
It takes know-how to retrieve large files over public networks

Adam H. Villa and Elizabeth Varki
University of New Hampshire

Department of Computer Science
Durham, NH, 03824 USA

Abstract

Retrieving large data files across public networks is
a complicated task. This paper presents the issues and
challenges faced by an average user when trying to
retrieve large datasets using public, shared resources.
Several data retrieval techniques are evaluated from a
user’s perspective and it is found that users will have
drastic differences in performance based on how they
select and utilize various servers to complete their re-
quests. Without know-how, a user could potentially
spend 20 to 100 times longer on data retrieval than
necessary depending on the servers chosen and the re-
trieval technique utilized. Implementing data retrieval
techniques and configuring transfers can be difficult and
time-consuming for the average user. There is a signif-
icant amount of know-how that is required for a user
to successfully and efficiently utilize these retrieval tech-
niques.

1. Introduction

Research communities are creating staggering
amounts of data that need to be accessible to users
around the world. A major creator of such scientific
data is the particle physics community. The Large
Hadron Collider (LHC), a high energy particle acceler-
ator at CERN, is expected to produce tens of petabytes
of raw data annually [6, 8]. Geographically dispersed
researchers eagerly await access to the newest datasets.
The task of retrieving this data quickly and efficiently is
a major undertaking for any user.

In order to improve users’ access to large and high-
demand datasets, system administrators utilize replica-
tion, which reduces access latency and bandwidth con-
sumption [5]. Replication helps to balance load and can
improve availability by creating multiple copies of the
same data [12]. These copies are distributed amongst
servers spread out around the world, allowing users mul-
tiple possible access points. For example, CERN’s repli-

cation strategy for the LHC experimental data utilizes a
tiered replica structure. Raw data obtained from their in-
struments is immediately replicated in a controlled fash-
ion to multiple storage sites in various tiers [8]. End
users then have the ability to access these replicas that
are distributed around the world.

The datasets being replicated in these distributed sys-
tems are extremely large. They can range from multiple
terabytes to several petabytes in size. Retrieving por-
tions of these large datasets is a time consuming task
that will result in long duration transfers taking tens of
hours to several days. When it comes to transfers of
this magnitude, a simple “click and wait” methodology
is not going to suffice. During the transfer period, any
number of situations can occur forcing the transfer to
slow down or stop completely. Servers can go offline or
become overloaded. Network conditions for the user or
the server could also degrade.

Users attempting to retrieve these large scientific
datasets are generally using public networks on aca-
demic campuses or in research institutions. Even though
they possibly have private storage and computation re-
sources, they must utilize a shared connection to the
Internet. In a university environment, several thousand
users might share this connection and a single user will
be limited to only a portion of the bandwidth available to
everyone. The conditions of the network can also vary
greatly during different times of the day and different
months of the academic year. There is no way to guar-
antee the network conditions at any given time. Due to
these types of situations, advanced data retrieval tech-
niques are available to users.

These advanced retrieval techniques allow a user to
simultaneously use multiple data sources concurrently.
The user is not reliant on one server connection for
the entire transfer. A user could retrieve half of a file
from one server and the remaining portion from another
server at the same time. The number of servers utilized
in parallel depends on the algorithm for each technique.

In our experiments, we examine a single user retriev-
ing a large data file over a public network, using a shared

1



Internet connection. We evaluate several different tech-
niques that a user could potentially utilize to retrieve the
data file. We observe their performance, as well as the
difficulties that an average user faces when implement-
ing and using these techniques.

We find that users could have drastic differences in
performance based on how they select and utilize var-
ious servers to complete their requests. Depending on
the retrieval technique used and the number of servers
involved, a user could find varying performance from
9.2 minutes to 19 hours when trying to retrieve a sin-
gle 30GB data file. Without know-how, a user could be
forced to unnecessarily wait for a data transfer to com-
plete.

During our experiments, we observe the many dif-
ficulties and complications that an average user would
experience when trying to retrieve these datasets. Imple-
menting and configuring data transfers using these data
retrieval techniques can be difficult and time-consuming
for the average user. There is a significant amount of
know-how that is required for a user to successfully and
efficiently utilize these retrieval techniques.

The paper is organized as follows. Our experiments
and observations of data retrieval from a user’s perspec-
tive are detailed in Section 2. Issues and challenges that
the average user faces during large file retrieval are pre-
sented in Section 3. We then discuss our conclusions in
Section 4.

