate to stream

s, the notation used is

s =< s1, s2, s3, ..., sn >, where s1 = i, s2 = i + 1,

... sn = i+ n; i, n ≥ 1

3 Sequential prefetch

Prefetching is fundamental to the memory hierarchy

model, since data blocks are uploaded before they are

needed in order to reduce read access time. In order to

predict future block accesses, recent block access pat-

terns are identified. It is assumed that these access pat-

terns will continue in the future. Files are often read se-

quentially, so they are likely to be stored on contiguous

blocks. Hence, a cache workload may contain several

interleaved streams as shown in Example 2.

The objective of a sequential prefetching technique is

to prefetch data blocks from streams before user requests

for the prefetched blocks arrive. For the workload in Ex-

ample 2, a prefetching technique that prefetches blocks

5a, 5b, 5c when the user request for block 5 arrives (and

misses in the cache) would result in 3 hits. Of course,

this assumes that the prefetched blocks are loaded into

the cache on time and that the prefetched blocks remain

in the cache until the arrival of user requests.

The prefetch technique determines what blocks should

be prefetched and when the blocks should be prefetched.

The prefetch technique is initiated each time a user read

request arrives at the cache, since a decision has to be

made on whether to prefetch future blocks from this

read request’s stream. Prefetch techniques are broadly

classified into two types [11]: Prefetch on Miss (PM)

and Prefetch Always (PA). The PM technique gener-

ates synchronous prefetch requests for blocks contiguous

to the missed block whenever a user request misses in

the cache. The prefetch request is piggybacked onto the

missed request, so little additional traffic is generated by

the prefetch. Thus, PM assumes that the missed request

block is the start of a stream. The PA technique generates

synchronous or asynchronous prefetch requests when-

ever a user request arrives at the cache. The synchronous

prefetch request is generated when a read request misses

in the cache, and loads the start of a stream. If this syn-

chronously prefetched block gets a hit, then future blocks

from the stream are asynchronously prefetched. If a fu-

ture stream block is already in the cache, both PM and

PM do not fetch it again.

There are several versions of PA. In a common version

of PA, a synchronous prefetch request is generated on

every miss, but an asynchronous prefetch request is not

generated on every hit. Several blocks are prefetched at

a time, and one of the prefetched blocks in each stream is

marked as a trigger block. An asynchronous prefetch for

this stream is initiated only when the trigger block gets a

hit.

The cache workload determines what blocks are

loaded into the cache. With the inclusion of a prefetch

technique, the blocks loaded into the cache are deter-

mined by both the user requests and the prefetch re-

quests. Reconsider the workload in Example 2. Assume

a PM technique which prefetches 2 blocks contiguous to

the missed block. Suppose that the cache size is large

enough to ensure that there are no evictions from the

cache. Due to the prefetch actions of the PM technique,

the sequence of requests that arrive at the cache in order

are:

< 2, 2a, 2b, 5, 5a, 5b, 4, 4a, 4b, 4a*, 4b*, 7g, 7h, 7i, 5a*,

2*, 5b*, 10, 10a, 10b, 5c, 5d, 5e, 11b, 11c, 11d, 3, 3a,

3b, 3a*, 4c, 4d, 4e, 2*, 1, 1a, 1b, 1a*, 4d*, 4e* >.

The blocks in italics are the prefetched blocks. The * rep-

resents a cache hit. Now, suppose the cache implements

a PA technique which prefetches 2 contiguous blocks 1)

on a miss and 2) on a hit of last block in a prefetched

stream. Prefetch is not initiated when the block contigu-

3

ous to the hit block is already in the cache. With the

PA technique, the sequence of requests that arrive at the

cache in order are:

< 2, 2a, 2b, 5, 5a, 5b, 4, 4a, 4b, 4a*, 4b*, 4c, 4d, 7g, 7h,

7i, 5a*, 2*, 5b*, 5c, 5d, 10, 10a, 10b, 5c*, 11b, 11c, 11d,

3, 3a, 3b, 3a*, 4c*, 2*, 1, 1a, 1b, 1a*, 4d*, 4e, 4f, 4e* >.

The examples highlight the fact that the incorporation

of a prefetch technique impacts what blocks are inserted

into the cache and the order in which the blocks are in-

serted. With prefetching, the cache contains both refer-

ence blocks and prefetch blocks.

Definition 2 The reference blocks in a cache have re-

ceived user requests, while prefetch blocks have not re-

ceived user requests. Upon a hit, a prefetch block be-

comes a reference block since it has now received a user

request.

In the previous example, 4a is a prefetched block, while

4a* is a referenced block.

3.1 Spatial locality

Prefetch techniques PA and PM, by their definition, make

the following assumptions about the cache workload:

Assumption 1 The cache workload is a sequence of in-

terleaved requests from various streams.

Assumption 2 Every prefetched block is expected to re-

ceive a future user request from one of the interleaved

streams.

Assumption 3 For stream s, when block si is requested,

all blocks sj , j < i have already received user requests,

and the contiguous block si+1 is expected to be the next

stream block to receive a user request.

That is, both PA and PM assume that user requests for

blocks in a stream arrive in order of increasing block

numbers. Note that this condition may be relaxed so that

any block in the current prefetch window (i.e., the set of

blocks in a prefetch stream that must be kept in cache [2])

may be requested. For simplicity of notation and clarity,

this paper does not use the concept of prefetch windows,

and instead, uses Assumption 3.

These assumptions refer to the spatial locality of the

cache workload. If the workload does not follow these

assumptions, then both PA and PM perform poorly. This

is not surprising, since the success of sequential prefetch

techniques depends on the degree to which the workload

displays sequential locality of reference.

