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The traffic process linking open, closed and feedback networks

Elizabeth Varki

Abstract

The M/M/1 queue and the feedback queue are the sim-

plest types of open and mixed product form networks.

Their product form behavior can be easily explained by

analyzing their steady state behavior. However, from the

view point of traffic processes, the M/M/1 queue and the

feedback queue are completely different networks. The

input and output processes of the M/M/1 queue are Pois-

son, while the input and output processes of the feed-

back queue are Markov renewal processes. Further, for

the feedback queue, the input process consists of the ex-

ternal arrival process and the feedback process, but these

processes are not independent. In this paper, we estab-

lish an input traffic process, referred to as the A* pro-

cess, that explains the product-form behavior of feedback

and closed networks, purely from the perspective of traf-

fic processes. The similarities and differences between

the feedback queue and the ordinary queue are encapsu-

lated in the A* process. This is the only traffic process

that shows the link between open, closed, and mixed net-

works. The A* process gives new insights into the be-

havior of these well-studied networks. Analyzing the A*

processes of non-product form networks may lead to so-

lution techniques for some of these networks.

Index Terms: arrival instant probability, queue ar-

rival/departure processes, queueing networks, embedded

Markov chains, product form networks.

1 Introduction

Traffic processes refer to the the input and output pro-

cesses of a queue. In the case of a single queue, the input

process could include both external arrivals and feedback

arrivals. In the case of a network of queues, the input pro-

cess could also include departures from other queues. The

traffic processes thus refer to the flow processes in a net-

work. It is a well known fact that the flow processes in

open networks are very different from the flow processes

in closed and mixed networks.

In this paper we analyze two of the simplest product

form networks, namely the M/M/1 queue and the M/M/1

queue with instantaneous Bernoulli feedback. The M/M/1

queue with instantaneous Bernoulli feedback, shown in

Figure 1, embodies the mystique of product-form net-

works - the limiting queue length process of a queue with

feedback has the same distribution as the ordinary M/M/1

queue (without feedback), even though the two queue sys-

tems have completely different traffic processes. This

queue was first studied by Takàcs [9]. External arrivals

are drawn from a Poisson distribution with parameter λ.

The service time at the queue is drawn from an exponen-

tial distribution with rate µ. A job after completing execu-

tion instantaneously departs the network with probability

q or is fed back to the queue with probability p = 1 − q.

Thus, the input process to the queue consists of new ar-

rivals from outside and returning jobs. The Chapman-

Kolmogorov equations (and therefore, the steady state

flow balance equations) of this network are identical to

those of the ordinary M/M/1 queue with arrival rate λ and

service rate qµ, as depicted in Figure 2. When λ < qµ, the

limiting queue length distribution for the network exists.

However, the feedback queue and the ordinary M/M/1

queue have very different traffic processes. It has been

shown that the input, output, and feedback processes of a

feedback queue are not Poisson. Only the external arrivals
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and the external departures from the queue are Poisson

processes [2, 3]. The reason the feedback queue has been

extensively studied is that this queue is the simplest of the

product-form networks that has non-Poisson traffic flows,

but this queue behaves like an ordinary M/M/1 queue with

Poisson traffic flows.

The feedback queue and the ordinary M/M/1 queue are

single queue networks. Here, we treat the external Pois-

son source of arrivals as an “external” queue with infinite

number of jobs. The feedback network now consists of

two queues - queue 1 is the feedback queue and queue 2

is the external queue as shown in Figure 3. The external

queue always has an infinite number of jobs. The state of

the network is the number of jobs in the two queues of the

network. Since the external queue always has an infinite

number of jobs, the Chapman-Kolmogorov equations of

the network are unchanged.

Observe the state of the network at every transition; this

embedded stochastic process is a Markov chain, and the

properties of this chain are well known [1, 4]. Each tran-

sition in the network occurs as a result of a job completing

service at a queue and departing the queue. This depart-

ing job then instantaneously arrives at a queue in the net-

work. Thus, every transition is the result of a job depart-

ing a queue and instantaneously arriving at a queue. We

observe the state of the stochastic process at every transi-

tion, but we view the network from the perspective of the

job participating in the transition. The job participating in

the transition is not included in the state description. Ev-

ery transition consists of a queue departure and a queue

arrival. For every transition, the state of the network can

be viewed just after departure and just prior to arrival. In

this paper, we observe the state of the network just prior

to every input (external or feedback) at a queue in the net-

work. The resulting embedded stochastic process is called

the Arrival* process, or in short, the A* process.

q

Departure processArrival process

λ
µ

Output processInput process

Feedback process

p

Figure 1: The M/M/1 queue with Bernoulli feedback
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Figure 2: Markov state diagram of the feedback queue and

the M/M/1 queue
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queue1 queue2