2. Experiments and Observations

In our experiments we observe the process of a single
user retrieving a large data file over a public network,
using a shared Internet connection. We examine several
different techniques that a user could potentially utilize
to retrieve the data file. We evaluate their performance,
as well as the difficulties that an average user faces when
implementing and using these techniques.

Average users have limited capacity for data retrieval,
which is governed by their network connection and their
Internet service provider. A user may utilize a shared In-
ternet connection, such as an academic campus network.
The Internet connection for the entire network is fast,
however all of the users on the network are sharing this
resource. In our experimental setup, the user’s computer
is located on an academic campus network and uses a
shared high-speed Internet connection.

Each end user (10,000+) shares the multiple high-
speed Internet connections servicing the network. Net-
work workload conditions vary throughout the day, as
end users share the public resources. Figure 1 illustrates
the variations in the user’s transfer rate when retrieving a
1MB file from a remote server over the course of several
weeks. Since the traffic on local and wide area networks

Figure 1: Variations in user transfer rates when retriev-
ing a 1MB file from a remote server over the course of
several weeks.

can vary, as well as server workloads, we repeat our ex-
periments several times over the course of three months.
We present the average values for all data transfers.

We examine the performance of retrieving a 30GB
data file over public networks, using a shared Internet
connection. The data file being retrieved is replicated on
thirty different servers located around the world. These
servers are public servers not under our control and are
concurrently servicing other users’ requests. The user
has the ability to retrieve the file from any of these
servers.

2.1 Normal Data Retrieval

Normally, the user is faced with the decision of
choosing a server from a listing of available servers to
service their request. The user has no knowledge about
the potential performance of any given server. In our
experiments, we retrieve the data file from each server
independently in order to observe the differences in ser-
vice times that a user would experience. We begin our
experiments by retrieving the desired 30GB data file
from each one of the available 30 servers independently.
We find that the data retrieval performance for each
server varies greatly. Figure 2 illustrates the marked dif-
ferences in the service times for each server. The fastest
file transfer occurred in 11.7 minutes, while the slowest
file transfer took over 19 hours. The median service time
for all servers is 75.5 minutes.

During the transfers, the user’s network utilization
is monitored. We find that the user’s retrieval capac-
ity was not fully utilized during any of the transfers
and was especially low for the transfers with the longest
service times. This indicates that the bottleneck of the
longest transfers lies with either the connection between

2



0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	   25	   26	   27	   28	   29	   30	  

Se
rv
ic
e	  
Ti
m
e	  
(m

in
ut
es
)	  

Servers	  

Figure 2: Normal Data Retrieval: Service times (minutes) for each server when retrieving the entire 30GB data file
independently.

the server and the user or with the server itself.
When retrieving data files, the replica selected can

greatly impact a user’s performance. The major diffi-
culty for the average user is knowing how to select an ap-
propriate replica. Choosing a lightly loaded server over
a heavily loaded server can result in dramatically differ-
ent completion times for a user. Finding the most effi-
cient replica is a difficult and complicated task. There
are many studies [2, 7, 9, 10, 11, 15] that explore dif-
ferent mechanisms for efficient replica selection. All
of these mechanisms require the user to implement and
configure selection algorithms, which can beyond the
skill set of an average user.

2.2 Advanced Data Retrieval

Instead of relying on a single server for the entire data
transfer, a user could potentially use multiple servers at
the same to transfer the desired data. Many recent stud-
ies explore advanced techniques for data retrieval known
as distributed file retrieval (or data co-allocation), which
allow a single user to simultaneously utilize multiple re-
sources to service a request. Using data co-allocation,
users can utilize many or all of the available replicas.
The users would issue requests for portions of data file
from these replicas. The requests would then be serviced
in parallel. The longest service time that any user would
experience would be determined by the slowest replica
to service any one of the partial data requests.

There are several different types of data co-allocation
retrieval techniques. They can be grouped based on how
they utilize the available replica severs. We examine the
three most common groups of data co-allocation tech-
niques: brute-force, performance-based, and dynamic.
In the following sections, we examine the performance
differences and user difficulties that we observe for these

techniques when used in our experimental setup.

2.2.1 Brute-force Technique

The basic, brute-force, data co-allocation tech-
nique [13] issues a request for equal sized portions of
the file from all available replicas. Every replica that
contains the file is utilized and each is responsible for
servicing an equal amount of data. There is no consid-
eration given to the performance of replica servers or
network conditions. The workload at all servers is in-
creased equally for each co-allocating user.

