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Abstract

Storage software has not kept pace with storage hard-
ware. The software implemented in disk array systems is
limited by the lack of knowledge of storage data result-
ing from the minimal I/O interface. This paper shows
that even without any information on files, storage soft-
ware can extract significant information about storage
data. Adding meaning to storage data has a two-fold
benefit. Firstly, storage data placement can be based on
data access patterns and secondly, smarter storage soft-
ware techniques can be implemented. This paper demon-
strates the extraction of workload information by stan-
dard sequential prefetching techniques. A prefetch and
cache sizing technique that adapts to the workload is de-
signed.

1 Introduction

Computer hardware and software have evolved rapidly
since the development of the first vacuum-tube electronic
computer in 1937. The first commercial hard disk was in-
troduced by IBM in 1957, but until the early 1990s there
was little development on the storage front. Faster and
smaller disks were developed, but disks were still me-
chanical devices tied to the file system, incapable of per-
forming intelligent tasks. Disk controllers performed ba-
sic tasks like disk scheduling, error checking and remap-
ping from bad sectors to good sectors. In 1988, the stor-
age landscape changed with the proposal of RAID sys-
tems [42]. This technology became the driving force that
transformed storage from a “dumb mechanical device”
to a “smart storage system.”

Current RAID systems are disk arrays with powerful
controllers, large memory units and large caches. Tech-
nology such as SAN and storage virtualization allow
storage units to be independent of file systems. The disk
array controllers have the capability of running complex
algorithms to speed up storage access. In fact, large stor-

age systems often have more computational power and
memory than the workstations they serve. Thus, it is rea-
sonable to expect storage to step up to the plate and ad-
dress the challenge of speeding data access. While it is
true that current disk arrays implement scheduling, load
balancing and caching techniques that are far beyond the
capabilities of old disks, storage software is still very
primitive when compared to file system software. Cur-
rent storage software is not close to harnessing the power
of storage hardware. The key reason for this shortfall is
that storage devices have no information about storage
data.

Storage devices store files. File systems control and
manage file data placement on disks. The file system
talks to storage via I/O read and write requests. A read
request has the addresses (i.e., block numbers) of the
blocks to be read, while a write request also transmits
the data to be written to disks. The function of storage is
to transmit the requested blocks when a read request ar-
rives, and to write the data to the requested blocks when
a write request arrives. No information about files or ap-
plications are transmitted down to the storage layer, so
storage does not know about the file whose data blocks
are being retrieved or the application for whom the data
blocks are being retrieved. From a storage device’s view-
point, the data blocks have no meaning, so storage data
blocks and the I/O workload are a “black box.” In or-
der to develop software that speeds data access, informa-
tion about data access patterns and access frequency is
needed. A program can make intelligent decisions only
if it has knowledge and can attach meaning to data.

There are several advantages to having a minimal I/O
interface, so this paper is not proposing a change to the
interface. However, throwing up one’s hands and lim-
iting storage software to basic functions is not the only
alternative. It is possible to extract useful information
about file accesses and traffic flow by analyzing the I/O
workload. The programs analyzing the I/O workload
need not be computationally intensive or invasive. This
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code could be inserted into standard storage algorithms.
In fact, workload information could be extracted with-
out changing standard techniques, and by merely view-
ing these techniques from a different perspective.

In this paper, we show how a standard storage al-
gorithm, the sequential prefetching technique, could be
used to extract useful information from the I/O work-
load. Sequential prefetching is a caching algorithm that
loads data contiguous to I/O read request data into the
cache. Most disk arrays implement sequential prefetch-
ing techniques. The technique assumes that on-demand
requests for the prefetched data will eventually arrive and
hit in the cache thereby speeding up access time. Since
a sequential prefetching technique identifies sequential
locality in the workload, this technique could be used
to attach meaning to the I/O workload and storage data.
Without explicit information about files and applications
being passed down to storage, it is impossible to com-
pletely demystify the I/O workload. However, prefetch-
ing techniques can be used to bring some order and clar-
ity to the workload.

The paper demonstrates how knowledge of data could
be used to implement efficient, adaptive sequential
prefetch techniques. First, a standard cache sizing mod-
ule that assumes no knowledge of data is presented. The
sizing module sets the prefetch cache size so that the
technique achieves its maximum hit rate for the work-
load. The paper then analyzes the actions of the prefetch-
ing technique and attaches meaning to the data stored
in the prefetch cache. Based on this understanding of
the data stored in the prefetch cache, the paper proposes
an improved prefetch sizing technique that adapts to the
workload and the technique.

Thegoalof this paper is to show that a standard algo-
rithm like sequential prefetching could be used not just to
increase the hit rate of the cache but also learn about the
I/O workload. This information could be used to tag and
group storage data, thereby adding meaning to storage
data. While this paper only evaluates the workload in-
formation that can be extracted by sequential prefetching
techniques, a similar approach could be used with other
storage techniques. Knowledge about the workload and
storage data could lead to storage software that utilizes
the power of storage hardware.

The paper is organized as follows: Section 2 explains
the I/O workload from the viewpoint of a file system and
a storage system. A goal of the paper is to bring the 2
viewpoints closer. We start by re-examining the storage
workload and showing the sequentiality in the storage
workload. In Section 3, we show how this sequential-
ity impacts on the hit rate that can be achieved by stan-
dard storage prefetch techniques. In order to achieve this
hit rate, sequential prefetched blocks must stay in the
cache until the on-demand requests for the blocks arrive.

We present a “black box” technique for sizing the cache
in Section 4. The experimental evaluation demonstrate
that the sizing module implicitly gains knowledge of the
number of sequential and random file accesses submitted
by the file system. In Section 5, we analyze the actions
of the sizing technique and gain an understanding of the
prefetched data. Based on this “gray box” understanding
of the storage workload, in Section 6 we propose a new
sizing technique that adapts to the workload.