4 Belady’s anomaly

Belady’s anomaly was first demonstrated and studied

with reference to demand paging in main memory. Be-

lady et al. gave a specific example, shown in Table 1,

that demonstrated the occurrence of the anomaly with the

FIFO policy [1]. Mapping from memory pages to cache

blocks, suppose the large cache is of size L blocks and

the small cache is of size S blocks. The paper presented

a production rule for generating a workload that would

result in Belady’s anomaly when the replacement policy

is FIFO and the sizes of the caches satisfy the condition

S < L < 2S− 1.

Table 1: Original example demonstrating Belady’s

anomaly
Reference cache size = 3, FIFO

hits h1 h2 h3

workload 1 2 3 4 1 2 5 1 2 3 4 5

Cache 1 2 3 4 1 2 5 5 5 3 4 4

1 2 3 4 1 2 2 2 5 3 3

1 2 3 4 1 1 1 2 5 5

Eject 1 2 3 4 1 2

Reference cache size = 4, FIFO

hits h1 h2

workload 1 2 3 4 1 2 5 1 2 3 4 5

Cache 1 2 3 4 4 4 5 1 2 3 4 5

1 2 3 3 3 4 5 1 2 3 4

1 2 2 2 3 4 5 1 2 3

1 1 1 2 3 4 5 1 2

Eject 1 2 3 4 5 1

Mattson et al. proved that Belady’s anomaly can never

occur with LRU, regardless of the workload, since LRU

belongs to the class of stack algorithms [9]. The rea-

son that LRU is a stack algorithm is that the LRU re-

placement queue ordering is not dependent on the size of

the cache. A cache of size C holds the C most recently

used distinct blocks, while a cache of size C+1 holds all

these C blocks plus the distinct block accessed just prior

to these C blocks. The LRU queue ordering is entirely

based on recency of access.

The above results are valid for caches that do not

prefetch. Wilson et al. presented an example demonstrat-

ing that the LRU replacement policy with the PA tech-

nique is not a stack algorithm [12]. Gill et al. presented a

simulation study demonstrating that the the LRU policy

and the PA technique resulted in Belady’s anomaly [7].

The focus of both papers was not Belady’s anomaly, so

they did not explain why the anomaly occurred. The rest

of this section presents examples that show the occur-

rence of Belady’s anomaly with the LRU policy and both

classes of prefetch techniques, PA and PM.

Tables 2 and 3 show the occurrence of Belady’s

anomaly with the LRU policy and the PA, PM tech-

niques, respectively. These examples show caches that

4

Table 2: Prefetch the next block always

Reference + Prefetch cache size = 6, PA, LRU

hits h1 h2 h3

workload 1a 2a 3a 1a 4a 2a 5a 2b

Cache 1a 2a 3a 1a 4a 2a 5a 2b

1b 2b 3b 3a 4b 2b 5b 2c

1a 2a 3b 1a 4a 2a 5a

1b 2b 2a 3a 4b 2b 5b

1a 2b 3b 1a 4a 2a

1b 1b 2a 3a 4b 4a

Eject 2b 3b 1a 4b

1b 3a

Reference + Prefetch cache size = 8, PA, LRU

hits h1 h2

workload 1a 2a 3a 1a 4a 2a 5a 2b

Cache 1a 2a 3a 1a 4a 2a 5a 2b

1b 2b 3b 3a 4b 4a 5b 2c

1a 2a 3b 1a 4b 2a 5a

1b 2b 2a 3a 1a 4a 5b

1a 2b 3b 3a 4b 2a

1b 1b 2a 3b 1a 4a

2b 2b 3a 4b

1b 1b 3b 1a

Eject 2b 3a

1b 3b

Table 3: Prefetch the next block on a miss
Reference + Prefetch cache size = 6, PM, LRU

hits h1 h2 h3

workload 1a 2a 3a 4a 1a 2a 5a 1b 2b 1a

Cache 1a 2a 3a 4a 1a 2a 5a 1b 2b 1a

1b 2b 3b 4b 1b 2b 5b 5a 1b 2b

1a 2a 3a 4a 1a 2a 5b 5a 1b

1b 2b 3b 4b 1b 2b 2a 5b 5a

1a 2a 3a 4a 1a 2b 2a 5b

1b 2b 3b 4b 1b 1a 1a 2a

Eject 1a 2a 3a 4a

1b 2b 3b 4b

Reference + Prefetch cache size = 7, PM, LRU

hits h1 h2

workload 1a 2a 3a 4a 1a 2a 5a 1b 2b 1a

Cache 1a 2a 3a 4a 1a 2a 5a 1b 2b 1a

1b 2b 3b 4b 4a 1a 5b 1c 2c 2b

1a 2a 3a 4b 4a 2a 5a 1b 2c

1b 2b 3b 3a 4b 1a 5b 1c 1b

1a 2a 3b 3a 4a 2a 5a 1c

1b 2b 2a 3b 4b 1a 5b 5a

1a 2b 2b 3a 4a 2a 5b

Eject 1b 3b 4b 1a 2a

2b 3a 4a

hold both reference blocks and prefetched blocks. Ta-

bles 4 and 5 show that Belady’s anomaly occurs even

if the cache contains no reference blocks, only prefetch

blocks. In these examples, a prefetch block is evicted

from the cache as soon as it receives a user request.

These examples represent the case when a cache is

logically partitioned into a prefetch cache and a refer-

ence cache [7]. The temporal locality of reference (re-

reference hits) are handled by the reference cache while

the spatial locality of reference (sequential prefetch hits)

are handled by the prefetch cache. The replacement pol-

icy is labeled as FIFO not LRU in the examples present-

ing the prefetch-only cache. The reason is that the cache

contains prefetch blocks that by its very definition, have

never been referenced; the last access time of a prefetch

block is the time it was prefetched and inserted into the

cache. As a result, ordering the queue by recency of ac-

cess is equivalent to ordering the blocks by time of inser-

tion.

