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Abstract age systems often have more computational power and

) memory than the workstations they serve. Thus, itis rea-
Storage software h(_’;\s not kept pace with storage harP‘s’onable to expect storage to step up to the plate and ad-
ware. The software implemented in disk array systems igraqq the challenge of speeding data access. While it is
!'m'ted by the I"’,‘C_k of knov_vledge of storgge data result'true that current disk arrays implement scheduling, load
ing from the minimal I/O interface. This paper Shows p5jancing and caching techniques that are far beyond the
that even without any information on files, storage SOﬁ'capabiIities of old disks, storage software is still very
ware can extract significant information about storage, . itve when compared to file system software. Cur-
data. ) Ad(_]llng meaning to storage data has a two-folqg,; storage software is not close to harnessing the power
benefit. Firstly, storage data placement can be based qg storage hardware. The key reason for this shortfall is

data access patterns and secondly, smarter storage sqfy,; storage devices have no information about storage
ware techniques can be implemented. This paper demoquata
strates the extraction of workload information by stan- . ' .
. . . Storage devices store files. File systems control and
dard sequential prefetching techniques. A prefetch and . : )
2 . ., Mmanage file data placement on disks. The file system
cache sizing technique that adapts to the workload is de- . .
sianed talks to storage via I/O read and write requests. A read
ghed. request has the addresseée.( block numbers) of the
blocks to be read, while a write request also transmits
1 Introduction the data to be written to disks. The function of storage is

to transmit the requested blocks when a read request ar-

Computer hardware and software have evolved rapidlyives, and to write the data to the requested blocks when
since the development of the first vacuum-tube electroni@ write request arrives. No information about files or ap-
computer in 1937. The first commercial hard disk was in-plications are transmitted down to the storage layer, so
troduced by IBM in 1957, but until the early 1990s there storage does not know about the file whose data blocks
was little development on the storage front. Faster andre being retrieved or the application for whom the data
smaller disks were developed, but disks were still me-blocks are being retrieved. From a storage device’s view-
chanical devices tied to the file system, incapable of perpoint, the data blocks have no meaning, so storage data
forming intelligent tasks. Disk controllers performed ba- blocks and the 1/O workload are a “black box.” In or-
sic tasks like disk scheduling, error checking and remapder to develop software that speeds data access, informa-
ping from bad sectors to good sectors. In 1988, the stortion about data access patterns and access frequency is
age landscape changed with the proposal of RAID sysheeded. A program can make intelligent decisions only
tems [42]. This technology became the driving force thatf it has knowledge and can attach meaning to data.
transformed storage from a “dumb mechanical device” There are several advantages to having a minimal 1/0
to a “smart storage system.” interface, so this paper is not proposing a change to the
Current RAID systems are disk arrays with powerful interface. However, throwing up one’s hands and lim-
controllers, large memory units and large caches. Techiing storage software to basic functions is not the only
nology such as SAN and storage virtualization allowalternative. It is possible to extract useful information
storage units to be independent of file systems. The diskbout file accesses and traffic flow by analyzing the 1/0
array controllers have the capability of running complexworkload. The programs analyzing the 1/0O workload
algorithms to speed up storage access. In fact, large stoneed not be computationally intensive or invasive. This



code could be inserted into standard storage algorithmaMe present a “black box” technique for sizing the cache
In fact, workload information could be extracted with- in Section 4. The experimental evaluation demonstrate
out changing standard techniques, and by merely viewthat the sizing module implicitly gains knowledge of the
ing these techniques from a different perspective. number of sequential and random file accesses submitted
In this paper, we show how a standard storage alby the file system. In Section 5, we analyze the actions
gorithm, the sequential prefetching technique, could beof the sizing technique and gain an understanding of the
used to extract useful information from the 1/0 work- prefetched data. Based on this “gray box” understanding
load. Sequential prefetching is a caching algorithm thaof the storage workload, in Section 6 we propose a new
loads data contiguous to I/O read request data into th&izing technique that adapts to the workload.
cache. Most disk arrays implement sequential prefetch-
ing techniques. The technique assumes that on-dema?i File vs Storage Workload
requests for the prefetched data will eventually arrive an
hit in the cache thereby speeding up access time. Sincgequential prefetching techniques are implemented in
a sequential prefetching technique identifies sequentighoth the file system layer and the storage layer. The file
locality in the workload, this technique could be usedsystem prefetch techniques are more sophisticated than
to attach meaning to the I/O workload and storage datahe storage prefetch techniques since the file system can
Without explicit information about files and applications 4tach meaning to its workload. The workload seen by a
being passed down to storage, it is impossible t0 cOMyjisk array and a file system is essentially the same as
pletely demystify the I/O workload. However, prefetch- regards the contents. The difference between the two
ing techniques can be used to bring some order and Clajyorkloads is the information attached to the workload.
ity to the workload. This information allows a file system to see file requests
The paper demonstrates how knowledge of data coulgyhile a disk array sees block requests. Here, we examine
be used to implement efficient, adaptive sequentiathe workload at both levels.
prefetch techniques. First, a standard cache sizing mod- A disk array’s workload consists of read and write re-
ule that assumes no knowledge of data is presented. Th@,ests submitted by file systems. A read request consists
sizing module sets the prefetch cache size so that thgf the starting block number to be read, followed by the
technique achieves its maximum hit rate for the work-number of blocks to be read. For notational simplicity,
load. The paper then analyzes the actions of the prefetclye assume that each read request is for a single block.
ing technique and attaches meaning to the data storeguppose the workload of a disk array is observedz),et
in the prefetch cache. Based on this understanding ofepresent the time instant at which thé read request

the data stored in the prefetch cache, the paper proposgsrives. The:!” read request submitted to the disk array
an improved prefetch sizing technique that adapts to thes described by:

workload and the technique.