2 File vs Storage Workload

Sequential prefetching techniques are implemented in
both the file system layer and the storage layer. The file
system prefetch techniques are more sophisticated than
the storage prefetch techniques since the file system can
attach meaning to its workload. The workload seen by a
disk array and a file system is essentially the same as
regards the contents. The difference between the two
workloads is the information attached to the workload.
This information allows a file system to see file requests
while a disk array sees block requests. Here, we examine
the workload at both levels.

A disk array’s workload consists of read and write re-
quests submitted by file systems. A read request consists
of the starting block number to be read, followed by the
number of blocks to be read. For notational simplicity,
we assume that each read request is for a single block.
Suppose the workload of a disk array is observed. Lettn

represent the time instant at which thenth read request
arrives. Thenth read request submitted to the disk array
is described by:

Xn = i; i ∈ {1, 2, 3, · · · , MaxBlocks}
where i is the block number to be accessed, and
MaxBlocks is the maximum number of blocks in the
disk array. The time instanttn at which the read request
Xn arrives at the disk array is implicitly defined in the
notation. If a time instant is defined to be smallest, in-
divisible interval of time, then only 1 read request can
arrive at a time instant, andtn < tn+1 ∀n. The read
workload is given by the sequence:

X =< X1, X2, X3, · · · , XN >

whereN is the number of read requests that arrive during
the observation period. The disk array workload appears
as a single sequence of seemingly random blocks.

Example 1 An example of a disk array’s I/O workload:
X = < 1, 51, 99, 151, 89, 2, 3, 152, 999, 52, 4, 5, 251,
799, 53, 6, 351, 299, 199, 899, 7, 54, 699, 599, 252, 499,
253, 3999, 352, 353, 451, 399, 8999, 7999, 6999, 254,
452, 8, 453, 501, 5999, 4999, 502>
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Here, X1 = 1, X2 = 51, X3 = 99, · · · , X42 =
4999, X43 = 502. X1 arrives at t1 and X43 arrives at
t43.

A file system’s workload consists of read and write
requests submitted by processes. Each request is for a
particular file’s data, and the file system has knowledge
of the application and file relating to a request. A read re-
quest consists of a file id, the starting block address, and
the number of blocks to be read. Let each read request
be for a single block. Unlike the storage system that sees
a single sequence of block numbers, a file system sees
various sequences of read requests, where each sequence
relates to a file.

Consider the disk array workload of Example 1. The
disk array sees a single sequence of random blocks. The
file system may have seen the following workload:

File fid1: < 1, 2, 3, 4, 5, 6, 7, 8, 501, 502 > at time in-
stantst1, t6, t7, t11, t12, t16, t21, t38, t40, t43;

File fid2: < 51, 99, 89, 52, 53, 54, 3999, 8999, 5999 >

at time instantst2, t3, t5, t10, t15, t22, t28, t33, t41;
File fid3: < 151, 152, 999, 251, 252, 253, 254 > at

time instantst4, t8, t9, t13, t25, t27, t36;
File fid4: < 351, 352, 353 > at time instantst17, t29,

t30;
File fid5: < 799, 299, 199, 899, 699, 599, 499, 451,

399, 7999, 6999, 452, 453, 4999 > at time instantst14,
t19, t20, t23, t24, t26, t31, t32, t34, t35, t37, t42;

It is clear that file fid4 is accessed sequentially. How-
ever, it is possible that all the files are being accessed
sequentially, but the files are fragmented on the disks.
For example, consider file fid3. The physical blocks
151, 152, 999, 251, 252, 253, 254may correspond to log-
ical file system blocks10, 11, 12, 13, 14, 15, 16. Simi-
larly, files fid1, fid2 and fid5 could all be accessed se-
quentially, but their read sequences look random as a re-
sult of file fragmentation. The file system knows the log-
ical to physical mapping, so a prefetching technique at
the file level could use this knowledge to prefetch blocks
accordingly.

The above example shows how the same workload
looks very different at the file system and storage levels.
The difference lies in the meaning attached to the data.
It is knowledge and subsequent understanding of data,
not superior hardware, that allows file prefetching tech-
niques to be far more sophisticated than storage prefetch-
ing techniques.

2.1 Storage workload re-examined

At first glance, the storage workload shown in Example 1
looks like a random sequence of block numbers with no
discernible pattern. A more careful examination reveals
the following sequential block accesses:

Stream 1: 1, 2, 3, 4, 5, 6, 7, 8 at time instantst1, t6, t7,
t11, t12, t16, t21, t38;

Stream 2: 51, 52, 53, 54 at time instantst2, t10, t15,
t22;

Stream 3: 151, 152 at time instantst4, t8;

Stream 4: 251, 252, 253, 254 at time instantst13, t25,
t27, t36;

Stream 5: 351, 352, 353 at time instantst17, t29, t30;

Stream 6: 451, 452, 453 at time instantst31, t37, t39;

Stream 7: 501, 502 at time instantst40, t43.

The sequential block accesses are referred to asstreams.
The streams are numbered in increasing order based on
the time at which the first request from the stream is is-
sued. A request/block belonging to one of these streams
is referred to as asequentialor stream request/block.
During the observation period (t1 to t43), there are sev-
eral lone block accesses that are not part of any stream.
We refer to them asrandom requests/blocks. In Exam-
ple 1, there are a total of 17 random requests for blocks:
99, 89, 999, 899, 799, 299, 199, 699, 599, 499, 399, 299,
8999, 7999, 6999, 5999, 4999. These requests may be
random file accesses submitted by file systems or sequen-
tial file access where the file is fragmented. A random
block could also be part of a stream where the request
for a contiguous block is issued outside the observation
period. For example, consider request for block 99 at
time t3: a request for block 98 may have been issued
prior to the observation period and a request for block
99 may be issued after the observation period. The only
sequentially prefetched blocks that will receive a hit dur-
ing the observation period are the stream blocks. With-
out knowledge of files and the logical to physical file data
mapping, storage sequential prefetch techniques can only
target streams in the workload.