Figure 3: The feedback queue viewed as a network of two

queues

The A* traffic processes is the embedded stochastic

process resulting from viewing the state of the network

just prior to every arrival transition in the network. The

arriving job is not included in the state description. In this

paper, we show that the A* process is a Markov chain that

is recurrent and irreducible. The queueing network con-

figuration is captured in the A* process, so the underlying

Markov chain could be periodic or non-periodic depend-

ing on the configuration. Prior studies of arrival instant

traffic processes have viewed the state of the network just

prior to arrival at a single queue [2, 3, 6]. The A* traffic

process views the network state prior to arrival at every

queue in the network. Typically, such traffic processes are
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very complex [6]. However, this is not the case with the

A* traffic process. It is surprising that this traffic process

has not been analyzed since it is simple and captures a lot

of information about the queueing network. The station-

ary distribution of the A* Markov chain can be used to:

1. compute the limiting queue length distribution of the

queueing network (if this distribution exists),

2. compute the arrival instant queue length distribution

of every queue in the network, where the arrival in-

stant distribution refers to the probability of finding

i ≥ 0 jobs in the feedback queue just prior to a job

joining the queue. The arriving job could be either

an external arrival or a feedback arrival.

3. show the relationship between the arrival instant dis-

tribution and the limiting queue length distribution.

We analyze the A* processes of the feedback queue, an

ordinary M/M/1 queue, and a closed feedback network.

The A* process is the only traffic process that links these

different networks. In the next section, we analyze the A*

traffic process of the feedback network.

2 A* Traffic Process

We first analyze the feedback network shown in Figure 3.

The feedback queue is queue 1 while the external queue

is queue 2. The jobs in the network move from queue to

queue according to the Markov switching rule [2] given

below:

R =

∣

∣

∣

∣

p q

1 0

∣

∣

∣

∣

The Markov switching matrix, R, referred to as the rout-

ing matrix, is stochastic and finite. Hence, the switching

process is irreducible and there exists a solution for the

system of stationary linear equations [4]:

VR = V (1)

The solution is unique up to a multiplicative constant. The

ratio V(i)/V(j) is the mean number of visits to queue i in

between two visits to queue j [1]. The solution V gives the

relative visit counts to the two queues in the network [7].

The relative visit count of the external queue with respect

to the feedback queue is q.

The queue length process for the network is given by:

Y = {Y (T) : T ∈ R+}

where Y (T) = (i,∞) represents the state of the network

at time T. There are i ≥ 0 jobs in the feedback queue

and an infinite number of jobs in the external queue. For

notational simplicity, the state of the feedback network

can be written as:

Y (T) = i; i ≥ 0 is the number of jobs in the feedback queue at time T

Y is a Markov process that is irreducible. The state space

of Y is the set E = {0, 1, 2, 3, · · · }. If λ < qµ, then Y

has a limiting state distribution [4].

Observe the process Y just prior to every arrival at the

feedback queue and the external queue. Consider the em-

bedded stochastic process

X = {Xn = Y (T−

n )}

where

T−

n is time just prior to the nth arrival instant, n =
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1, 2, 3, .. and

Xn =

{

(i∗,∞) = i∗ if the arrival is to the feedback queue;

(i,∞∗) = i if the arrival is to the external queue.

The network state is viewed just prior to an arrival, so the

arriving job is not included in the state description. The *

symbol in the state description denotes the queue at which

the job arrives. The embedded queue length process X =

{Xn : n = 1, 2, · · · } is called the Arrival* (or A*) process

for the network. The state space of X is the set E∪E∗∗ =

{0, 0∗, 1, 1∗, 2, 2∗, 3, 3∗, · · · }.

Theorem 2.1 The A* process X is a Markov chain.

Proof: We need to show that

Prob{Xn+1|X0, · · · ,Xn} = Prob{Xn+1|Xn}.

If Xn = i∗, then Y (T) = i+ 1,T ∈ [Tn, Tn+1),

i ≥ 0, (2)

if Xn = i, then Y (T) = i, T ∈ [Tn, Tn+1),

i ≥ 0. (3)

If Y (T) = (0,∞) = 0, then the next transition is an

arrival from the external queue at rate λ with probability 1.

If Y (T) = (i,∞) = i, i > 0, then the next transition

depends on whether an external arrival occurs or whether

the job at the feedback queue completes. The rate of this

transition is λ+ µ.

The external arrival occurs first with probability λ
λ+µ

, the

job at the feedback queue completes first with probability

µ

λ+µ
.

If the job at the feedback queue completes first, then the

next arrival is at the feedback queue with probability p or

at the external queue with probability q.