Thegoal of this paper is to show that a standard algo- Xn=1i; 1€{1,2,3,---,MaxBlocks}
rithm like sequential prefetching could be used not just to .
increase the hit rate of the cache but also learn about th\ghere LIS _the black _number o be accesse_d, and
I/0 workload. This information could be used to tag and MaxBIocks IS thg maximum numper of blocks in the
group storage data, thereby adding meaning to storag%ISk array. The t'm? Instant, f"lt yvh|c.h.the regd reguest
data. While this paper only evaluates the workload in-""" arrives at the d'_Sk array 1s "T‘p"c'“y defined in the
formation that can be extracted by sequential prefetchin%pt_agon'. If a time |r!stant is defined to be smallest, in-
techniques, a similar approach could be used with othe 'V_'S'ble mte_rval .Of time, then only 1 read request can
storage techniques. Knowledge about the workload ang'mve at a t'me instant, and, < t?“ ¥n. The read
storage data could lead to storage software that utiIizeg\’orkloaId is given by the sequence:
the power of §torage hardware. . . X =< Xy, Xg, X3, Xy >

The paper is organized as follows: Section 2 explains
the 1/0 workload from the viewpoint of a file system and whereN is the number of read requests that arrive during
a storage system. A goal of the paper is to bring the Zhe observation period. The disk array workload appears

viewpoints closer. We start by re-examining the storagess a single sequence of seemingly random blocks.
workload and showing the sequentiality in the storage

workload. In Section 3, we show how this sequential-Example 1 An example of a disk array’s I/O workload:
ity impacts on the hit rate that can be achieved by stan¥' = < 1, 51, 99, 151, 89, 2, 3, 152, 999, 52, 4, 5, 251,
dard storage prefetch techniques. In order to achieve thig99, 53, 6, 351, 299, 199, 899, 7, 54, 699, 599, 252, 499,
hit rate, sequential prefetched blocks must stay in th&53, 3999, 352, 353, 451, 399, 8999, 7999, 6999, 254,
cache until the on-demand requests for the blocks arrive452, 8, 453, 501, 5999, 4999, 562



Here, X; = 1,Xo = 51,X3 = 99,--- Xy = Stream 1 1,2, 3,4,5,6,7,8attime instants$, tg, t7,
4999, X453 = 502. X arrives att; and Xy3 arrives at t11, t12, tig, t21, t3s;
t43. Stream 2 51,52, 53, 54 at time instants,, tig, t1s,
t22;
A file system’s workload consists of read and write Stream 3 151, 152 at time instants,, ts;
requests submitted by processes. Each request is for a i ’ o
particular file’s data, and the file system has knowledge;E S'iref:\m 4 251,252,253, 254 at time Instants, s, tas,
of the application and file relating to a request. A read re-27" ~36 o
quest consists of a file id, the starting block address, and Stréam 3 351,352,353 at t!me !nstantsw, t29, t30;
the number of blocks to be read. Let each read request Stream 6 451,452, 453 at time instantss:, ts7, tag;
be for a single block. Unlike the storage system that sees Stream 7. 501, 502 at time instants,o, t4s3.

a single sequence of block numbers, a file system seefne sequential block accesses are referred straams
various sequences of read requests, where each sequeng& streams are numbered in increasing order based on
relates to a file. the time at which the first request from the stream is is-
Consider the disk array workload of Example 1. Thegyed. A request/block belonging to one of these streams
disk array sees a single sequence of random blocks. Thg referred to as aequential or stream request/block.

file system may have seen the following workload: During the observation period;(to t43), there are sev-
File fid1: < 1,2,3,4,5,6,7,8,501,502 > attime in-  eral lone block accesses that are not part of any stream.
stantsty, te, t7, ti1, ti2, tie, to1, tss, tao, tas; We refer to them asandom requests/blocks. In Exam-
File fid2: < 51,99,89,52,53,54,3999,8999,5999 > ple 1, there are a total of 17 random requests for blocks:
at time instantss, ts, ts, tio, tis, t22, tog, t3s, tai; 99, 89, 999, 899, 799, 299, 199, 699, 599, 499, 399, 299,
File fid3: < 151,152,999,251,252,253,254 > at 8999, 7999, 6999, 5999, 4999. These requests may be
time instantsy, ts, to, t13, tos, t27, t3e; random file accesses submitted by file systems or sequen-
File fid4: < 351,352,353 > at time instants;7, tzg, tial file access where the file is fragmented. A random
t30; block could also be part of a stream where the request

File fid5: < 799,299,199, 899,699, 599,499, 451, for a contiguous block is issued outside the observation
399, 7999, 6999, 452, 453,4999 > at time instants,4,  period. For example, consider request for block 99 at
t19, t20, t2s, t24, toe, t31, ta2, 34, t3s5, ta7, ta2; time t3: a request for block 98 may have been issued

It is clear that file fid4 is accessed sequentially. How-prior to the observation period and a request for block
ever, it is possible that all the files are being accesse89 may be issued after the observation period. The only
sequentially, but the files are fragmented on the diskssequentially prefetched blocks that will receive a hit dur-
For example, consider file fid3. The physical blocksing the observation period are the stream blocks. With-
151,152,999, 251, 252, 253, 254 may correspond to log- out knowledge of files and the logical to physical file data
ical file system blockd0,11,12,13,14,15,16. Simi-  mapping, storage sequential prefetch techniques can only
larly, files fid1, fid2 and fid5 could all be accessed se-target streams in the workload.
quentially, but their read sequences look random as a re- The interleaved multi-stream workload of Exam-
sult of file fragmentation. The file system knows the Iog-p|e 1 is typical of workloads submitted to disk arrays.
ical to physical mapping, so a prefetching technique afa disk array gets 1/0 requests from various applica-
the file level could use this knoWledge to prefetCh blockstions and these requests get interleaved. As a resu't’
accordingly. two requests from one application may not arrive dur-

The above example shows how the same workloaghg contiguous arrival time instants at the disk array. So,
looks very different at the file system and storage |eV€|Seven if files are stored Contiguou5|y and each app”ca-
The difference lies in the meaning attached to the datajon accesses its files sequentially, the disk array work-
It is knowledge and subsequent understanding of datq,oad appears random. Tlask of a Sequentia| prefetch-
not superior hardware, that allows file prefetching tech-ing technique is to prefetch requests from streams and
niques to be far more sophisticated than storage prefetchp keep them in the cache until the on-demand request

ing techniques. arrives. Therefore, a sequential prefetching technique
would identify streams in the workload. We show that
2.1 Storage workload re-examined without any knowledge of files or streams, a sequential

prefetching technique can identify the number of streams
At first glance, the storage workload shown in Example 1land random accesses in the workload. In fact, it is even
looks like a random sequence of block numbers with ngoossible to extract the number of file accesses in the
discernible pattern. A more careful examination revealsvorkload. Thus, sequential prefetching techniques can
the following sequential block accesses: shed some light on the 1/O workload.