We evaluate the brute-force technique (BFT) by di-
viding our file request into 30 equal-sized portions and
requesting one portion from each of the 30 replica
servers. The requests are serviced concurrently and the
data is retrieved from each server in parallel. Since the
entire file request is not complete until all of the portions
are retrieved, the performance of the request is depen-
dent on the slowest file transfer. Similar to our normal
data retrieval observations, we find that the performance
of each of the transfers varies greatly. Figure 3 illus-
trates the differences in the service times for each of the
individual file portion retrievals. As with normal data
retrieval, server 7 provides the longest service time. The
fastest file retrieval finishes in 2.5 minutes and the slow-
est file retrieval takes 76.8 minutes. Since the data re-
trieval is not complete until all portions are retrieved, the
service time for the entire data file transfer using BFT is
76.8 minutes.

In comparison to our normal data retrieval experi-
ments, the brute-force technique provides improvement
over normal data retrieval for some of the servers. The
average service time for BFT is almost equal to the me-
dian service time for the single server technique. This
indicates that the BFT provides improved performance

3



0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

45	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	   25	   26	   27	   28	   29	   30	  

Se
rv
ic
e	  
Ti
m
e	  
(m

in
ut
es
)	  

Servers	  

Figure 3: Advanced Data Retrieval - Brute Force Technique: Service times (minutes) for each server when retrieving
equal 1GB portions of the 30GB data file.

in comparison to retrieving the file from a single server
for 15 of the available 30 servers. Since the BFT tech-
nique utilizes all servers regardless of their retrieval ca-
pacity, the slower servers will always hinder the perfor-
mance of the entire data transfer.

There are several difficulties that an average user
would face when using the brute-force technique. Initi-
ating and monitoring multiple transfers can be difficult.
In our experiments, we utilized 30 concurrent transfers,
which proved to be complicated to track. With multiple
simultaneous transfers, the task of setting up and moni-
toring the individual transfers can be overly complex for
the average user.

2.2.2 Performance-based Technique

Performance based techniques utilize performance met-
rics when selecting replicas to utilize. There are two
main groups of performance-based techniques: history-
based and probe-based. Both of these groups attempt to
exploit faster servers by assigning them greater portions
of the workload. Depending on the user’s choice, the
number of servers utilized in parallel can vary from two
to possibly all of the available servers.

In history-based techniques [13, 14], the retrieval
algorithms address the fact that each transfer between a
replica and the client has varying transfer rates. These
techniques adjust the amount of data retrieved from each
replica by predicting the expected transfer rate for each
replica. The algorithms create forecasts of future perfor-
mance based on transfer history with network and disk
load data. Historically faster servers are assigned to de-
liver larger portions of the file and slower servers are
assigned smaller pieces.

In probe-based techniques [4, 19], the retrieval al-
gorithms utilize network status information to create

network throughput predictions. Some of these tech-
niques utilize the Network Weather Service [17], which
is a networking monitoring tool that utilizes sensors
which gather data on the latency and bandwidth of end-
to-end TCP/IP performance. Using these throughput
forecasts for each replica server, the algorithms assign
portions of data request to each available replica. Repli-
cas predicted to have the best performance are assigned
a larger portion of the request workload.

We evaluate a performance-based technique (PBT)
by selecting servers using the round-trip time from a net-
work ping and performance information from the trans-
fers that we observed when examining the brute-force
technique. We select servers with the lowest ping times
and the shortest historical service times first. We vary
the number of servers that are used concurrently from
two to twenty. As the number of servers utilized in-
creases, we are using slower servers with larger round-
trip times and longer historical service times. We com-
pare the overall service times that we experience for
the varying number of concurrently utilized servers in
Figure 4. We find that as the number of servers in-
creases, the overall service time also increases. When
more servers are used, slower servers are required to ser-
vice portions of the request. The request is not complete
until the slow servers finish their portions and thus affect
the overall service time. When only the two servers with
the best metrics were utilized, the overall time to retrieve
the file was the least.

We also observe that as more file transfers are added,
the user’s available retrieval capacity diminishes. Even-
tually, there are more file transfers than the user’s con-
nection can handle and the transfers will compete for
the available retrieval capacity. This can negatively af-
fect faster transfers. Figure 5 illustrates the effects of
multiple parallel file retrievals on the transfer rate of the

4



Figure 4: Advanced Data Retrieval - Performance-based
Technique: Total service time (minutes) for the file
transfer as the number of servers concurrently used in-
creases.