Note that the following rule is used in all the exam-

ples: when several blocks, si+1, si+2,.... from a stream

are prefetched at the same time, the blocks are inserted

into the replacement queue such that si+1 is closest to

the non-eviction end. The reason for using this rule is

that prefetch techniques PA/PM assume that si+1 is the

next stream block predicted to receive a hit. If si+2 gets

evicted before a hit, si+2 could be prefetched again when

si+1 gets a hit. In the next section, we evaluate LRU’s in-

teraction with streams.

5 LRU and Streams

While prefetch techniques assume that the workload is

composed of interleaved sequential streams, the LRU re-

placement policy is completely oblivious to streams. Ev-

ery prefetch block is associated with a stream, but LRU

ignores this information. Upon a hit, LRU moves the

accessed block to the insertion end, but the rest of the

blocks from this accessed block’s stream retain their po-

sition in the LRU queue. (In a prefetch-only cache, the

accessed prefetched block is removed from the cache.)

If new blocks from this stream are prefetched, then these

new blocks are inserted into the insertion end.

When block si from stream s is accessed, and block

si+1 is in the cache, LRU does not update the position of

si+1 in the replacement queue. If si+1 is not in the cache,

then the prefetch technique may prefetch si+1 and insert

si+1 into the MRU end of the queue. Thus, a prefetch

block is inserted into the MRU end when it is prefetched,

and the block moves toward the LRU (eviction) end un-

til it is either evicted upon reaching the LRU end or it

is accessed by a user request (and becomes a reference

block). Even though LRU orders reference blocks by ac-

cess time, the prefetch blocks are ordered by time of in-

5

Table 4: Prefetch the next 2 contiguous blocks on arrival

of each request

Prefetch cache size = 6, PA, FIFO

hits h1 h2 h3

workload 1 2 3 1a 4 2a 5 2b

Cache 1a 2a 3a 1c 4a 2b 5a 2d

1b 2b 3b 3a 4b 2c 5b 5a

1a 2a 3b 1c 4a 2b 5b

1b 2b 2a 3a 4b 2c 2c

1a 2b 3b 1c 4a 4a

1b 1b 2a 3a 4b 4b

Eject 2b 3b 1c

1b 3a

Prefetch cache size = 8, PA, FIFO

hits h1 h2

workload 1 2 3 1a 4 2a 5 2b

Cache 1a 2a 3a 1c 4a 2c 5a 2d

1b 2b 3b 3a 4b 4a 5b 5a

1a 2a 3b 1c 4b 2c 5b

1b 2b 2a 3a 1c 4a 2c

1a 2b 3b 3a 4b 4a

1b 1b 2a 3b 1c 4b

2b 2b 3a 1c

1b 1b 3b 3a

Eject 2b 3b

1b

Table 5: Prefetch the next 2 contiguous blocks on Miss,

do not prefetch on hit
Prefetch cache size = 6, PM, FIFO

hits h1 h2 h3

string 1 2 3 4 1a 2a 5 1b 2b 3a 4a 5a

Cache 1a 2a 3a 4a 1b 2b 5a 5a 5a 3b 4b 4b

1b 2b 3b 4b 1c 2c 5b 5b 5b 3c 4c 4c

1a 2a 3a 4a 1b 2b 2b 2c 5a 3b 3b

1b 2b 3b 4b 1c 2c 2c 1c 5b 3c 3c

1a 2a 3a 4a 1b 1c 2c 5a 5b

1b 2b 3b 4b 1c 1c 5b

Eject 1a 2a 3a 4a 2c

1b 2b 3b 4b 1c

Prefetch cache size = 7, PM, FIFO

hits h1 h2

string 1 2 3 4 1a 2a 5 1b 2b 3a 4a 5a

Cache 1a 2a 3a 4a 4a 4a 5a 1c 2c 3b 4b 5b

1b 2b 3b 4b 4b 4b 5b 1d 2d 3c 4c 5c

1a 2a 3a 3a 3a 4a 5a 1c 2c 3b 4b

1b 2b 3b 3b 3b 4b 5b 1d 2d 3c 4c

1a 2a 2a 2b 3a 4a 5a 1c 2c 3b

1b 2b 2b 3b 4b 5b 1d 2d 3c

1a 2b 3a 4a 5a 1c 2c

Eject 1b 3b 4b 5b 1d 2d

2b 3a 4a 5a 1c

sertion, not stream access time. From a stream perspec-

tive, when a stream gets an access, the LRU replacement

queue is not updated.

Result 1 The prefetch blocks in a LRU queue are or-

dered by block insertion time, not by stream access time.

Gill et al. showed via simulation that Belady’s

anomaly occurs with PA and LRU [7]. They stated, with-

out proof, that this problem could be fixed by moving

all blocks in a stream to the MRU end upon a hit. This

stream version of LRU had been mentioned in earlier pa-

per [8, 12]. The focus of both papers was neither the

replacement policy nor Belady’s anomaly. Therefore,

these papers did not provide details of the modified re-

placement policy. There was also no analysis on why the

modified LRU policy does not exhibit Belady’s anomaly.

In this paper, we formalize this updated LRU policy and

demonstrate that Belady’s anomaly occurs even with this

updated replacement policy.

5.1 StreamLRU

The stream version of LRU is as follows: upon a hit

of block si from stream s, the hit block and all of this

stream’s blocks sj , j > i are moved to the MRU end of

the replacement queue. The blocks are inserted into the

replacement queue in order with block si+1 farthest from

the eviction end. Earlier blocks sj , j < i, are not moved

and retain their position in the replacement queue. The

referenced block si is moved to the MRU end. If the

cache contains only prefetch blocks, then the hit block

si is evicted, but the blocks contiguous to this block are

moved to the MRU end. We name this replacement pol-

icy StreamLRU.