3 Sequential Prefetch Techniques The maximum hit rate computation below is based on
the following cache setup. The prefetch cache and the
The goal is to use sequential prefetching techniques ten-demand read cache are maintained as separate logical
add information to the storage workload. A sequentialunits. When an on-demand request hits in the prefetch
prefetching technique has to deal with 3 issues: wherache, the hit block is moved from the prefetch cache
to prefetch data, how much data to prefetch, and whainto the on-demand cache for future re-reference hits. It
cache replacement policy to use when the cache is fullis assumed that each on-demand request is for one block
Sequential prefetching techniques can be divided intand that only one block is prefetched each time a prefetch
three categories based on the first issue, namely, wheis initiated.
to prefetch data [18]. Therefetch Always (PAJech-  PA: ThePA technique initiates prefetch on arrival of ev-
nique prefetches data contiguous to every on-demand reery on-demand request, so all stream blocks, except for
quest. ThePrefetch on Miss (PoMechnique prefetches the first block of each stream, are prefetched. Therefore,
data contiguous to every missed on-demand request. Thtae maximum hit rate folPA is equal to the maximum hit
Prefetch on Hit (PoH}echnique prefetches data contigu- rate for the workload.
ous to every hit on-demand request. Thus, all 3 cate- Hp, = H

gories of prefetching techniques initiate prefetch whenpoH: When an on-demand request for block i hits in the
on-demand requests arrive. Most sequential prefetchingrefetch cache, th®oH technique submits a prefetch
techniques are variations of the above techniques. Fatequest for block (i+1). When an on-demand request
example, a variation of PA is a technique that prefetchesor block i misses in the cachdoH looks for block
only if the disk is idle when an on-demand request ar<(j-1) in the on-demand cache. If block (i-1) is found
rives. in the on-demand cache, th&oH assumes that a se-
We examine the hit rate that can be achieved by eacuential stream has started and submits a read request

of these prefetching techniques. The maximum prefetclior block i and a prefetch request for block (i+1) to the
hit rate that can be achieved for a given workload de-disks. Block i is stored in the on-demand cache, while
pends on the number of streams and stream blocks in therefetched block (i+1) is stored in the prefetch cache.
workload. Lets refer to a sequential request/block and  Thus, PoH prefetches all blocks of a sequential stream

refer to a random request/block. except for the first two blocks, so the maximum hit rate
N: number of requests that arrive during the observais given by:

tion period. Hpoy = Ne=2xM — g _ M
Ns: number of sequential requests. PoM: When an on-demand request for block i hits in
N;: number of random requests. the prefetch caché?oM services the request from the
M: total number of streams that are observed in gprefetch cache and moves block i to the on-demand

workload. cache. When an on-demand request for block i misses

The first block of a stream will not be prefetched by anyin the cachePoM submits a request for block i and a

sequential prefetching technique. Therefore, prefetch request for block (i+1) to the disks. Thus, for
N = Ns — M: the maximum number of prefetched streams with even number of requestsM prefetches

blocks that could receive hits. half the blocks, while for streams with odd number of re-
H= %; themaximum prefetch hit rate for a work- questsPoM prefetches théloor of half the blocks. Let

load with N requests. Mopp represent number of streams with odd number of
Since prefetching techniques prefetch different blocksequests.

not all prefetching techniques can achieve this maximum Hpom = % > %

hit rate. Before listing the hit rate achievable by each

technique, we state two assumptions about prefetchelinplication of hit rate: A technique such aBA can
blocks from streams: 1) each prefetched block is loaded@chieve the maximum possible hit rate for a workload.
in the cache instantaneously (before its on-demand rethe fact that the prefetch techniques are able to get hits
guest arrives); and 2) each prefetched block remains iimplies that these techniques implicitly view the stor-
the cache until its on-demand request arrivies,(, no  age workload as a multiple interleaved stream work-
prefetched block is pre-evicted). Without these assumpload. Therefore, even though the workload is a single se-
tions holding true, no prefetching technique can attainquence, the sequential prefetch techniques split the work-
its theoretical maximum hit rate. In reality, for asyn- load into multiple streams. The input to a storage se-
chronous I/O requests, it is not possible to guarantee Asquential prefetch technique is a single stream, but the
sumption 1. Assumption 2 can be satisfied if the cacheutput from the sequential prefetch technique is multi-
is large enough to hold the sequential prefetched blockgle streams and random blocks. Similar to a prism that
until on-demand requests for the data arrive. splits white light into its component colors, a sequen-



tial prefetch technique divides the single sequence I/n the workload is required. We experimentally de-
workload into its component streams and random blockstermine the effectiveness of the sizing module. The
We analyze the degree by which each of the standargrefetch cache setting used in our experimental evalua-
prefetch techniques divides the I/O workload. tion is as follows: 1) each on-demand request is for a sin-
gle block; 2) each prefetch request is for a single block;
3) a prefetched block that receives a hit is moved out of
the prefetch cache immediately; and 4) the replacement
technique is FIFO.

4 Black Box Sizing

In theory, a scheme such &4 can achieve the maxi-
mum possible sequential prefetch hit rate for a workload.