The interleaved multi-stream workload of Exam-
ple 1 is typical of workloads submitted to disk arrays.
A disk array gets I/O requests from various applica-
tions and these requests get interleaved. As a result,
two requests from one application may not arrive dur-
ing contiguous arrival time instants at the disk array. So,
even if files are stored contiguously and each applica-
tion accesses its files sequentially, the disk array work-
load appears random. Thetask of a sequential prefetch-
ing technique is to prefetch requests from streams and
to keep them in the cache until the on-demand request
arrives. Therefore, a sequential prefetching technique
would identify streams in the workload. We show that
without any knowledge of files or streams, a sequential
prefetching technique can identify the number of streams
and random accesses in the workload. In fact, it is even
possible to extract the number of file accesses in the
workload. Thus, sequential prefetching techniques can
shed some light on the I/O workload.
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3 Sequential Prefetch Techniques

The goal is to use sequential prefetching techniques to
add information to the storage workload. A sequential
prefetching technique has to deal with 3 issues: when
to prefetch data, how much data to prefetch, and what
cache replacement policy to use when the cache is full.
Sequential prefetching techniques can be divided into
three categories based on the first issue, namely, when
to prefetch data [18]. ThePrefetch Always (PA)tech-
nique prefetches data contiguous to every on-demand re-
quest. ThePrefetch on Miss (PoM)technique prefetches
data contiguous to every missed on-demand request. The
Prefetch on Hit (PoH)technique prefetches data contigu-
ous to every hit on-demand request. Thus, all 3 cate-
gories of prefetching techniques initiate prefetch when
on-demand requests arrive. Most sequential prefetching
techniques are variations of the above techniques. For
example, a variation of PA is a technique that prefetches
only if the disk is idle when an on-demand request ar-
rives.

We examine the hit rate that can be achieved by each
of these prefetching techniques. The maximum prefetch
hit rate that can be achieved for a given workload de-
pends on the number of streams and stream blocks in the
workload. Lets refer to a sequential request/block andr

refer to a random request/block.
N: number of requests that arrive during the observa-

tion period.
Ns: number of sequential requests.
Nr: number of random requests.
M: total number of streams that are observed in a

workload.
The first block of a stream will not be prefetched by any
sequential prefetching technique. Therefore,

Nh = Ns − M: the maximum number of prefetched
blocks that could receive hits.

H = Nh
N

: themaximum prefetch hit rate for a work-
load with N requests.

Since prefetching techniques prefetch different blocks,
not all prefetching techniques can achieve this maximum
hit rate. Before listing the hit rate achievable by each
technique, we state two assumptions about prefetched
blocks from streams: 1) each prefetched block is loaded
in the cache instantaneously (before its on-demand re-
quest arrives); and 2) each prefetched block remains in
the cache until its on-demand request arrives (i.e., , no
prefetched block is pre-evicted). Without these assump-
tions holding true, no prefetching technique can attain
its theoretical maximum hit rate. In reality, for asyn-
chronous I/O requests, it is not possible to guarantee As-
sumption 1. Assumption 2 can be satisfied if the cache
is large enough to hold the sequential prefetched blocks
until on-demand requests for the data arrive.

The maximum hit rate computation below is based on
the following cache setup. The prefetch cache and the
on-demand read cache are maintained as separate logical
units. When an on-demand request hits in the prefetch
cache, the hit block is moved from the prefetch cache
into the on-demand cache for future re-reference hits. It
is assumed that each on-demand request is for one block
and that only one block is prefetched each time a prefetch
is initiated.
PA: ThePA technique initiates prefetch on arrival of ev-
ery on-demand request, so all stream blocks, except for
the first block of each stream, are prefetched. Therefore,
the maximum hit rate forPA is equal to the maximum hit
rate for the workload.

HPA = H

PoH: When an on-demand request for block i hits in the
prefetch cache, thePoH technique submits a prefetch
request for block (i+1). When an on-demand request
for block i misses in the cache,PoH looks for block
(i-1) in the on-demand cache. If block (i-1) is found
in the on-demand cache, thenPoH assumes that a se-
quential stream has started and submits a read request
for block i and a prefetch request for block (i+1) to the
disks. Block i is stored in the on-demand cache, while
prefetched block (i+1) is stored in the prefetch cache.
Thus,PoH prefetches all blocks of a sequential stream
except for the first two blocks, so the maximum hit rate
is given by:

HPoH = Ns−2×M
N

= H− M
N

PoM: When an on-demand request for block i hits in
the prefetch cache,PoM services the request from the
prefetch cache and moves block i to the on-demand
cache. When an on-demand request for block i misses
in the cache,PoM submits a request for block i and a
prefetch request for block (i+1) to the disks. Thus, for
streams with even number of requests,PoM prefetches
half the blocks, while for streams with odd number of re-
quests,PoM prefetches thefloor of half the blocks. Let
MODD represent number of streams with odd number of
requests.

HPoM = Ns−MODD
2×N

≥ H
2

Implication of hit rate: A technique such asPA can
achieve the maximum possible hit rate for a workload.
The fact that the prefetch techniques are able to get hits
implies that these techniques implicitly view the stor-
age workload as a multiple interleaved stream work-
load. Therefore, even though the workload is a single se-
quence, the sequential prefetch techniques split the work-
load into multiple streams. The input to a storage se-
quential prefetch technique is a single stream, but the
output from the sequential prefetch technique is multi-
ple streams and random blocks. Similar to a prism that
splits white light into its component colors, a sequen-
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tial prefetch technique divides the single sequence I/O
workload into its component streams and random blocks.
We analyze the degree by which each of the standard
prefetch techniques divides the I/O workload.