Figure 5: Transfer rates for the fastest server connection
observed, as the number of servers concurrently used in-
creases.

fastest connection observed. As the number of concur-
rent data retrievals increase, there is a decrease in the
transfer rate for the fastest file transfer. There is a 77%
decrease in the transfer rate when there are 29 other
transfers competing for available retrieval capacity.

While probe-based techniques provide improved per-
formance over brute-force techniques, they still attempt
to utilize as many servers as necessary without regard
for the user’s limited retrieval capacity. In many cases
these techniques create more transfers than the user’s
bandwidth can accommodate, which results in transfers
competing for bandwidth. This situation diminishes the
performance of the overall file transfer.

Users are faced with several difficulties when utiliz-
ing performance-based retrieval techniques. Since these
techniques are more complex than the brute-force tech-

nique, their implementation could prove difficult for the
average user. Another issue that a user faces is the prob-
lem of stale performance metrics. Network conditions
and server workloads are constantly changing, which
means that these metric values can quickly become inac-
curate. Since these data transfers could potentially take
multiple hours to several days, users will need to con-
tinuously update their performance metrics for all server
connections.

2.2.3 Dynamic Technique

Dynamic techniques [1, 3, 16, 18] attempt to automat-
ically adapt to changing system conditions by request-
ing small, equally sized, portions of a file from multi-
ple replicas. In many dynamic techniques, each replica
is initially assigned one segment. As replicas complete
their assigned segments, they are assigned additional
portions of the data file to service. Each dynamic tech-
nique uses different decision making algorithms on how
to schedule these requests, however faster servers will
end up transferring larger portions of the file. Any failed
or undelivered requests can be automatically resched-
uled to other replica servers, potentially created dupli-
cate work. Depending on the specific dynamic tech-
nique, the desired data file could be segmented so that a
single server could receive tens to hundreds of requests
for portions of one file.

One dynamic technique attempts to fully utilize the
user’s retrieval capacity by dynamically and incremen-
tally increasing the number of servers currently utilized
until the user’s maximum retrieval capacity is reached.
This technique attempts to avoid situations where sev-
eral transfers are fighting for available bandwidth.

The dynamic technique begins by selecting one
server with the smallest round-trip time using a network
ping. After the transfer has started, the user’s available
bandwidth is monitored. The technique then incremen-
tally creates additional data transfers to other servers, as
necessary until the user’s retrieval capacity is fully uti-
lized. Figure 6 illustrates the decrease in service time
for the incremental technique as we approach full uti-
lization of the user’s retrieval capacity. The service time
for this technique was 9.2 minutes, which was less than
the fastest time observed using normal data retrieval.

In comparison to the other techniques, the dynamic
technique produces the smallest service time for retriev-
ing the 30GB data file. Figure 7 shows the difference in
service times for all of the techniques that we observe. In
addition to providing the smallest service time the user,
the dynamic technique attempts to involve the smallest
number of replica servers and attempts to fully utilize
the user’s retrieval capacity.

The user difficulties associated with dynamic tech-

5



Figure 7: Comparison of service times (minutes) for all data retrieval techniques observed.

Figure 6: Incremental Distributed File Retrieval:
Changes in service time (minutes) as the user’s retrieval
capacity approaches its maximum utilization.

niques are numerous. Many of these techniques are quite
complicated and their algorithms are complex. Imple-
menting them for automated use would require signifi-
cant time for even an experienced programmer. The av-
erage user would find this task to be insurmountable. In
addition, there are many aspects of these algorithms that
are left for the user to decide and control. We detail
some of these issues and challenges in the next section.

In summary, we find that advanced file retrieval pro-
vides improved performance in comparison to normal
data retrieval. There are several advanced techniques
available for the user to utilize. Choosing an appropriate
and viable technique however is a difficult task. Imple-
ment, configuring and utilizing these techniques can be
a challenge for even for the experienced user.

3. Issues and Challenges

Research communities are generating massive
amounts of data that need to be readily accessible to
thousands of users around the world. These users
require fast and efficient access to data files.

Using public networks and shared resources to re-
trieve large amounts of data is a daunting task for any
user. It requires significant know-how for a user to con-
figure and maintain the data transfers needed to transport
these massive data sets.