In practice, it may not be possible to achieve this hitrate4.1  Online sizing module

due to 2 issues. First, some of the prefetched blocks ma )

not get loaded in the cache before their on-demand relhe size C, of a cache refers to the number of cache
quests arrive. Second, if the prefetched blocks are loadef1€s, where each line can store exactly 1 block. Upon
in the cache, then the blocks must stay in the cache ur@'tival of each I/O request, the online sizing module
til their on-demand requests arrive. In order to use thelecides whether to increment, decrement, or leave un-
prefetching techniques to extract knowledge of stream§hanged the size of the cache. The goal of the sizing
and random blocks, it is necessary to show that stormodule is to determine the smallest size that ensures
age prefetching techniques are capable of achieving theRrefetched blocks from streams remain in the cache until
maximum hit rate. Ensuring that prefetched blocks arthe on-demand requests for the prefetched blocks arrive.
rive before their on-demand requests is a timing issue. Irf he details of such an online sizing scheme are listed in
our experimental evaluation we try to address this probhe pseudo-code of Scheme 1. The scheme is based on
lem by ensuring that request arrival rate is less than disktuitive reasoning and assumes no knowledge of streams
service rate. Ensuring that prefetched blocks stay in th@nd random blocks. Hence, this scheme is representative
cache until their on-demand requests arrive depends opf storage algorithms and treats the workload like a black
the cache replacement policy and the cache size. box.

The cache replacement policy determines which block
is to be evicted when the cache is full. With on- Scheme ;LO.NL'NE PREFETCH CACHE SIZING
demand blocks being moved out of the prefetch cache, ** noEvictionEndHits « true; nolncr « true
the focus of a replacement technique is the storing 2 for_ every requesteq do :
of prefetched blocks until on-demand requests for the 3 I req is a prefeich cache missen
prefetched blocks arrive. Storage systems are not pro-*+ if req is @ non-rereference hitin the on-demand
vided a priori information about the workload, so a stor- cachethen . .
age prefetch technique cannot infer when a stream will S Increment prefetch cache size by one line
start and when it will end. Consequently, a prefetch tech- & nqlncr « false
nigue has no idea when, or even if, an on-demand re- " en_d i - -
quest for a prefetched block will arrive. With this uncer- else 'fT?q 1S hit near the eviction enthen
tainty about the workload, the goal of a prefetch replace- 9 no_EV|ct|0nEndH|tS « false
ment technique is to hold on to unaccessed prefetcheei0 end if
blocks as long as possible. Every hit block is removed Y _requunt++ L :
from the prefetch cache, so the only difference betweent> i r_equu_nt - momt_onngPenod then
two cached blocks is the order in which the blocks were®3 if noEvictionEndHits gndnolncr th_en
prefetched into the cache. Therefore, Hiest In First Decreme_nt cache size py one line
Out (FIFO) replacement scheme is a good choice for at™ Move evicted request into the on-demand
disk array’s prefetch cache replacement scheme. When ca_che
the cache is full, the block at the FIFO head is evicted ** end if
and the free cache line is moved to the FIFO tail. When'”* requupt <0 .
there is a hit in the prefetch cache, the hit block is moved& no_EV|ct|0nEndH|tS « true; nolncr «— true
to the on-demand cache and the free cache line is moved™ end if
to FIFO tail. A newly prefetched block is inserted into 20: end for
the tail of the FIFO queue.

Once the cache replacement policy is fixed, the cache The sizing scheme has to determine if the cache is
size is the factor that determines the hit rate for a giverlarge enough to hold prefetched blocks from streams un-
workload and prefetch technique. A sizing module thattil their on-demand requests arrive. A block is loaded
dynamically determines the prefetch cache size baseito the FIFO insertion end, and each time another block




is inserted, this block will move toward the eviction end. workload and technique. Several file sequences are sub-
In order to know if the prefetch cache is too small, we mitted to the storage device. Thequentiality of a file
move each request evicted from the prefetch cache inteequence is the probability that the next request gener-
the on-demand cache, and label the request as an evictatkd is contiguous to the last request generated. Re-
request. If an on-demand request for this evicted prefetckerring to the workload presented in Section 2, file se-
request arrives, then the prefetch cache is too small anquences fid4 has sequentiality 1, fid5 has sequentiality
the size of the prefetch cache is incremented. Wheno, while the rest are partly sequential. In all the experi-
ever a request hits in the prefetch cache or misses in botments, we present the size of the cache and the hit rate
the prefetch and the on-demand cache, the sizing schenaghieved. We also plot the maximum theoretical hit rate
leaves the prefetch cache size unchanged. that can be achieved by the technique if the cache were
The sizing scheme must also determine if the prefetcliarge enough.
cache is too large. The number of cache lines needed is Figure 1 plots the experimental runs when the streams
equal to the maximum number of prefetch cache inserare interleaved uniformly. The top graph in Figure 1
tions that can occur between the loading of a prefetcheghows the prefetch cache size set by the online siz-
block and the arrival of its on-demand request. Sinceng scheme when it is coupled with each of the three
each insertion causes a prefetched block to move towargrefetching schemes. The bottom graph in Figure 1
the FIFO eviction end, one would expect that the FIFOshows the hit rates obtained by the three schemes using
eviction end of a cache would receive hits unless thehe online sizing scheme (solid points) and the maximum
cache is too large. The eviction end of a cache is montheoretical hit rates achievable by those schemes (dashed
itored, and the size of the cache is decremented if thdéines). that prefetching scheme.
eviction end cache line does not receive any hits during Figure 2 plots hit rates and cache sizes when the
the monitoring period. The scheme monitors the evictionstreams are not uniformly interleaved Figure 3 depicts
end of the cache for a sufficiently long period (pseudo-the performance when a dynamic workload is used. The
code lines 12-16). The monitoring period is set to thenumber of active file sequences is allowed to vary arbi-
sum of current size of the prefetch cache and the size dfarily. In each graph, we plot the simulation time on the
the on-demand cache. During this period, if the requestX axis and the request addresses in the workload on the
residing near the eviction end do not receive any hitsleft Y axis. Thus, a request at timefor address: is
then the scheme concludes that the cache is inflated arplotted as a point &t, a). In each graph, on the right Y
decrements the cache size. The request that is evicted agis, we plot the instantaneous prefetch cache size main-
a result of the cache size reduction is loaded into the ontained by the online sizing scheme coupled with each of
demand cache. This provides the decrement decision the three prefetching schemes and the instantaneous op-
level of self-correction. timal prefetch cache size. The simulations show that the
sizing module is able to set the cache to a large enough