4 Black Box Sizing

In theory, a scheme such asPA can achieve the maxi-
mum possible sequential prefetch hit rate for a workload.
In practice, it may not be possible to achieve this hit rate
due to 2 issues. First, some of the prefetched blocks may
not get loaded in the cache before their on-demand re-
quests arrive. Second, if the prefetched blocks are loaded
in the cache, then the blocks must stay in the cache un-
til their on-demand requests arrive. In order to use the
prefetching techniques to extract knowledge of streams
and random blocks, it is necessary to show that stor-
age prefetching techniques are capable of achieving their
maximum hit rate. Ensuring that prefetched blocks ar-
rive before their on-demand requests is a timing issue. In
our experimental evaluation we try to address this prob-
lem by ensuring that request arrival rate is less than disk
service rate. Ensuring that prefetched blocks stay in the
cache until their on-demand requests arrive depends on
the cache replacement policy and the cache size.

The cache replacement policy determines which block
is to be evicted when the cache is full. With on-
demand blocks being moved out of the prefetch cache,
the focus of a replacement technique is the storing
of prefetched blocks until on-demand requests for the
prefetched blocks arrive. Storage systems are not pro-
vided a priori information about the workload, so a stor-
age prefetch technique cannot infer when a stream will
start and when it will end. Consequently, a prefetch tech-
nique has no idea when, or even if, an on-demand re-
quest for a prefetched block will arrive. With this uncer-
tainty about the workload, the goal of a prefetch replace-
ment technique is to hold on to unaccessed prefetched
blocks as long as possible. Every hit block is removed
from the prefetch cache, so the only difference between
two cached blocks is the order in which the blocks were
prefetched into the cache. Therefore, theFirst In First
Out (FIFO) replacement scheme is a good choice for a
disk array’s prefetch cache replacement scheme. When
the cache is full, the block at the FIFO head is evicted
and the free cache line is moved to the FIFO tail. When
there is a hit in the prefetch cache, the hit block is moved
to the on-demand cache and the free cache line is moved
to FIFO tail. A newly prefetched block is inserted into
the tail of the FIFO queue.

Once the cache replacement policy is fixed, the cache
size is the factor that determines the hit rate for a given
workload and prefetch technique. A sizing module that
dynamically determines the prefetch cache size based

on the workload is required. We experimentally de-
termine the effectiveness of the sizing module. The
prefetch cache setting used in our experimental evalua-
tion is as follows: 1) each on-demand request is for a sin-
gle block; 2) each prefetch request is for a single block;
3) a prefetched block that receives a hit is moved out of
the prefetch cache immediately; and 4) the replacement
technique is FIFO.

4.1 Online sizing module

The size, C, of a cache refers to the number of cache
lines, where each line can store exactly 1 block. Upon
arrival of each I/O request, the online sizing module
decides whether to increment, decrement, or leave un-
changed the size of the cache. The goal of the sizing
module is to determine the smallest size that ensures
prefetched blocks from streams remain in the cache until
the on-demand requests for the prefetched blocks arrive.
The details of such an online sizing scheme are listed in
the pseudo-code of Scheme 1. The scheme is based on
intuitive reasoning and assumes no knowledge of streams
and random blocks. Hence, this scheme is representative
of storage algorithms and treats the workload like a black
box.

Scheme 1ONLINE PREFETCH CACHE SIZING

1: noEvictionEndHits← true; noIncr← true
2: for every requestreq do
3: if req is a prefetch cache missthen
4: if req is a non-rereference hit in the on-demand

cachethen
5: Increment prefetch cache size by one line
6: noIncr← false
7: end if
8: else ifreq is hit near the eviction endthen
9: noEvictionEndHits← false

10: end if
11: reqCount++
12: if reqCount == monitoringPeriod then
13: if noEvictionEndHits andnoIncr then
14: Decrement cache size by one line
15: Move evicted request into the on-demand

cache
16: end if
17: reqCount← 0
18: noEvictionEndHits← true; noIncr← true
19: end if
20: end for

The sizing scheme has to determine if the cache is
large enough to hold prefetched blocks from streams un-
til their on-demand requests arrive. A block is loaded
into the FIFO insertion end, and each time another block
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is inserted, this block will move toward the eviction end.
In order to know if the prefetch cache is too small, we
move each request evicted from the prefetch cache into
the on-demand cache, and label the request as an evicted
request. If an on-demand request for this evicted prefetch
request arrives, then the prefetch cache is too small and
the size of the prefetch cache is incremented. When-
ever a request hits in the prefetch cache or misses in both
the prefetch and the on-demand cache, the sizing scheme
leaves the prefetch cache size unchanged.

The sizing scheme must also determine if the prefetch
cache is too large. The number of cache lines needed is
equal to the maximum number of prefetch cache inser-
tions that can occur between the loading of a prefetched
block and the arrival of its on-demand request. Since
each insertion causes a prefetched block to move toward
the FIFO eviction end, one would expect that the FIFO
eviction end of a cache would receive hits unless the
cache is too large. The eviction end of a cache is mon-
itored, and the size of the cache is decremented if the
eviction end cache line does not receive any hits during
the monitoring period. The scheme monitors the eviction
end of the cache for a sufficiently long period (pseudo-
code lines 12-16). The monitoring period is set to the
sum of current size of the prefetch cache and the size of
the on-demand cache. During this period, if the requests
residing near the eviction end do not receive any hits,
then the scheme concludes that the cache is inflated and
decrements the cache size. The request that is evicted as
a result of the cache size reduction is loaded into the on-
demand cache. This provides the decrement decision a
level of self-correction.

4.2 Simulation results

We check whether this intuitive sizing scheme is able to
set the cache size so that the prefetching schemes can
achieve their maximum hit rate. The performance of the
proposed sizing scheme is validated through simulations.
We ran the simulations using the CMU Disksim [7] sim-
ulator. The simulator is used in slave mode by a caching
and sizing module that implemented thePoM, PoH,
POpt, andPA prefetching schemes and the online siz-
ing scheme. ThePOpt technique is an off-line prefetch-
ing technique that has complete knowledge of the input
workload. The simulations are carried out using syn-
thetically generated SPC-2-like read workloads [1] and
other workloads. We test the sizing scheme both under
uniform and nonuniform interleaving of file access se-
quences as well as under static and dynamic workloads.