Thus, Xn+1 depends only on Xn. ✷

Let Q be the transition matrix of the embed-

ded process X with state space E ∪ E∗ =

{0, 0∗, 1, 1∗, 2, 2∗, 3, 3∗, · · · , }. For i ∈ E, i∗ ∈ E∗, and

j ∈ E ∪ E∗, Q is given by [1]:
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Figure 4: Markov state diagram of the A* process for the

feedback network

Q(i∗, j) =























pµ
λ+µ

, if j = i∗;
qµ

λ+µ
, if j = i;

λ
λ+µ

, if j = (i+ 1)∗;

0, otherwise.

When the number of jobs in the feedback queue i > 0,

then

Q(i, j) =























pµ

λ+µ
, if j = i− 1∗;

qµ
λ+µ

, if j = i− 1;
λ

λ+µ
, if j = i∗;

0, otherwise.
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When the number of jobs in the feedback queue i = 0,

then

Q(0, j) =

{

1, if j = 0∗;

0, otherwise.

The Markov state diagram of the A* process is given in

Figure 4. If λ < qµ, then the system of traffic equations

πQ = π (4)

along with the boundary condition
∑

E∪E∗ π(i) = 1, has

a solution called the stationary distribution [4]. Note that

it is possible to get a solution for the stationary equations

of the Markov chain even when the Markov chain has no

limiting distribution [1, 4].

Let p denote the limiting state probability of the queue

length process Y:

p(i) = lim
T→∞

Prob{Y (T) = i}

From Equations 2 and 3 it follows that the sojourn times

in each state of the Markov chain X has an exponential

distribution with parameter γ where:

γ(i∗) = λ+ µ when i∗ ≥ 0;

γ(i) = λ+ µ when i > 0;

= λ when i = 0.

Therefore, the process (X,T) = {Xn,Tn; n ∈ N} is a

Markov renewal process. Equations 2 and 3 state that:

when Xn = i∗, Y (T) = i + 1 during the sojourn

interval T ∈ [Tn, Tn+1);

when Xn = i, Y (T) = i during the sojourn interval

T ∈ [Tn, Tn+1).

Thus,

Y (Tn) = i =⇒ Xn = i or Xn = (i− 1)∗ (5)

If λ < qµ, then Y has a limiting distribution. Since Y is

a recurrent, irreducible Markov process, the limiting dis-

tribution of Y is equal to the stationary distribution of Y .

Equation 5 and the fundamental theorem that relates the

stationary distribution of Y at any instant to the stationary

distribution of the embedded Markov chain X [1] lead to

the following:

Theorem 2.2

p(i) =
π(i − 1∗)/γ(i− 1∗) + π(i)/γ(i)

∑

j∈E∪E∗ π(j)/γ(j)
i ∈ E (6)

The stationary equations for the A* Markov process un-

derlying the feedback queue are easy to solve. Below, we

present some key results that follow by solving the sta-

tionary equations.

Result 2.1 The system of traffic equations given by Equa-

tion 4 reduce to the following:

λπ(i) = qµπ(i+ 1) i = 0, 1, 2, · · ·

λπ(i∗) = qµπ(i+ 1∗) i∗ = 0∗, 1∗, 2∗, · · ·

These are identical in context to the local balance equa-

tions for both the feedback queue and the ordinary M/M/1

queue with parameters λ and qµ:

λp(i) = qµp(i+ 1) i = 0, 1, 2, · · ·
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where p(i) is the limiting probability of i jobs in the ordi-

nary M/M/1 queue and the feedback queue.

Result 2.2

V(2)

∞
∑

i=0

π(i∗) = V(1)

∞
∑

i=0

π(i)

where V(1) and V(2) are the relative visit counts for the

network given by Equation 1.

The result can be independently derived from Equation 1

since
∑

∞

i=0 π(i
∗) gives the relative number of visits to the

feedback queue when compared to the number of visits to

the external queue given by
∑

∞

i=0 π(i).

Result 2.3

V(2)π(i∗) = V(1)π(i)

This result can be independently derived by using re-

versibility of product-form queues [5].

We now show how a queue’s arrival instant distribution

can be derived from the A* process. Let

Xa
n represent the state of the Markov process Y just prior

to job arrivals at the feedback queue. The job arrivals in-

clude external arrivals and feedback arrivals.

The A* process incorporates both the arrival instant queue

information and the visit count information. The embed-

ded Markov process Xa
n only incorporates the arrival in-

stant queue information. The following result follows:

Result 2.4 Let pa(i) represent the limiting probability of

finding i jobs in the feedback queue just prior to arrival at

the feedback queue.

pa(i) = Ca × π(i∗), i = 0, 1, 2, · · ·

where Ca = 1∑
∞

i=0
π(i∗) .

Theorem 2.2 and Result 2.4 show the relationship be-

tween the limiting distribution and the arrival instant dis-

tribution of the feedback queue.