. . size so that close to the maximum hit rate is achieved.
4.2 Simulation results

We check whether this intuitive sizing scheme is able to5 Black to Gray: Analysis
set the cache size so that the prefetching schemes can
achieve their maximum hit rate. The performance of theThe same sizing module is used for all the prefetching
proposed sizing scheme is validated through simulationgechniques. The experimental evaluation shows that it is
We ran the simulations using the CMU Disksim [7] sim- possible for an on-line technique to size a prefetch cache
ulator. The simulator is used in slave mode by a cachingising neither knowledge of the data nor actions of the
and sizing module that implemented tReM, PoH,  prefetching technique. Here, we evaluate the actions of
POpt, andPA prefetching schemes and the online siz-the sizing module and the degree by which the sizing
ing scheme. Th®Opt technique is an off-line prefetch- module identifies the storage workload. First, we present
ing technique that has complete knowledge of the inputhe workload data from the viewpoint of the sizing mod-
workload. The simulations are carried out using syn-ule. The workload of Example 1 is used for explaining
thetically generated SPC-2-like read workloads [1] andthe terminology and notation.
other workloads. We test the sizing scheme both under The example workload has multiple streams that start
uniform and nonuniform interleaving of file access se-up and end during various time instant4<(7). A stream,
guences as well as under static and dynamic workloadsi, is said to beactive at timet if the last on-demand re-
The purpose of these experiments is to check whetheguest issued for this stream arrived at titme< t, and
the cache size is appropriate for the workload andhe next on-demand request for this stream will arrive at
prefetch technique. We know that the cache size is largéme t™ > t during the observation period. The times,
enough if the cache get the maximum hit rate for thet~ andt™ are referred to as the left and righwokends
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Figure 1: Uniform interleaving: The prefetch hit ratio obtained as a function of workloadusatjality with the
online prefetch cache sizing scheme listed in Pseudo-coddéé workload contains 100 file sequences of identical
sequentiality (X axis).

for stream i. The requests that arrive at bookend times Ib;(t): i*" smallest element of the séi3(t). Note
are referred to as the left and right bookend requests fathatt is the largest element &fB(t).
stream i at time.

At time instantty;, LB = {t217t27,t17}; |b(1) = ti7,

lb(a) = to1 andlb(zy = to7. Attime ty7, the stream that
submitted the oldest left bookend request is Stream 5 at
ti7.

Ib;(t): left bookend time for stream i active at tirhe
bi(t):

rb;(t): right bookend time for stream i active at tirhe
AS(t): the set of streams active at tirhe

At time t, a sizing module must ensure that the bIockf‘ strr]gam, L 1S sm_d tg bel_d at t|metAf the Iast_re_que_s(;
prefetched by the arrival of the left bookend request of or this stream arrived attime- < t. A stream, 1, Is saic
each active stream remains in the cache until the righio benewat timet if the first request for this stream will

bookend request arrives. For example, at time instang'"1Ve attimet+ > t.

tor, AS(ter) = {1,4,5}. The left and right book- OS(t): the set of streams that are old at titne
end times for the streams afie;, = to1,rb; = tss, NS(t): the set of streams that are new at time
by = ta7, rby = tsg, and|b5 = t17,rb5 = to9. Con- At time inStanttQ% OS(tQ’?) = {273} andNS(tQ'Y) =
sider stream 1. At arrival time,;, request for block 7 {6, 7}. From a sizing module’s perspective, a new cache
arrives and may trigger a prefetch of block 8. The siz-line may have to be added when a new stream starts and
ing module must ensure that the cache is large enough sdcache line could be removed when a stream ends.
that prefetched block 8 remains in the cache until right We follow the following notational convention: In
bookend timeb; = t3s. generalas, 0s, ns refer to active stream, old stream and
new stream, respectively. A subscript adds additional
LB(t) = {t}U{Ib:(t)]i € AS(t)}: the set of left meaning to the notation - for example Ns, N, men-
bookend times of streams active at titnéNote thatt €  tioned in Section 3. Also(t) indicates at timd, and
LB(t), so this set is not empty even if there are no active(t;, t;) indicates between and including timgsandt;.
streams at time For example,
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Figure 2:Non-uniform interleaving: The prefetch hit ratio obtained as a function of workloadusetjiality with the
online prefetch cache sizing scheme listed in Pseudocodédra nonuniform workload. The workload contains 50
completely random and 50 sequences of arbitrary (X axi9)esstiplity. The arrival rate of the random file sequences
is twice that of the partly sequential sequences.