The purpose of these experiments is to check whether
the cache size is appropriate for the workload and
prefetch technique. We know that the cache size is large
enough if the cache get the maximum hit rate for the

workload and technique. Several file sequences are sub-
mitted to the storage device. Thesequentiality of a file
sequence is the probability that the next request gener-
ated is contiguous to the last request generated. Re-
ferring to the workload presented in Section 2, file se-
quences fid4 has sequentiality 1, fid5 has sequentiality
0, while the rest are partly sequential. In all the experi-
ments, we present the size of the cache and the hit rate
achieved. We also plot the maximum theoretical hit rate
that can be achieved by the technique if the cache were
large enough.

Figure 1 plots the experimental runs when the streams
are interleaved uniformly. The top graph in Figure 1
shows the prefetch cache size set by the online siz-
ing scheme when it is coupled with each of the three
prefetching schemes. The bottom graph in Figure 1
shows the hit rates obtained by the three schemes using
the online sizing scheme (solid points) and the maximum
theoretical hit rates achievable by those schemes (dashed
lines). that prefetching scheme.

Figure 2 plots hit rates and cache sizes when the
streams are not uniformly interleaved Figure 3 depicts
the performance when a dynamic workload is used. The
number of active file sequences is allowed to vary arbi-
trarily. In each graph, we plot the simulation time on the
X axis and the request addresses in the workload on the
left Y axis. Thus, a request at timet for addressa is
plotted as a point at(t, a). In each graph, on the right Y
axis, we plot the instantaneous prefetch cache size main-
tained by the online sizing scheme coupled with each of
the three prefetching schemes and the instantaneous op-
timal prefetch cache size. The simulations show that the
sizing module is able to set the cache to a large enough
size so that close to the maximum hit rate is achieved.

5 Black to Gray: Analysis

The same sizing module is used for all the prefetching
techniques. The experimental evaluation shows that it is
possible for an on-line technique to size a prefetch cache
using neither knowledge of the data nor actions of the
prefetching technique. Here, we evaluate the actions of
the sizing module and the degree by which the sizing
module identifies the storage workload. First, we present
the workload data from the viewpoint of the sizing mod-
ule. The workload of Example 1 is used for explaining
the terminology and notation.

The example workload has multiple streams that start
up and end during various time instants (M=7). A stream,
i, is said to beactive at timet if the last on-demand re-
quest issued for this stream arrived at timet− ≤ t, and
the next on-demand request for this stream will arrive at
time t+ > t during the observation period. The times,
t− andt+ are referred to as the left and rightbookends
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Figure 1: Uniform interleaving: The prefetch hit ratio obtained as a function of workload sequentiality with the
online prefetch cache sizing scheme listed in Pseudo-code 1. The workload contains 100 file sequences of identical
sequentiality (X axis).

for stream i. The requests that arrive at bookend times
are referred to as the left and right bookend requests for
stream i at timet.

lbi(t): left bookend time for stream i active at timet.
rbi(t): right bookend time for stream i active at timet.
AS(t): the set of streams active at timet.

At time t, a sizing module must ensure that the block
prefetched by the arrival of the left bookend request of
each active stream remains in the cache until the right
bookend request arrives. For example, at time instant
t27, AS(t27) = {1, 4, 5}. The left and right book-
end times for the streams arelb1 = t21, rb1 = t38,
lb4 = t27, rb4 = t36, and lb5 = t17, rb5 = t29. Con-
sider stream 1. At arrival timet21, request for block 7
arrives and may trigger a prefetch of block 8. The siz-
ing module must ensure that the cache is large enough so
that prefetched block 8 remains in the cache until right
bookend timerb1 = t38.

LB(t) = {t}⋃{lbi(t)|i ∈ AS(t)}: the set of left
bookend times of streams active at timet. Note thatt ∈
LB(t), so this set is not empty even if there are no active
streams at timet.

lb(i)(t): ith smallest element of the setLB(t). Note
thatt is the largest element ofLB(t).

At time instantt27, LB = {t21, t27, t17}; lb(1) = t17,
lb(2) = t21 andlb(3) = t27. At time t27, the stream that
submitted the oldest left bookend request is Stream 5 at
t17.
A stream, i, is said to beold at timet if the last request
for this stream arrived at timet− < t. A stream, i, is said
to benewat timet if the first request for this stream will
arrive at timet+ > t.
OS(t): the set of streams that are old at timet.
NS(t): the set of streams that are new at timet.

At time instantt27, OS(t27) = {2, 3} andNS(t27) =
{6, 7}. From a sizing module’s perspective, a new cache
line may have to be added when a new stream starts and
a cache line could be removed when a stream ends.

We follow the following notational convention: In
general,as, os, ns refer to active stream, old stream and
new stream, respectively. A subscript adds additional
meaning to the notation - for exampleN, Ns, Nr men-
tioned in Section 3. Also,(t) indicates at timet, and
(ti, tj) indicates between and including timesti andtj .
For example,
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Figure 2:Non-uniform interleaving: The prefetch hit ratio obtained as a function of workload sequentiality with the
online prefetch cache sizing scheme listed in Pseudocode 1 under a nonuniform workload. The workload contains 50
completely random and 50 sequences of arbitrary (X axis) sequentiality. The arrival rate of the random file sequences
is twice that of the partly sequential sequences.

Mas(t): number of streams that are active at timet (so
Mas(t25) = 3).

Mas(ti, tj): number of streams that are active during
the time period[ti, tj ] where the left bookend time is≤ ti

and the right bookend time is> tj .
Thet is dropped when the meaning is clear from the con-
text.

5.1 Minimum cache size

The goal of the sizing module is to keep the cache to
a minimum size while achieving the maximum hit rate.
Our experimental evaluation shows that the on-line siz-
ing module is able to achieve close to the maximum hit
rate. However, it cannot be determined if this hit rate is
achieved with the minimum cache size for the technique.
In order to determine if the size achieved by the black
box technique is the minimum size, we analyze the ac-
tions of an off-line sizing technique. The off-line sizing
technique maintains the smallest cache size for the work-
load and technique. Define theminimum cache size at
time t as follows:

minCPtech(t): if C(t) < minC(t), then ∃ s in the
prefetch cache at timet−, such thats will be pre-evicted

from the cache at timet.