Retrieving large data files (GB, TB, PB) is a compli-
cated and time-consuming process. These long duration
transfers could take tens of hours to several days and
a normal “one click and wait” method will not suffice.
During the course of the transfer, servers may go off-line
and network conditions may change that either hinder or
stop the transfer completely. The user needs to know
how to maintain the data transmission until completion.

Advanced retrieval techniques allow users to utilize
multiple resources simultaneously. A user could uti-
lize some or all of the available replicated copies of the
data set. Depending on the specific advanced technique,
these replicas can be selected and used to varying extents
during the course of the data transfer.

In our evaluations, we transfer a large data file over
a public, shared academic network from servers around
the world. We find that users could have drastic dif-
ferences in performance based on how they select and
utilize various servers to complete their requests. Using
normal data retrieval, where the user selects and relies
on a single server to complete the entire request, a user
could have a wide range of potential service times from
11.7 minutes to 19 hours depending on the replica server
selected. Using advanced retrieval techniques, users can
potentially reduce these service times. The brute-force
technique utilizes all available replicas and produces a

6



service time of 76.8 minutes, which is almost equal to
the median service time of normal data retrieval. The
probe-based technique using only two servers with the
best probe times yields a service time of 23.3 minutes,
a significant improvement. The dynamic technique that
minimizes the number of servers involved and fully uti-
lizes the user’s retrieval capacity provides a service time
of 9.2 minutes, which is best observed time for all tech-
niques.

These advanced techniques provide improved perfor-
mance for users, however they are quite complicated to
implement and use. They require significant user in-
volvement and require multiple user decisions that can
dramatically affect the performance of the transfer. A
user needs know-how in order to make these techniques
function properly and efficiently.

There are several complicated features that are left to
users to control when configuring these transfers. The
first option that the user must control is replica selection.
As we’ve discussed, many distributed systems utilize
replication to create multiple copies of data and place
them on various servers throughout the system. The user
can retrieve data from any of these replicas. Choosing
which replica(s) to use is left to the user and can dramat-
ically affect their performance, as we’ve shown in our
experiments. Determining which replica in this “best”
at a given time is not a trivial task.

Another configuration option that is frequently left
for the user to determine is segment size. In some ad-
vanced techniques, the data file is divided into small por-
tions called segments. The segment size is often left for
the user to decide and the size chosen can affect the per-
formance of the transfer. Determining the appropriate
segment size is not a simple task. If the size is too small,
a server may receive hundreds to thousands of requests
for portions of a single file. This will result in longer
disk service times at a server, as the number of users
increases. A server’s storage system can best service
requests if it has greater knowledge of a user’s work-
load. It can better schedule reading from the hard disks,
as well as take advantage of pre-fetching and caching
strategies.

A key issue that is not adequately addressed for re-
trieval techniques is failures. Since we are transferring
extremely large data files over long periods of time, we
will eventually encounter transfer failures. Many ad-
vanced techniques identify that failures can occur and
provide mechanisms for issuing new requests, however
specific details about the timings of these actions are not
addressed and are left for the user to decide. The re-
quest re-issue delay is a common problem with these
techniques. Determining the appropriate amount of time
that the application should wait before issuing a replace-
ment request is a non-trivial task.

4. Conclusions

Overall, setting up and configuring data transfers us-
ing advanced data retrieval techniques can be difficult
and time-consuming for the average user. There is a sig-
nificant amount of know-how that is required for a user
to successfully and efficiently retrieve large data sets.
Ideally, these users should be able to devote their time
and attention to data analysis instead of focusing on data
transfer. The entire retrieval process needs to be simpler,
easier and more efficient for the average user.

We see a clear need for an automated data retrieval
tool that allows the user to easily select and retrieve
large data files with minimal configuration and moni-
toring. We want to reduce the number of decisions that
a user has to make when starting a data transfer. The re-
trieval tool would utilize a responsible and efficient data
retrieval technique that attempts to minimize the number
of servers involved while still providing reliable service.

We also see the need to consider other performance
factors besides user service times and data throughput.
Retrieving data as quickly as possible for the user with-
out regard to overall system performance can be detri-
mental to all users. Transferring extremely large files
from shared servers over common networks can create
a massive burden on system resources. The burden is
distributed along the entire data path from the replica
servers to the users. All users utilizing these shared re-
sources will be adversely affected. We need to keep in
my mind the state of the overall system and be consider-
ate of other users when retrieving data.