Mas(t): number of streams that are active at titfjeo ~ from the cache at time
Mas(t25) = 3)

M.s(t;, t;): number of streams that are active during At each arrival time instartf the sizing technique en-
the time periodt;, t;] where the left bookend timeist;  sures that the cache is at the minimum size for the tech-

and the right bookend time is t;. nique. Initially, minCpiech (to) = 0. If a prefetch is initi-
Thet is dropped when the meaning is clear from the con-ated, then the new block has to be loaded into the cache
text. regardless of whether the block is sequential or random.
The minimum size ensures that the eviction end of the
5.1 Minimum cache size FIFO queue always has a prefetched block relating to an

active stream. Therefore, every time a prefetch is ini-

The goal of the sizing module is to keep the cache taiated the cache size must be incremented. Every time
a minimum size while achieving the maximum hit rate. there is a hit in the cache, the technique must determine
Our experimental evaluation shows that the on-line sizif the cache size should remain unchanged or be decre-
ing module is able to achieve close to the maximum hitmented. If the hit cache line is at the FIFO head (eviction
rate. However, it cannot be determined if this hit rate isend), then the cache size may get decremented by more
achieved with the minimum cache size for the techniquethan 1 line (explained later in this section).
In order to determine if the size achieved by the black
box technique is the minimum size, we analyze the acPOpt: Instead of starting with one of the 3 stan-
tions of an off-line sizing technique. The off-line sizing dard prefetching techniques, we start by evaluating the
technique maintains the smallest cache size for the workeache size for an optimum off-line sequential prefetch-
load and technique. Define timeinimum cache size at ing technique. The optimum techniqueQpt, knows
timet as follows: when streams begin and end and theref@@pt only

minCptech (t): if C(t) < minC(t), then3 s in the  prefetches stream blocks. When a stream sta@qt in-
prefetch cache at time", such that will be pre-evicted crements the cache size by 1 line and prefetches the
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Figure 3:Dynamic workload: When the experiment begins, the file sequences start upajhadis the experiment
draws to a close, the file sequences taperldadft: There are a total of 150 completely sequential sequencesark
close dynamically while a background of 150 random sequepesesists.Right: A total of 150 sequences of 80%
sequentiality open and close dynamically while a backgdamfri50 random sequences persists.

stream’s blocks into this line. When a stream ends, angbertaining to prefetches initiated for random requests and
the last block of the sequential stream is moved into thdast requests from streams. These blocks can be safely
on-demand cache after a prefetch cacheHpt decre-  ejected from the cache, so the minimum cache size can
ments the cache size by 1 line. reinCpop(t,—1) rep-  be reduced.
resent the minimum cache size at timg ;. Due to The minimum cache size always ensures that a block
spacing constraints, we use the symbelt;,, _"torepre- at the FIFO head is a sequential block. If the prefetched
sentminCpa(t,—1) in the equation below. When request block pertaining to request, is at the FIFO head, then
X, arrives at: this block was prefetched at tintig,)(t) (i.e.,the oldest
prefetched block pertaining to an active stream). All ran-

) ) dom and old stream blocks prefetched aftgy, (t) and
+0 if X, isarandomrequest; pefore the arrival of another stream requedihat (t) can
+1 if X, isthe start of a stream;be ejected from the cache. (Note that if & only con-
—1 if X, isthe end of a stream; tainst, then letlb;y = Ib;) = t.) That s, all random
and old stream blocks prefetched aftey;) and before
Ib(2) can be ejected.

The last case is wheX, is a sequential request that is
neither at the start or the end of a sequential stream.

minCpopt (tn) =t,_

+0 otherwise.

+1if X, isarandom request;

PA: Unlike the POpt technique that only prefetches MINCra(tn) =t +1if X, is the start of a stream;
stream requests, tHA technique prefetches every time +0if hit for X, is not at FIFO head;
an on-demand request arrives. A prefetch on a miss ~Nr (b1, Ib(2)) — Mos(lb(1y, Ib(s)) otherwise.
requires a new cache line, so the minimum cache size

would have to be incremented by one line. A prefetchThe computation above assumes that the first request in
on a hit does not require a new cache line, since the hithe workload is a stream request. Without this assump-
block is moved from the prefetch cache, and the newlytion, an extra line would have to be added just to take
prefetched block can be inserted into this free cache lineare of the initial condition of having a random block at
at the FIFO tail. It "seems” to follow that the minimum the FIFO head.

cache size would be unchanged. If the hit block is in the

middle of the FIFO queue, then this reasoning is correcPoH: Unlike the PA technique, thePoH technique
and the minimum cache size remains unchanged. Howprefetches only after identifying streams in the workload.
ever, if the hit block is at the eviction endld., head) = When an on-demand request for block i misses in the
of the FIFO queue, then this reasoning is incorrect. Incache, and block (i-1) is found in the on-demand cache,
the FIFO queue, immediately following the FIFO head,a stream is identified. ThereforBpH starts prefetch-
there may be several non-sequential prefetched blockisg only upon arrival of the second on-demand request



in a stream. Moreover, random blocks in the workloadthe cache when a block is pre-evicted before its on-
do not impact on the size of the prefetch cache. Unlikedemand request arrives. Therefore, the on-line scheme
the POpt techniquePoH does not know when streams is not maintaining the minimum cache size. The on-line
end, and prefetches a block past the end of each strearscheme tries to keep the cache large enough so that all
This block will remain in the prefetch cache until it is prefetched blocks from active streams stay in the cache
evicted. Therefore, the prefetch cache stadestified until their on-demand requests arrive. Thd#imum
stream blocks from active and old streamsspecifyan  cache sizeinfC, is defined to be the smallest number of
identified stream, a subscript ofD is used. For exam- cache lines required to ensure that no prefetched stream
ple, AS|p(t) indicates the set of identified active streamsblock is pre-evicted. LePtech refer to the prefetching

- streams where the second request was submitted on technique.

prior to timet.

infCprech (t): if C < infC at timet, then3 s in the
prefetch cache at timg such thats will be pre-evicted

0if X, random or start of stream i . .
+ " from the cache during the observation period.

+1if X, request 2 from a stream;

+Oifhitfor X, notat F”:C_) head; The infimum cache size is larger than the minimum cache
—Mipos(Ib(1), Ib(z)) otherwise. size since the minimum size at tinteonly guarantees
that no stream prefetched block is pre-evicted at time
t, while the infimum size at time guarantees that a
prefetched stream block will remain in the cache un-

MiNCpoH (tn) =t,—

The variableMpos(Ib(1), Ib(2)) refers to the number of
identified streams that complete between the left book
?ng |n|t|_ated prefetcheq blOCk_?hOf the twr? Oll.dESt r']d?(;]t"til its on-demand request arrives at time. The in-

led active streams at time,. ese cache ines Nold- g ym size ensures that the cache is large enough to

ing blocks pertaining to old streams are nextto the FIFOhandle all prefetch insertions into the cache after a se-
head and can be removed from the cache when the hHuential block is prefetched and before its on-demand re-

occurs at the FIFO head. quest arrives. Random prefetched blocks may be evicted
from the cache, but the infimum size ensures that all
stream prefetched blocks stay in the cache until the on-
emand requests arrive. For calculating the infimum size
or a technique, it is necessary to compute the number
of stream and random blocks that are inserted into the
(iache.