At each arrival time instantt, the sizing technique en-
sures that the cache is at the minimum size for the tech-
nique. Initially,minCPtech(t0) = 0. If a prefetch is initi-
ated, then the new block has to be loaded into the cache
regardless of whether the block is sequential or random.
The minimum size ensures that the eviction end of the
FIFO queue always has a prefetched block relating to an
active stream. Therefore, every time a prefetch is ini-
tiated the cache size must be incremented. Every time
there is a hit in the cache, the technique must determine
if the cache size should remain unchanged or be decre-
mented. If the hit cache line is at the FIFO head (eviction
end), then the cache size may get decremented by more
than 1 line (explained later in this section).

POpt: Instead of starting with one of the 3 stan-
dard prefetching techniques, we start by evaluating the
cache size for an optimum off-line sequential prefetch-
ing technique. The optimum technique,POpt, knows
when streams begin and end and therefore,POpt only
prefetches stream blocks. When a stream starts,POpt in-
crements the cache size by 1 line and prefetches the
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Figure 3:Dynamic workload: When the experiment begins, the file sequences start up gradually. As the experiment
draws to a close, the file sequences taper off.Left: There are a total of 150 completely sequential sequences open and
close dynamically while a background of 150 random sequences persists.Right: A total of 150 sequences of 80%
sequentiality open and close dynamically while a background of 150 random sequences persists.

stream’s blocks into this line. When a stream ends, and
the last block of the sequential stream is moved into the
on-demand cache after a prefetch cache hit,POpt decre-
ments the cache size by 1 line. LetminCPOpt(tn−1) rep-
resent the minimum cache size at timetn−1. Due to
spacing constraints, we use the symbol “= tn−” to repre-
sentminCPA(tn−1) in the equation below. When request
Xn arrives att:

minCPOpt(tn) = tn−



















+0 if Xn is a random request;

+1 if Xn is the start of a stream;

−1 if Xn is the end of a stream;

+0 otherwise.

The last case is whenXn is a sequential request that is
neither at the start or the end of a sequential stream.

PA: Unlike the POpt technique that only prefetches
stream requests, thePA technique prefetches every time
an on-demand request arrives. A prefetch on a miss
requires a new cache line, so the minimum cache size
would have to be incremented by one line. A prefetch
on a hit does not require a new cache line, since the hit
block is moved from the prefetch cache, and the newly
prefetched block can be inserted into this free cache line
at the FIFO tail. It ”seems” to follow that the minimum
cache size would be unchanged. If the hit block is in the
middle of the FIFO queue, then this reasoning is correct
and the minimum cache size remains unchanged. How-
ever, if the hit block is at the eviction end (i.e., head)
of the FIFO queue, then this reasoning is incorrect. In
the FIFO queue, immediately following the FIFO head,
there may be several non-sequential prefetched blocks

pertaining to prefetches initiated for random requests and
last requests from streams. These blocks can be safely
ejected from the cache, so the minimum cache size can
be reduced.

The minimum cache size always ensures that a block
at the FIFO head is a sequential block. If the prefetched
block pertaining to requestXn is at the FIFO head, then
this block was prefetched at timelb(1)(t) (i.e., the oldest
prefetched block pertaining to an active stream). All ran-
dom and old stream blocks prefetched afterlb(1)(t) and
before the arrival of another stream request atlb(2)(t) can
be ejected from the cache. (Note that if setLB only con-
tains t, then letlb(1) = lb(2) = t.) That is, all random
and old stream blocks prefetched afterlb(1) and before
lb(2) can be ejected.

minCPA(tn) = tn−



















+1 if Xn is a random request;

+1 if Xn is the start of a stream;

+0 if hit for Xn is not at FIFO head;

−Nr(lb(1), lb(2))−Mos(lb(1), lb(2)) otherwise.

The computation above assumes that the first request in
the workload is a stream request. Without this assump-
tion, an extra line would have to be added just to take
care of the initial condition of having a random block at
the FIFO head.

PoH: Unlike the PA technique, thePoH technique
prefetches only after identifying streams in the workload.
When an on-demand request for block i misses in the
cache, and block (i-1) is found in the on-demand cache,
a stream is identified. Therefore,PoH starts prefetch-
ing only upon arrival of the second on-demand request
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in a stream. Moreover, random blocks in the workload
do not impact on the size of the prefetch cache. Unlike
thePOpt technique,PoH does not know when streams
end, and prefetches a block past the end of each stream.
This block will remain in the prefetch cache until it is
evicted. Therefore, the prefetch cache storesidentified
stream blocks from active and old streams. Tospecify an
identified stream, a subscript ofID is used. For exam-
ple,AS ID(t) indicates the set of identified active streams
- streams where the second request was submitted on or
prior to timet.

minCPoH(tn) = tn−



















+0 if Xn random or start of stream;

+1 if Xn request 2 from a stream;

+0 if hit for Xn not at FIFO head;

−MIDos(lb(1), lb(2)) otherwise.

The variableMIDos(lb(1), lb(2)) refers to the number of
identified streams that complete between the left book-
end initiated prefetched blocks of the two oldest identi-
fied active streams at timetn. These cache lines hold-
ing blocks pertaining to old streams are next to the FIFO
head and can be removed from the cache when the hit
occurs at the FIFO head.