Unlike LRU, StreamLRU incorporates the temporal

locality of streams since the prefetch stream blocks are

ordered by recency of access. StreamLRU incorporates

the spatial locality of streams by not moving the earlier

blocks of the stream on a hit; only the later blocks are

moved, and re-inserted into the queue such that si+1 is

farthest from the eviction end. The sequential access pat-

tern implies that the following contiguous blocks from a

stream will be accessed, not previous blocks. In fact, file

blocks that are read sequentially are rarely re-referenced.

The streams (sequential access pattern) display tempo-

ral locality, but the blocks within a stream display spa-

tial locality. LRUstream incorporates both the tempo-

ral locality of streams and the spatial locality of blocks

within a stream by ensuring that the least recently ac-

cessed prefetch stream is evicted, with the later blocks

from the stream evicted first.

Result 2 The prefetch blocks in a StreamLRU queue are

ordered by stream access time.

6

The StreamLRU’s queue is ordered by recency of

access of both reference blocks and streams, implying

that StreamLRU should be a stack algorithm. There-

fore, one would expect that a caching system employ-

ing StreamLRU with prefetching would not exhibit Be-

lady’s anomaly. Surprisingly, this is not the case: Table 6

demonstrates the occurrence of Belady’s anomaly with

StreamLRU and the PM technique. The prefetch blocks

are shown in italics in the cache. Note that when block 1b

is accessed in the small cache, block 1a is not moved to

the MRU end since 1a precedes 1b; StreamLRU moves

blocks following the hit block.

In Table 7, we demonstrate, by a prefetch-only cache,

that it is not the presence of reference blocks in the cache

that causes Belady’s anomaly. In Table 8 we demonstrate

the occurrence of Belady’s anomaly with the PA tech-

nique. Belady’s anomaly occurs with all combinations

of LRU/StreamLRU and PA/PM.

For a given workload, in an LRU cache without

prefetching, the hit ratio with all caches sizes can be

computed in a single pass by just running the workload

trace on the largest cache [9, 12]. As a result of Belady’s

anomaly, it is impossible to predict how a caching system

with prefetching would perform if the size of the cache is

increased or decreased. It is also intriguing as to why Be-

lady’s anomaly occurs with StreamLRU, a replacement

policy that orders streams by recency of access. In the

next section, we analyze why Belady’s anomaly occurs

with prefetching and show how the anomaly can be re-

moved.

6 Analysis

The examples in Sections 4 and 5 show that Be-

lady’s anomaly can occur with all combinations of

LRU/StreamLRU and PA/PM. In order to understand

why the anomaly occurs and if it can be prevented, one

has to understand the characteristics of a caching and

prefetching system. It is well known that caching and

prefetching systems are difficult to evaluate [3, 4, 5]. Part

of this difficulty is that caching or prefetching, each in

its own right, is complex. Also, the term “caching and

prefetching” is somewhat misleading since caching en-

compasses three variables, namely the cache size, the

cache workload, and the replacement policy. Therefore,

caching and prefetching refers to a cache, its workload,

and two distinct algorithms, namely the replacement pol-

icy and the prefetch technique.

For a given cache (size) and workload, the contents

of the cache at any instant is determined by both the re-

placement policy and the prefetch technique. The actions

of a replacement policy are influenced by the prefetch

technique since the prefetch technique determines what

blocks are loaded into the cache. Similarly, the actions

Table 6: Prefetch the next block on miss. The workload

reference string is 1a, 2a, 3a, 4a, ...; the insertions of 1a

and 2a are not shown due to space constraints

Reference + Prefetch cache size = 6, PM, StreamLRU

hits h1 h2 h3

workload 3a 4a 1a 2b 5a 1b 2c 1a

Cache 3a 4a 1a 2b 5a 1b 2c 1a

3b 4b 1b 2c 5b 5a 1b 1b

2a 3a 4a 1a 2b 5b 5a 2c

2b 3b 4b 1b 2c 2b 5b 5a

1a 2a 3a 4a 1a 2c 2b 5b

1b 2b 3b 4b 1b 1a 1a 2b

Eject 1a 2a 3a 4a

1b 2b 3b 4b

Reference + Prefetch cache size = 7, PM, StreamLRU

hits h1 h2

workload 3a 4a 1a 2b 5a 1b 2c 1a

Cache 3a 4a 1a 2b 5a 1b 2c 1a

3b 4b 4a 1a 5b 1c 2d 1b

2a 3a 4b 4a 2b 5a 1b 1c

2b 3b 3a 4b 1a 5b 1c 2c

1a 2a 3b 3a 4a 2b 5a 2d

1b 2b 2a 3b 4b 1a 5b 5a

1a 2b 2a 3a 4a 2b 5b

Eject 1b 3b 4b 1a 2b

2a 3a 4a

Table 7: Prefetch the next 2 blocks on Miss. The work-

load reference string is 1, 2, 3, 4, ...; the insertions of 1

and 2 are not shown due to space constraints
Prefetch cache size = 6, PM, StreamLRU