PoM: The PoM technique prefetches each time an on-
demand request misses in the cache. ThereRuid, ini-
tiates a prefetch for every random request and for od
numbered requests in each stream. (request 1, 3, 5,
from stream j). Every hit block is removed from
the cache, thereby decrementing the cache size by
if the block is not at the FIFO head. If the hit block
is at the FIFO head, then all random and old stream&OPt:
with odd number of requests issued that are next to thénfCropt(t) = Mas(t)
FIFO head can be removed from the cache.specify ~ WhereM,s is the number of active streams at titne
streams that have issued an odd number of requests
we add the prefix ODD to the notation. LétSopp(t)  PA: At time t, a cache line must be reserved for each
refer to the set of active streams that have issued an odgk the active sequential streams. Therefore, the prefetch
number of requests by time Referring to Example 1, cache must be at leads(t) lines long. We want to
ASopp(ta7) = {1, 4,5} while ASopp(t26) = {1,5}. ensure that an active stream’s prefetched block stays in
the cache until its on-demand request arrives. That is,
: ) we want to ensure that the prefetched block triggered by
+1 ff X, random; the arrival of the left bookend request of a stream active
+1if X, odd-numbered stream reg timet, stays in the cache until the on-demand right
—1ifhitfor X, notat FIFO head; bookend request for this prefetched block arrives. The
—1 = N(lbgyylbay) — MODDOS(|b(1)|§(ig>e; must be large enough to handle all random block
insertions between the bookend requests, the streams that
end after the left book time artd and the new streams
that start aftet and the right bookend time. The infimum
The off-line technique increments the cache whenever &ize is the maximum of the infimum sizes for each of the
prefetch is initiated. The black box on-line scheme ofstreams active at time
Section 4.1 does not increment the cache each time @mfCpa(t) = Maximum{Mas(t) + N(lbj,rb;) +
block is prefetched. The on-line scheme only incrementdVios(Ib;, t) + Mas(t, rb;) | Vi € AS(t)}

MiNCpom (tn) =t,—

5.2 Infimum Cache Size
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PoH: The PoH technique prefetches identified active a good idea to use the black box sizing scheme. It is
streams. The cache must be large enough to store blocket cost efficient to keep increasing/decreasing the cache
from active, old and new identified streams that arrivesize. The analysis shows that if the size of the prefetch

between the bookend requests of active streams. cache isC lines, then all active stream blocks that are
infCpon(t) =Maximum{Mpas(t) + Mipos(lbj,t) + separated by at mo&t requests will definitely hit in the
Mipns(t, rb;) | V5 € ASip(t)} prefetch cache. It would be better to set the cache size

to some system determined initial size and keep track of

PoM: With the PA and PoH techniques, a prefetched where the hits occur in the FIFO queue, the number of
block’s position either remains unchanged or moves tohits versus the number of prefetches, etc. Based on the
ward the FIFO eviction end with each arrival instant. intensity of random blocks in the workload and the over-
This observation does not hold when &M technique  all traffic, there may be periods when it is wiser to turn
is used. A complication with thEBoM technique isthata off prefetching, or switch to a scheme suchPad.
hit does not trigger a prefetch, and therefore, the hit cache All the prefetch schemes identify streams in the work-
line becomes free. If this free cache line remains in thdoad. ThePA andPoM schemes identify the streams im-
prefetch cache, then the next prefetched block can be irplicitly when a hit occurs in the prefetch cache. Since
serted into this free cache line. After each hit, there is ond?A and PoM prefetch random and stream blocks, it
fewer prefetched block, so a hit effectively moves all thewould be prudent foPA andPoM to use stream iden-
cached blocks one line away from the FIFO head (evictification to become more efficient. For example, the
tion end) toward the FIFO tail. Therefore, wiloM, a  degree of prefetching could be increased for the identi-
prefetched block’s position could either move toward thefied streams. Furthermore, the FIFO cache replacement
FIFO eviction end or move away from the FIFO evic- scheme could be supplanted by a replacement scheme
tion end with each arrival instant. This oscillation of such as Second chance [47] that allows identified streams
prefetched blocks with each arrival instant changes th¢o stay a little longer in the cache when they reach the
computation of the infimum size fdPloM when com-  eviction end.
pared to that oPA andPoH. The infimum cache size at  The analysis suggests a better sizing scheme for the
t is the maximum of the minimum cache sizes betweerPoH technique. The cache contains data from identi-
the left and right bookend requests of all active streamdied active streams and from old streams. When a new
in ASopp(t). This number is hard to quantify in terms stream is identified, it would be better to increase the
of insertions that occur between bookend requests. cache size by a line and load the prefetched block from

Now, PoM initiates a prefetch for all random requests the newly identified stream into this line. In this case, the
just like thePA scheme, but only prefetches some of theFIFO eviction end would eventually have blocks from
requests from streams. Therefore, the prefetch cache faid streams and would not receive hits. The cache size
PoM at timet is a subset of the prefetch cache Rikat  can be decreased using the black box decreasing tech-
timet and nique. The analysis also implies that if the workload con-
infCpom (t) < infCpa(t) sists of a large number of short duration streams and few
random blocks, then a scheme suctrAsor PoM would
be more suitable thaPoH. Overall, a prefetch and sizing
scheme that uses a gray box approach would make more

The black box on-line sizing scheme attempts to set th@fﬁcient use of expensive cache lines while reducing the

cache to the infimum size for the workload and prefetchir@ffic at the disks.