PoM: The PoM technique prefetches each time an on-
demand request misses in the cache. Therefore,PoM ini-
tiates a prefetch for every random request and for odd
numbered requests in each stream (i.e., request 1, 3, 5,
... from stream j). Every hit block is removed from
the cache, thereby decrementing the cache size by 1
if the block is not at the FIFO head. If the hit block
is at the FIFO head, then all random and old streams
with odd number of requests issued that are next to the
FIFO head can be removed from the cache. Tospecify
streams that have issued an odd number of requests,
we add the prefix ODD to the notation. LetASODD(t)
refer to the set of active streams that have issued an odd
number of requests by timet. Referring to Example 1,
ASODD(t27) = {1, 4, 5} whileASODD(t26) = {1, 5}.

minCPoM(tn) = tn−



















+1 if Xn random;

+1 if Xn odd-numbered stream req;

−1 if hit for Xn not at FIFO head;

−1− Nr(lb(1)lb(2))−MODDos(lb(1)lb(2))

5.2 Infimum Cache Size

The off-line technique increments the cache whenever a
prefetch is initiated. The black box on-line scheme of
Section 4.1 does not increment the cache each time a
block is prefetched. The on-line scheme only increments

the cache when a block is pre-evicted before its on-
demand request arrives. Therefore, the on-line scheme
is not maintaining the minimum cache size. The on-line
scheme tries to keep the cache large enough so that all
prefetched blocks from active streams stay in the cache
until their on-demand requests arrive. Theinfimum
cache size,infC, is defined to be the smallest number of
cache lines required to ensure that no prefetched stream
block is pre-evicted. LetPtech refer to the prefetching
technique.

infCPtech(t): if C < infC at time t, then∃ s in the
prefetch cache at timet, such thats will be pre-evicted
from the cache during the observation period.

The infimum cache size is larger than the minimum cache
size since the minimum size at timet only guarantees
that no stream prefetched block is pre-evicted at time
t, while the infimum size at timet guarantees that a
prefetched stream block will remain in the cache un-
til its on-demand request arrives at timet+. The in-
fimum size ensures that the cache is large enough to
handle all prefetch insertions into the cache after a se-
quential block is prefetched and before its on-demand re-
quest arrives. Random prefetched blocks may be evicted
from the cache, but the infimum size ensures that all
stream prefetched blocks stay in the cache until the on-
demand requests arrive. For calculating the infimum size
for a technique, it is necessary to compute the number
of stream and random blocks that are inserted into the
cache.

POpt:
infCPOpt(t) = Mas(t)

whereMas is the number of active streams at timet.

PA: At time t, a cache line must be reserved for each
of the active sequential streams. Therefore, the prefetch
cache must be at leastMas(t) lines long. We want to
ensure that an active stream’s prefetched block stays in
the cache until its on-demand request arrives. That is,
we want to ensure that the prefetched block triggered by
the arrival of the left bookend request of a stream active
at time t, stays in the cache until the on-demand right
bookend request for this prefetched block arrives. The
size must be large enough to handle all random block
insertions between the bookend requests, the streams that
end after the left book time andt, and the new streams
that start aftert and the right bookend time. The infimum
size is the maximum of the infimum sizes for each of the
streams active at timet.
infCPA(t) = Maximum{Mas(t) + Nr(lbj , rbj) +
Mos(lbj , t) + Mns(t, rbj) | ∀j ∈ AS(t)}
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PoH: The PoH technique prefetches identified active
streams. The cache must be large enough to store blocks
from active, old and new identified streams that arrive
between the bookend requests of active streams.
infCPoH(t) =Maximum{MIDas(t) + MIDos(lbj , t) +
MIDns(t, rbj) | ∀j ∈ AS ID(t)}

PoM: With the PA and PoH techniques, a prefetched
block’s position either remains unchanged or moves to-
ward the FIFO eviction end with each arrival instant.
This observation does not hold when thePoM technique
is used. A complication with thePoM technique is that a
hit does not trigger a prefetch, and therefore, the hit cache
line becomes free. If this free cache line remains in the
prefetch cache, then the next prefetched block can be in-
serted into this free cache line. After each hit, there is one
fewer prefetched block, so a hit effectively moves all the
cached blocks one line away from the FIFO head (evic-
tion end) toward the FIFO tail. Therefore, withPoM, a
prefetched block’s position could either move toward the
FIFO eviction end or move away from the FIFO evic-
tion end with each arrival instant. This oscillation of
prefetched blocks with each arrival instant changes the
computation of the infimum size forPoM when com-
pared to that ofPA andPoH. The infimum cache size at
t is the maximum of the minimum cache sizes between
the left and right bookend requests of all active streams
in ASODD(t). This number is hard to quantify in terms
of insertions that occur between bookend requests.

Now, PoM initiates a prefetch for all random requests
just like thePA scheme, but only prefetches some of the
requests from streams. Therefore, the prefetch cache for
PoM at timet is a subset of the prefetch cache forPA at
time t and
infCPoM(t) ≤ infCPA(t)

6 Gray Box Scheme

The black box on-line sizing scheme attempts to set the
cache to the infimum size for the workload and prefetch
scheme. The experimental analysis shows that the siz-
ing scheme is successful enough since a hit rate close to
the maximum hit rate is achieved. It is hard to determine
whether the size is smaller or larger than the infimum, but
given the black box approach used by the on-line sizing
scheme, the performance is pretty good. Here, we pro-
pose a prefetching/sizing scheme that uses a gray box ap-
proach. We are not presenting the details of the scheme,
just suggestions on how better schemes could be devel-
oped.

The experimental and theoretical analysis show that
the prefetch cache may hold several random blocks when
thePA andPoM technique is used. Therefore, when the
PA andPoM prefetch techniques are being used, it is not

a good idea to use the black box sizing scheme. It is
not cost efficient to keep increasing/decreasing the cache
size. The analysis shows that if the size of the prefetch
cache isC lines, then all active stream blocks that are
separated by at mostC requests will definitely hit in the
prefetch cache. It would be better to set the cache size
to some system determined initial size and keep track of
where the hits occur in the FIFO queue, the number of
hits versus the number of prefetches, etc. Based on the
intensity of random blocks in the workload and the over-
all traffic, there may be periods when it is wiser to turn
off prefetching, or switch to a scheme such asPoH.