hits h1 h2 h3 h4

string 3 4 1a 5 2a 1b 2b 3a 5a 5b

Cache 3a 4a 1b 5a 2b 1c 2c 3b 5b 3b

3b 4b 1c 5b 2c 2b 1c 3c 3b 3c

2a 3a 4a 1b 5a 2c 5a 2c 3c 2c

2b 3b 4b 1c 5b 5a 5b 1c 2c 1c

1a 2a 3a 4a 1b 5b 5a 1c

1b 2b 3b 4b 1c 5b

Eject 1a 2a 3a 4a

1b 2b 3b 4b

Prefetch cache size = 7, PM, StreamLRU

hits h1 h2 h3

string 3 4 1a 5 2a 1b 2b 3a 5a 5b

Cache 3a 4a 4a 5a 5a 1c 2c 3b 3b 5c

3b 4b 4b 5b 5b 1d 2d 3c 3c 5d

2a 3a 3a 4a 4a 5a 1c 2c 2c 3b

2b 3b 3b 4b 4b 5b 1d 2d 2d 3c

1a 2a 2a 3a 3a 4a 5a 1c 1c 2c

1b 2b 2b 3b 3b 4b 5b 1d 1d 2d

1a 2a 3a 4a 5a 1c

Eject 1b 2b 3b 4b 5b 1d

3a

7

Table 8: On miss, prefetch 1 block. On hit of trigger

block, prefetch 3 blocks; the trigger block is marked -

; when trigger block ejected, trigger moves to previous

block in the stream. The workload reference string is 1,

2, 3, 1a, 2a, 4, ...; the insertions of 1 and 2 are not shown

due to space constraints.
Prefetch cache size = 5, PA, StreamLRU

hits h1 h2 h3 h4 h5

string 3 1a 2a 4 1b 5 6 7 1c 8 5a

Cache 3a- 1b 2b 4a- 1c 5a- 6a- 7a- 1d- 8a- 5b

2a- 1c- 2c- 2b 1d- 1c 5a- 6a- 7a- 1d- 5c-

1a- 1d 2d 2c- 1e 1d- 1c 5a- 6a- 7a- 5d

3a- 1b 2d 4a- 1e 1d- 1c 5a- 6a- 8a-

2a 1c- 1b- 2b- 4a 1e 1d- 5a- 1d-

Eject 1d 1c 2c 2b 4a 1e 7a

3a 2d 6a

5a

Prefetch cache size = 6, PA, StreamLRU

hits h1 h2 h3 h4

string 3 1a 2a 4 1b 5 6 7 1c 8 5a

Cache 3a- 1b 2b 4a- 1c- 5a- 6a- 7a- 1d 8a- 5b-

2a- 1c- 2c- 2b 4a- 1c- 5a- 6a- 1e- 1d 8a-

1a- 1d 2d 2c- 2b 4a- 1c- 5a- 1f 1e- 1d

3a- 1b 2d 2c- 2b 4a- 1c- 7a- 1f 1e-

2a- 1c- 1b 2d 2c- 2b 4a- 6a- 7a- 1f

1d 1c- 2d 2c- 2b- 5a- 6a- 7a-

Eject 1d 2d 2c 4a 5a 6a

2b

of a prefetch technique are influenced by the replacement

policy, since the replacement policy determines what

blocks are evicted. In order to understand a caching and

prefetching system, one needs to understand the com-

bined impact of two distinct, but dependent algorithms.

6.1 Assumptions & Notation

The examples in earlier sections demonstrate that Be-

lady’s anomaly can occur in caches with prefetching, re-

gardless of the presence or absence of reference blocks.

In the examples, it is the presence of prefetch blocks that

causes the anomaly. In order to focus on why prefetch-

ing causes Belady’s anomaly without the distraction of

reference blocks, we analyze caches that contain only

prefetch blocks.

Definition 3 A prefetch cache partition stores prefetch

blocks only; once a prefetch block gets a hit, it is evicted

from the prefetch cache.

The evicted hit block can be moved to the reference

cache. Therefore, all re-references in the workload are

handled by the reference cache. In order not to con-

flate the impact of re-referencing (temporal locality) with

prefetching (spatial locality), it is assumed that the input

workload contains no re-references. PA and PM are ef-

fective only if the workload displays sequential locality

of reference. Therefore, it is assumed that the workload

follows Assumption 3 listed in Section 3. In addition, it

is assumed that prefetch blocks are loaded into the cache

instantaneously, as soon as the prefetch request is gener-

ated.

Notation: The small prefetch cache has S blocks and the

large prefetch cache has L blocks, where S < L. The no-

tation for cache workload is specified in Section 2. When

there are several streams, a particular stream is referred

to as is or isj , where i, j > 0. The blocks of stream is

are < is1, is2, is3, ... >. The blocks of stream isj are

< isj+1, isj+2, isj+3, ... >.

6.2 Definitions

The prefetch technique is initiated upon arrival of a user

request. The determination as to what, if any, blocks to

prefetch from the user request’s stream is based on the

contents of the cache. For example, consider a PA tech-

nique that prefetches 2 blocks on a miss or on a hit of a

trigger block. The blocks to be prefetched are contigu-

ous to the missed block or to the trigger block. Suppose

a user request for si arrives and hits in the cache. If the

hit si is a non-trigger block, then no prefetch request is

generated. If the hit si is a trigger block, but block si+1

is already in the cache, then a prefetch request for only

si+2 is generated. Thus, the number of blocks prefetched

by the technique varies.

At time t, suppose user request si arrives at the

cache. At time t+, depending on the prefetch technique,

the cache contains D ≥ 0 blocks from stream s. If

D = 0, then the prefetch cache contains no blocks from

stream s; if D > 0, then the prefetch cache contains

si+1, ..., si+D. Some, or all, of these blocks may have

been prefetched before time t. If the cache contained

d ≤ D of these blocks prior to time t, then D− d blocks

are prefetched upon arrival of si.

Definition 4 The stream degree, D ≥ 0, for a prefetch

technique is the number of blocks from stream s that are

in the prefetch cache immediately after an user request

for a block from stream s arrives.

Depending on the prefetch technique, the stream degree

may be a constant or a variable. Note that the stream de-

gree differs from the prefetch degree, which is the num-

ber of blocks from stream s that are prefetched when

the user request si arrives. For example, in Table 7, the

stream degree is 0, 1 or 2, while the prefetch degree is 0

or 2. Table 4 is an example of a prefetch technique where

stream degree D = 2, while the prefetch degree is 1 or 2.