References

[1] R. S. Bhuvaneswaran, Y. Katayama, and N. Takahashi.
Redundant parallel data transfer schemes for the grid en-
vironment. In ACSW Frontiers ’06: Proceedings of the
2006 Australasian workshops on Grid computing and
e-research, pages 71–78, Darlinghurst, Australia, Aus-
tralia, 2006. Australian Computer Society, Inc.

[2] D. Cameron, J. Casey, L. Guy, P. Kunszt, S. Lemaitre,
G. McCance, H. Stockinger, K. Stockinger, G. Andron-
ico, W. Bell, I. Ben-Akiva, D. Bosio, R. Chytracek,
A. Domenici, F. Donno, W. Hoschek, E. Laure, L. Lucio,
P. Millar, L. Salconi, B. Segal, and M. Silander. Replica
management in the european datagrid project. Journal
of Grid Computing, 2(4):341–351, 2004.

[3] R.-S. Chang, M.-H. Guo, and H.-C. Lin. A multiple par-
allel download scheme with server throughput and client
bandwidth considerations for data grids. Future Gener-
ation Computer Systems, 24(8):798–805, 2008.

[4] J. Feng and M. Humphrey. Eliminating replica selection
- using multiple replicas to accelerate data transfer on
grids. In ICPADS ’04: Proceedings of the Tenth Interna-
tional Conference on Parallel and Distributed Systems,
page 359, 2004.

7



[5] H. Lamehamedi, B. Szymanski, Z. shentu, and E. Deel-
man. Data replication strategies in grid environ-
ments. In Proc. Of the Fifth International Conferenceon
Algorithms and Architectures for Parallel Processing
(ICA3PP’02), 2002.

[6] D. Minoli. A Networking Approach to Grid Computing.
John Wiley and Sons, Inc., 2005.

[7] M. Mitzenmacher. The power of two choices in random-
ized load balancing. Parallel and Distributed Systems,
IEEE Transactions on, 12(10):1094–1104, Oct 2001.

[8] C. Nicholson, D. G. Cameron, A. T. Doyle, A. P. Mil-
lar, and K. Stockinger. Dynamic data replication in lcg
2008. In UK e-Science All Hands Conference, Notting-
ham, September 2006.

[9] M. Rabinovich and O. Spatscheck. Web Caching and
Replication. Addison-Wesley, 2002.

[10] R. M. Rahman, R. Alhajj, and K. Barker. Replica se-
lection strategies in data grid. Journal of Parallel and
Distributed Computing, 2008.

[11] R. M. Rahman, K. Barker, and R. Alhajj. Replica se-
lection in grid environment: a data-mining approach.
In SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing, pages 695–700, New York, NY,
USA, 2005. ACM Press.

[12] K. Ranganathan and I. T. Foster. Identifying dynamic
replication strategies for a high-performance data grid.
In GRID, pages 75–86, 2001.

[13] S. Vazhkudai. Enabling the co-allocation of grid data
transfers. In GRID ’03: Proceedings of the Fourth Inter-
national Workshop on Grid Computing, page 44, 2003.

[14] S. Vazhkudai. Distributed downloads of bulk, replicated
grid data. In Journal of Grid Computing, volume 2,
pages 31–42, March 2004.

[15] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selec-
tion in the globus data grid. In Proceedings of the First
IEEE/ACM International Conference on Cluster Com-
puting and the Grid (CCGRID 2001), pages 106–113.
IEEE Computer Society Press, May 2001.

[16] C.-M. Wang, C.-C. Hsu, H.-M. Chen, and J.-J. Wu. Ef-
ficient multi-source data transfer in data grids. In CC-
GRID ’06: Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid, pages
421–424, 2006.

[17] R. Wolski, N. T. Spring, and J. Hayes. The network
weather service: a distributed resource performance
forecasting service for metacomputing. Future Gener.
Comput. Syst., 15(5-6):757–768, 1999.

[18] C.-T. Yang, Y.-C. Chi, and C.-P. Fu. Redundant par-
allel file transfer with anticipative adjustment mecha-
nism in data grids. In Journal of Information Technology
and Applications, volume Vol. 1, pages 305–313, March
2007.

[19] X. Zhou, E. Kim, J. W. Kim, and H. Y. Yeom. Recon:
A fast and reliable replica retrieval service for the data
grid. In CCGRID ’06: Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the
Grid, pages 446–453, 2006.

8