All the prefetch schemes identify streams in the work-
load. ThePA andPoM schemes identify the streams im-
plicitly when a hit occurs in the prefetch cache. Since
PA and PoM prefetch random and stream blocks, it
would be prudent forPA andPoM to use stream iden-
tification to become more efficient. For example, the
degree of prefetching could be increased for the identi-
fied streams. Furthermore, the FIFO cache replacement
scheme could be supplanted by a replacement scheme
such as Second chance [47] that allows identified streams
to stay a little longer in the cache when they reach the
eviction end.

The analysis suggests a better sizing scheme for the
PoH technique. The cache contains data from identi-
fied active streams and from old streams. When a new
stream is identified, it would be better to increase the
cache size by a line and load the prefetched block from
the newly identified stream into this line. In this case, the
FIFO eviction end would eventually have blocks from
old streams and would not receive hits. The cache size
can be decreased using the black box decreasing tech-
nique. The analysis also implies that if the workload con-
sists of a large number of short duration streams and few
random blocks, then a scheme such asPA or PoM would
be more suitable thanPoH. Overall, a prefetch and sizing
scheme that uses a gray box approach would make more
efficient use of expensive cache lines while reducing the
traffic at the disks.

7 Related Research on Prefetching

The memory hierarchy is intrinsic to computer sys-
tems, so prefetching techniques have been in use for
a long time [2] and can be found at all levels - mem-
ory caches hardware based: [4, 10, 11, 12], memory
caches compiler based: [5, 21, 35, 37, 38]; memory ap-
plication programs based: [16, 24, 34, 40, 41, 45, 50];
file system caches [9, 28, 36, 43]; and storage system
caches [18, 19, 20, 30, 31, 33, 50, 51].

Storage controller prefetching is initiated by storage
software and the prefetched data are stored in the storage
caches. The “narrow I/O interface” between the file sys-
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tem and storage system restricts the effectiveness of stor-
age controller prefetching techniques [32]. Single disk
prefetching techniques focus on sequential read-ahead
prefetching. The cache is divided several segments so
that requests from different streams can be prefetched
and cached in different segments [23, 52]. However,
prefetching is one of the least specified areas of disk sys-
tem behavior [46].

Even simple access patterns are not be available in
disk array workloads because of low re-reference local-
ity [39, 55] and interleaving of the access patterns at the
storage caches [31]. Based on the transparency and gen-
erality, there are three approaches to getting block corre-
lations, namely, white box, gray box and black box [32].
The white box approach passes the storage front-end se-
mantic information directly and explicitly to the storage
system [17]. The gray box approach transmits file sys-
tem information to the storage system [49]. The black
box approach finds block correlations by analyzing I/O
request addresses [22, 32].

Cache size has a significant effect on a
caching/prefetching technique’s performance, since
it determines the hit rate. Most studies have focused on
on-demand caches where data are kept for re-reference
hits. The

√
2 rule follows from an empirical observation

that the cache miss rate decreases as a power law of
cache size [13, 44, 25] Jelenkovic et al. showed the
relationship between the cache miss rate and the cache
size for a LRU scheme with statistically dependent
request sequences [26, 27]. Singh et al. [48] developed
a mathematical model that computes the dependence of
the miss rate on the cache size. There are some studies
on web caching which focus on minimal total cost of
caching given a cache size [8, 14, 56, 15, 53, 6].

There are far fewer papers on prefetch cache sizing.
Tse et al. [54] concluded that performance of a prefetch-
ing technique generally improves as the cache size in-
creases. Baek and Park [3] studied the effect of cache
size on ASP, a prefetching scheme they developed. They
showed that ASP performs better than other techniques
for small sized caches by maximizing the hit rate of both
prefetched data and on-demand data. In these studies,
however, the prefetched data and on-demand data are
stored in the same cache and the cache size is fixed. The
separation of prefetched data from the rest of the cache
reduces the probability of eviction of prefetched data. Li
and Shen et al. [29] implemented a prefetch cache siz-
ing scheme based on a gradient descent-based greedy
algorithm. The SARC technique [19] manages storage
prefetched data and on-demand data by separating them
into different LRU lists and dynamically adjusting the
size of the two lists based on the sequentiality of the
I/O workload. Sequential data are placed in theSEQ

list and random data are placed in theRANDOM list.

The sizes of these two lists are adjusted by monitoring
the miss rate ofSEQ and hit rate ofRANDOM . The
TaP technique [31] is a storage prefetching scheme that
uses a memory table for sequential pattern detection. The
prefetched data are saved in a prefetch cache, which can
be adjusted dynamically based on the sequentiality of the
I/O workload.

8 Conclusions

Disk array systems not only have the capacity to store ter-
abytes of data but also have the computational power to
speed data access. The only caveat is that disk arrays do
not know what is stored on the disks. That is, disk arrays
store files for applications but have no knowledge of the
files or the applications. This knowledge is controlled by
file systems, and therefore, storage is controlled by file
systems. On the flip side, file systems have knowledge of
storage data but they see the disk array as a black box and
have little knowledge of the physical placement of data.
There is an obvious disconnect - file systems know the
meaning of data but lack information on where the data
are stored on the various disks, while storage systems at-
tach no meaning to data but know specifics of where the
data are stored. This disconnect between data placement
and data meaning limits the ability of software to use the
power of hardware, thereby hurting performance.

This paper tries to address this issue by showing that
even without knowledge of files and applications, storage
programs implicitly gain knowledge of the data. This
knowledge could be used used to tag and identify how
often data blocks are used and the data access patterns.
This understanding of data usage and an intimate knowl-
edge of array hardware could be used by disk array soft-
ware to remap data placement to boost performance. At-
taching meaning to data can also help replace standard
storage software by more efficient software that adapts
to the workload.

The paper shows how standard sequential prefetching
techniques implicitly gain significant information on data
access patterns. Based on this information, we propose
an adaptive prefetching and sizing technique. As future
work, we plan to develop the adaptive technique. This
paper is just a small step toward file aware storage. More
work is needed to fully understand how storage tech-
niques can be used to extract meaning of storage data.
Attaining knowledge of data is not sufficient since it is
important to understand how this knowledge can be used
to improve data placement and improve storage software.
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