A prefetch technique predicts the future cache work-

load by identifying streams in the workload. At a given

instant, not all blocks in a stream are of relevance. At

time t, suppose si is the last block from stream s to have

received a user request. That is, si is the largest block

number accessed from the stream.

8

Definition 5 The access time of stream s is the time at

which si received a user request.

The access time is updated regardless of whether the user

request for si hits or misses in the cache.

When several blocks are prefetched at the same time,

the blocks are inserted into the cache such that si+1 is

farthest from the eviction end. The next block from

stream s expected to receive a user request is si+1. Thus,

si+1 is the only relevant stream block from a perfor-

mance perspective.

Definition 6 For each stream s, the relevant block,

si+1, is the next block from this stream expected to re-

ceive a user request. Stream s gets a hit if si+1 gets a hit,

else s gets a miss.

Definition 7 The insertion time of stream s is the time

at which block si+1 is loaded into the cache.

Definition 8 The eviction time of stream s is either (1)

when prefetch block si+1 is evicted from the cache before

a hit, or (2) when prefetch block si gets a hit, but si+1 is

not in the cache.

At time t, even if earlier or later blocks from this stream

are present in the cache, the stream is evicted since the

next request for this stream will result in a miss. Note

that a stream may be evicted by the replacement policy

(point 1 in Definition 8) or by the prefetch technique

(point 2 in Definition 8). Since cache size is limited,

streams may be evicted and then reinserted into the cache

multiple times. The above definitions capture the dy-

namic nature of streams.

6.3 Stack Property

An algorithm is said to have the the stack property if, for

all workloads, it ensures that the set of blocks in a cache

of size C is a subset of the set of blocks in a cache of

size C+1 [9]. Such an algorithm is referred to as a stack

algorithm. A fundamental result is [9]:

Stack algorithm ⇒ no Belady’s anomaly.

Therefore,

Belady’s anomaly ⇒ not stack algorithm.

Prefetching is all about streams, and the relevant block

of a stream determines whether the stream gets a hit or

a miss. The eviction of the relevant block results in the

eviction of the corresponding stream from the cache.

Definition 9 A prefetch stack algorithm ensures that

the set of relevant stream blocks in a small cache is a

subset of the relevant stream blocks in a larger cache.

The examples in Sections 4 and 5 demonstrate Be-

lady’s anomaly, thereby proving that the correspond-

ing prefetch/replacement algorithms are not stack algo-

rithms. Note that stack algorithm is a necessary con-

dition for the non-existence of Belady’s anomaly in a

caching system. It is not known whether “not stack al-

gorithm” is a sufficient condition to show that Belady’s

anomaly will occur.

The examples cover combinations of LRU/PA,

LRU/PM, StreamLRU/PA, and StreamLRU/PM. While

the examples demonstrate that these combinations are

not stack algorithms, it is not clear what destroys the

stack property - is it the prefetch technique, the replace-

ment policy, or the combined impact of both? Mattson

et al. have shown that a replacement policy whose queue

ordering is not dependent on the queue size (i.e., cache

size) is a stack algorithm. Consequently, both LRU and

StreamLRU are stack algorithms. However, when either

policy is combined with prefetching, the caching system

does not have the stack property. The rest of this sec-

tion explains why the stack property is destroyed when

prefetching is implemented in a cache. The prefetch

technique can be either PA or PM, and the replacement

policy is either LRU or StreamLRU.

Result 3 PA that prefetches exactly one block and

LRU/StreamLRU is a prefetch stack algorithm.

Proof: Since the prefetch technique prefetches only 1

block, StreamLRU is equivalent to LRU.

When user request si arrives, regardless of a hit/miss, the

block si+1 is prefetched and loaded into the MRU end of

the replacement queue. Therefore, the queue is ordered

by recency of stream access.

Exactly one block per stream is loaded into the cache.

As a result, a cache of size C contains the last C dis-

tinct streams, while a cache of size C+1 contains the last

C distinct streams, in addition to the last distinct stream

accessed prior to that. Hence, the set of blocks in a cache

of size C is a subset of the set of blocks in a cache of size

C+1.

�

A prefetch technique that prefetches exactly one block

is referred to as One Block Lookahead (OBL) tech-

nique [10]. Thus, OBL PA and LRU/StreamLRU will

never exhibit Belady’s anomaly.

The next result proves that PM with either

LRU/StreamLRU is not a stack algorithm. The re-

sult is proved by showing that a small cache is not

a subset of a large cache for a specific workload.

Intuitively, the reason for the violation of the stack

property is that upon hit of the last prefetched block

from a stream, the stream is evicted from the cache.

Regardless of the replacement policy, PM evicts streams

from caches. Construct a workload where a stream is

9

first evicted from the small cache but exists in the large

cache. When the next request for this stream arrives, it

misses in the small cache resulting in the reinsertion of

the stream; the request hits in the large cache resulting

in no prefetch action. Consequently, the small cache

contains more of this stream’s prefetch blocks than the

large cache violating the stack property. Thus, the small

cache is not a subset of the large cache.

Result 4 PM and LRU/StreamLRU is not a prefetch

stack algorithm.

Proof: Consider PM, where on a miss of block si, a fixed

P > 0 blocks contiguous to si are loaded. Therefore,

si+1, ...si+P prefetch blocks are prefetched.

Suppose L ≥ S+ P , and S = (n− 1)× P .

Initially, the small cache and large cache are empty.

Consider the following cache workload: < 1s, 2s, 3s, ...,

(n-1)s, ns, 1s1, 1s2, ..., 1sP , 1sP+1, ...>, where each is

represents a distinct stream.

The arrival of each block is results in a prefetch of P

blocks, is1, is2, ...isP .