scheme. The experimental analysis shows that the siz-

ing scheme is successful enough since a hit rate close i Related Research on Prefetching

the maximum hit rate is achieved. It is hard to determine

whether the size is smaller or larger than the infimum, bufThe memory hierarchy is intrinsic to computer sys-

given the black box approach used by the on-line sizingems, so prefetching techniques have been in use for

scheme, the performance is pretty good. Here, we proa long time [2] and can be found at all levels - mem-

pose a prefetching/sizing scheme that uses a gray box apry caches hardware based: [4, 10, 11, 12], memory

proach. We are not presenting the details of the schemeaches compiler based: [5, 21, 35, 37, 38]; memory ap-

just suggestions on how better schemes could be deveplication programs based: [16, 24, 34, 40, 41, 45, 50];

oped. file system caches [9, 28, 36, 43]; and storage system
The experimental and theoretical analysis show thataches [18, 19, 20, 30, 31, 33, 50, 51].

the prefetch cache may hold several random blocks when Storage controller prefetching is initiated by storage

the PA andPoM technique is used. Therefore, when the software and the prefetched data are stored in the storage

PA andPoM prefetch techniques are being used, it is notcaches. The “narrow I/O interface” between the file sys-

6 Gray Box Scheme
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tem and storage system restricts the effectiveness of stoi-he sizes of these two lists are adjusted by monitoring
age controller prefetching techniques [32]. Single diskthe miss rate o6 EQ and hit rate ofRANDOM. The
prefetching techniques focus on sequential read-aheathP technique [31] is a storage prefetching scheme that
prefetching. The cache is divided several segments sases a memory table for sequential pattern detection. The
that requests from different streams can be prefetchefrefetched data are saved in a prefetch cache, which can
and cached in different segments [23, 52]. Howeverpe adjusted dynamically based on the sequentiality of the
prefetching is one of the least specified areas of disk sys/O workload.
tem behavior [46].

Even simple access patterns are not be available i% Conclusions
disk array workloads because of low re-reference local-

ity [39, 55] and interleaving of the access patterns at theDisk array systems not only have the capacity to store ter-
storage caches [31]. Based on the transparency and gen:- ysy y pactly

erality, there are three approaches to getting block corre"Zlbytes of data but also have the computational power to

lations, namely, white box, gray box and black box [32]. speed data access. The only caveat is that disk arrays do

The white box approach passes the storage front-end sQOt know what is stored on the disks. That is, disk arrays

. ) . . Store files for applications but have no knowledge of the
mantic information directly and explicitly to the storage . L : .
N files or the applications. This knowledge is controlled by
system [17]. The gray box approach transmits file sys-. . :
: . file systems, and therefore, storage is controlled by file
tem information to the storage system [49]. The black S ;
. ; . systems. On the flip side, file systems have knowledge of
box approach finds block correlations by analyzing I/O d
storage data but they see the disk array as a black box and
request addresses [22, 32]. g .
Cach . h anificant  effect have little knowledge of the physical placement of data.
ache size has a significant = ellect ~on ~arpera 5 an obvious disconnect - file systems know the

f:ac;:hlng/prefetﬁhlr;]g techrlz/llques g_erfor:man]f:e, S'(Tcemeaning of data but lack information on where the data
It ((ejtermlndest i It rz?]te. dOSt stu 'ES a;ve ocu?e Ore stored on the various disks, while storage systems at-
on-demand caches where data are kept for re-referenggq, meaning to data but know specifics of where the
hits. They’2 rule fqllows from an empirical observation data are stored. This disconnect between data placement
that the cache miss rate decreases as a power law 8hd data meaning limits the ability of software to use the

calcr;e Siﬁ.e t[ylit% 44, ﬁf’] Jelehnkov.ic et ?I‘ sgot\;]ved thﬁ)ower of hardware, thereby hurting performance.
relationship between the cache miss rate and the cachie 1, paper tries to address this issue by showing that

size for a LRU scheme with statistically dependentgvenwithout knowledge of files and applications, storage

request sequences [26, 27]. Singh et al. [48] develope L - -
a mathematical model that computes the dependence {lograms implicitly gain knowledge of the data. This

the mi 1 th he si Th wudi owledge could be used used to tag and identify how
€ mIss rate on the cache Size. "Tnere are Some SWAligg 3 4414 blocks are used and the data access patterns.
on web caching which focus on minimal total cost of

caching given a cache size [8, 14, 56, 15, 53, 6]. This understanding of data usage and an intimate knowl-

edge of array hardware could be used by disk array soft-

There are far fewer papers on prefetch cache sizingy are 1o remap data placement to boost performance. At-
Tse et al. [54] concluded that performance of a prefemhtaching meaning to data can also help replace standard

ing technique generally improves as the cache size ingyqrage software by more efficient software that adapts
creases. Baek and Park [3] studied the effect of cachg, ihe workload.

size on ASP, a prefetching scheme they developed. They o haner shows how standard sequential prefetching

showed that ASP performs better than other techniqueg, .\niques implicitly gain significant information on data
for small sized caches by maximizing the hit rate of bOt_haccess patterns. Based on this information, we propose
prefetched data and on-demand data. In these StUd'eén adaptive prefetching and sizing technique. As future
however, the prefetched data and on-demand data Afork, we plan to develop the adaptive technique. This

stored in the same cache and the cache size is fixed. The, oo g just a small step toward file aware storage. More
separation of prefetched data from the rest of the CaChﬁ/ork is needed to fully understand how storage tech-

reduces the probabiIiFy of eviction of prefetched data. lfiniques can be used to extract meaning of storage data.
and Shen et al. [29] implemented a prefetch cache sizayining knowledge of data is not sufficient since it is

ing scheme based on a gradient descent-based greem{portant to understand how this knowledge can be used

algorithm. The SARC technique [19] manages storagg, jmprove data placement and improve storage software.
prefetched data and on-demand data by separating them

into different LRU lists and dynamically adjusting the

size of the two lists based on the sequentiality of theReferences
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