Block ns is the first workload block that results in an

eviction of stream 1s, from the small prefetch cache.

Stream 1s is not evicted from the large cache. All blocks

of stream 1s are evicted from the small cache, but none of

the blocks of stream 1s are evicted from the large cache.

The next workload request is for 1s1. This will result in

a hit in the large cache, but no prefetch action. In the

small cache, the request for 1s1 will miss, and blocks

1s2, 1s3,1sP+1 are prefetched. Note that the large

cache contains blocks 1s2, 1s3,1sP . Therefore, the

stack property is violated.

The next workload requests are for 1s2, ..., 1sP . These

requests hit in both caches. After the hit of block 1sp,

block 1sP+1 is in the small cache, but it is not in the

large cache.

Stream 1s is evicted from the large cache, but it is in

the small cache. Hence, the prefetch stack property is

violated.

�

The PM technique is widely implemented in caches. In

PM, every time there is a miss in the small cache, but a hit

in the large cache, the stack property gets violated. This

can lead to the violation of the stream stack property, a

sufficient condition for Belady’s anomaly to occur.

Result 5 LRU and any prefetch technique, with the ex-

ception of OBL PA, is not a prefetch stack algorithm.

Proof: Result 1 states that prefetch blocks are ordered

by time of insertion in the LRU queue. The position of

a prefetch block is not updated when its corresponding

stream is accessed. From a stream perspective, the LRU

queue is ordered by stream insertion time, not stream ac-

cess time. A replacement policy that orders the replace-

ment queue by insertion time is not a stack algorithm [9].

The LRU replacement queue orders relevant blocks by

insertion time, not stream access time. Hence, the LRU

replacement queue is not a prefetch stack algorithm.

�

A replacement queue that orders prefetch blocks by

insertion time, not stream access time, is not a stack al-

gorithm. A prefetch technique that results in eviction of

streams is not a stack algorithm. Thus, PM-LRU, PM-

StreamLRU and LRU-PA are not stack algorithms, and

several examples in Sections 4 and 5 have demonstrated

that Belady’s anomaly occurs with these algorithms.

This leaves the PA with StreamLRU - PA does not evict

streams, and StreamLRU orders its queue by recency of

stream access - as the lone algorithm that could have the

stack property. Table 8, however, demonstrates that Be-

lady’s anomaly occurs in the PA-StreamLRU cache. It is

a conundrum as to why this algorithm does not possess

the prefetch stack property.

Instead of explaining why the anomaly occurs for the

PA-StreamLRU algorithm presented in Table 8, we first

prove that a certain class of the PA-StreamLRU algo-

rithm has the stack property.

Result 6 StreamLRU and PA, where the stream degree

D is fixed, is a prefetch stack algorithm.

Proof: Let the stream degree D = d > 0. When a user

request si arrives at the cache, PA ensures that si+1, ...,

si+d are in the cache.

If d = 1, then the algorithm is StreamLRU with OBL

PA, which is a stack algorithm (Result 3).

Suppose d > 1. When a workload request si arrives, the

prefetch technique ensures that the next d blocks from

stream s are in the cache.

The StreamLRU policy ensures that the d blocks from

stream s are at the MRU end of the replacement queue,

with si+1 farthest from the LRU end.

A stack of size C holds the most recently accessed ⌈C

d
⌉

distinct streams.

Hence, for all workloads, a cache of size S will be a sub-

set of a cache of size L when S ≤ L.

�

With regard to streamLRU, Result 6 identifies the es-

sential property - a fixed stream degree - required of a

prefetch technique in order for the caching system to not

exhibit Belady’s anomaly. When D is variable, it is pos-

sible to construct a workload where the small cache holds

more streams that the larger cache as a result of having

fewer blocks per stream.

Corollary 1 When the stream degreeD is a variable, PA

and StreamLRU is not a prefetch stack algorithm.

10

6.4 Discussion

The results show that the common prefetching tech-

niques, PM and trigger PA, are not prefetch stack algo-

rithms. The fixed stream degree PA is a stack algorithm,

but from a performance perspective it is generally infe-

rior to PM and trigger PA (which is why it is not often

implemented in real systems). Here, we analyze whether

the fixed stream degree condition can be relaxed and still

allow for prefetch caches to have the stack property.

The essential property required of a non-prefetch

cache (i.e., reference cache) to be a stack algorithm is

that the replacement queue ordering of blocks must be

independent of the queue size. To avoid ambiguity, we

specify the meaning of replacement queue ordering: it

refers to the state of the queue immediately after a user

request arrives and is processed. In the reference cache,

every user request, whether hit or miss, is in the replace-

ment queue after the request is processed. The state of

the queue refers to the blocks, both the cached blocks

and the new user request block, and the relative position

of the blocks in the queue.

In a prefetch cache, similar to a reference cache, re-

placement queue ordering refers to the state of the queue

immediately after a user request arrives and is processed.

The user request, whether hit or miss, is not in the

prefetch cache after processing, but the request’s stream

blocks may be present in the cache. Some of these blocks

may have been present prior to the arrival of the user

request, while some may have been newly prefetched.

Similar to a reference cache, the state of the replacement

queue refers to the prefetch blocks and their position in

the queue. The prefetch blocks in the cache refer to the

blocks present prior to arrival of the user request and the

new blocks prefetched upon arrival of the user request.

Proposition 1 A prefetch cache system satisfies the

prefetch stack property if the replacement queue order-

ing of stream blocks is independent of the cache size.

The reasoning behind Proposition 1 is presented below:

StreamLRU and fixed stream degree PA: With a fixed

stream degree D = d ≥ 1, when request si arrives, the

blocks < si+1, ..., si+d > are moved to the MRU end of

the queue (in reverse order of the sequence). This action

is completely independent of the cache size. Therefore,

the replacement queue ordering of stream blocks is inde-

pendent of cache size.

LRU and fixed stream degree PA: With a fixed stream

degree D = d > 1, when request si arrives, only the

newly prefetched stream blocks are moved to the MRU

end; the rest retain their position. Therefore, the replace-

ment queue ordering of stream blocks is dependent on

the cache size.

StreamLRU and a variable stream degree PA, say, trig-

ger PA: When request si arrives, the value of D is depen-

dent on whether si misses or hits in the cache; if si hits,

it matters whether the hit block is a trigger block. Since a

hit or miss of si is dependent on the cache size, the value

of D is dependent on the cache size. Thus, the blocks <

si+1, ..., si+d >, d ≥ 0 moved to the MRU end, vary de-

pending on the cache size. Hence, the replacement queue

ordering of stream blocks is dependent on the cache size.

PM and StreamLRU: When request si arrives, the

value of D is dependent on whether si hits or misses in

the cache. Thus, the blocks < si+1, ..., si+d >, d ≥ 0
moved to the MRU end, vary depending on the cache

size.

The essential property required of a stack algorithm is

the same in a reference cache and a prefetch cache. In

a reference cache, queue order implicitly assumes that

the blocks in the cache are the workload blocks, so order

explicitly refers to the position of blocks. In a prefetch

cache, queue order explicitly refers to the stream blocks

and their position in the queue.

The question is whether Proposition 1 can be relaxed.

The prefetch stack property is weaker than the stack

property. The prefetch stack property only requires that

the set of relevant blocks in the small cache be a subset

of the relevant blocks in the large cache.

stack property ⇒ prefetch stack property, but

prefetch stack property 6⇒ stack property.

Proposition 2 A prefetch cache system satisfies the

prefetch stack property if the replacement queue order-

ing of relevant stream blocks is independent of the cache

size.

The results in this paper continue to hold with Proposi-

tion 2: fixed degree PA and StreamLRU is the only algo-

rithm, from amongst those analyzed in this paper, where

the queue ordering of relevant blocks is independent of

the cache size. Proposition 2 implies that regardless of

the replacement policy, PM is not a stack algorithm since

it evicts streams. PM is a popular prefetch technique that

is widely implemented, but this paper proves that PM

is inherently not a prefetch stack algorithm. Trigger PA

is another popular prefetch technique. Trigger PA and

StreamLRU is not a prefetch stack algorithm and can ex-

hibit Belady’s anomaly as demonstrated in Table 8. The

key question is whether trigger PA and another replace-

ment policy could satisfy Proposition 2.

7 Conclusion

Almost all file system caches perform prefetching which

interacts with the cache replacement policies. The en-

suing cache system is hard to evaluate since the perfor-

mance varies erratically [3]. This paper demonstrates

11

that the unpredictable performance may be a conse-

quence of the prefetch cache system not exhibiting the

stack property. The introduction of prefetching almost

always causes the violation of the stack property, which

in some case leads to Belady’s anomaly. It is difficult

to isolate the reasons for the violation since the actions

of the prefetch technique and replacement policy are en-

twined.

This paper is successful, to a degree, in (1) explaining

the reasons for stack property violation, and (2) propos-

ing remedies. A side bar contribution of the analysis is

that it shows how a prefetch technique can be made in-

dependent of the replacement policy (by using a fixed

stream degree). This may be useful when evaluating per-

formances of replacement policies for prefetch caches.

References

[1] BELADY, L. A., NELSON, R. A., AND SHEDLER, G. S. An

anomaly in space-time characteristics of certain programs run-

ning in a paging machine. Commun. ACM 12 (June 1969), 349–

353.

[2] BOVET, D. P., AND CESATI, M. Understanding the Linux Ker-

nel, Third Edition. O’Reilly Media, 2005.

[3] BUTT, A. R., GNIADY, C., AND HU, Y. C. The performance

impact of kernel prefetching on buffer cache replacement algo-

rithms. IEEE Transactions on Computers 56, 7 (2007), 889–908.

[4] CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K. A study

of integrated prefetching and caching strategies. In SIGMETRICS

’95/PERFORMANCE ’95: Proceedings of the 1995 ACM SIG-

METRICS Joint International Conference on Measurement and

Modeling of Computer Systems (1995), ACM Press, pp. 188–197.

[5] CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K. Imple-

mentation and performance of integrated application-controlled

caching, prefetching, and disk scheduling. ACM Transactions on

Computer Systems 14, 4 (1996), 311–343.

[6] GILL, B. S., AND BATHEN, L. A. D. Optimal multistream se-

quential prefetching in a shared cache. ACM Transactions on

Storage (TOS) 3 (2007).

[7] GILL, B. S., AND MODHA, D. S. SARC: Sequential prefetching

in adaptive replacement cache. In Proc. of USENIX 2005 Annual

Technical Conference (2005), pp. 293–308.

[8] LAM, C.-Y., AND MADNICK, S. E. Propeties of storage hierar-

chy systems with multiple page sizes and redundant data. ACM

Trans. Database Syst. 4 (September 1979), 345–367.

[9] MATTSON, R., GECSEI, J., SLUTZ, D., AND TRAIGER, I. Eval-

uation techniques for storage hierarchies. IBM Systems Journal

9, 2 (1970), 78 –117.

[10] SMITH, A. J. Cache memories. ACM Computing Surveys 14, 3

(1982), 473–530.

[11] VANDERWIEL, S. P., AND LILJA, D. J. Data prefetch mecha-

nisms. ACM Computer Survey 32, 2 (2000), 174–199.

[12] WILSON, P. R., KAKKAD, S. V., AND MUKHERJEE, S. S.

Anomalies and adaptation in the analysis and development of

prepaging policies. Journal of Systems and Software 27 (1994),

147–153.

12