3 M/M/1 versus Feedback

The ordinary M/M/1 queue can be viewed as a two queue

network as shown in Figure 5, where the M/M/1 queue is

queue 1 and the external queue is queue 2. There is no

feedback, so the relative visit counts of both queues is 1.

The service rate of the M/M/1 queue is qµ and the service

rate of the external queue with infinite jobs is λ.

q

∞
µ λ

queue1 queue2

External queue

Figure 5: The M/M/1 queue viewed as a network of two

queues

Figure 6 shows the Markov state diagram of the em-

bedded A* process for the M/M/1 network. The A* pro-

cess for the M/M/1 queue is different from the A* process

for the feedback queue. The underlying Markov chain of

the A* process for the M/M/1 queue is periodic with pe-

riod 2, while the underlying Markov chain of the A* pro-

cess for the feedback queue is non-periodic. If λ < qµ,

then the Markov chain has a stationary state distribution.

(Note that the stationary state distribution can exist even

if the underlying chain is periodic [1, 4].) Let πM rep-

resent the stationary state distribution of the A* process

for the M/M/1 queue. The sojourn times in each state of
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Figure 6: Markov state diagram of the A* process for the

M/M/1 queue

the Markov chainXM has an exponential distribution with

parameter γM where:

γM (i∗) = λ+ qµ when i∗ ≥ 0;

γM (i) = λ+ qµ when i > 0;

= λ when i = 0.

The queue length process of the feedback queue and the

M/M/1 queue are identical. So, we use p to represent the

limiting queue length distribution for both the feedback

queue and the M/M/1 queue. Using the similar reasoning

as in feedback queues:

p(i) =
πM (i− 1∗)/γM (i− 1∗) + πM (i)/γM (i)

∑

j∈E∪E∗ πM (j)/γM (j)
, i ∈ E (7)

The stationary equations for the A* Markov process un-

derlying the M/M/1 queue are easy to solve. Below, we

present some key results that follow by solving the sta-

tionary equations.

Result 3.1 The system of traffic equations relating to the

Markov chain underlying the A* process for the M/M/1

queue reduce to the following:

λπM (i) = qµπM (i+ 1) i = 0, 1, 2, · · ·

λπM (i∗) = qµπM (i+ 1∗) i∗ = 0∗, 1∗, 2∗, · · ·

Result 3.1 corresponds to Result 2.1 for feedback

queues. These two results show the link between the traf-

fic processes of the feedback queue and the M/M/1 queue.

Result 3.2

∞
∑

i=0

πM (i∗) =

∞
∑

i=0

πM (i)

Result 3.2 corresponds to Result 2.2 for the feedback

queue.

Result 3.3

πM (i∗) = πM (i)

Result 3.3 corresponds to result 2.3 for the feedback

queue. The arrival instant distribution for the M/M/1

queue can be computed from the A* process using the

approach for deriving Result 2.4 in the feedback queue.

4 Close versus Open

We now analyze the closed queueing counterpart of the

open feedback queue. Figure 7 shows the queueing net-
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work analyzed in the paper. There are no external arrivals

or external departures, and there are a fixed number of

jobs constantly circulating in the network. The relative

visit count of queue 2 is q compared to queue 1.

µ

MPL = 3

λ
q

p

queue1 queue2

Figure 7: Closed queueing counterpart of the open feed-

back queue
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Figure 8: Markov state diagram of the A* process for the

closed feedback network with 3 jobs

Figure 8 shows the Markov state diagram of the em-

bedded A* process for the closed network. The Markov

chain underlying the A* process for the closed network is

similar to the Markov chain for the open feedback queue.

The only difference between the two chains reflects the

impact of an infinite job population in the open network

and a finite job population in the closed network. The sta-

tionary state distribution of the A* process, the limiting

distribution of the network’s queue length, and the arrival

instant queue length for each queue can be computed us-

ing the approaches presented earlier for the open feedback

queue.
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Figure 9: Markov state diagram of the A* process for a

closed M/M/1 (no feedback) network with 3 jobs

Next, we analyze the closed network counterpart of the

ordinary M/M/1 queue with no feedback. In Figure 5, re-

place the external queue with an ordinary queue. Figure 9

shows the Markov state diagram of the embedded A* pro-

cess for this closed M/M/1 network with 3 jobs. Just as

in the case of the feedback queue, the only difference be-

tween the open and closed chains reflects the impact of an

infinite job population in the open network and a finite job

population in the closed network.

Finally, compare the underlying A* Markov chain of

the closed feedback network to the A* Markov chain of

the closed M/M/1 network. The two networks have iden-

tical limiting queue length distributions [7]. Just as in the

case of the open networks, it can be shown that the station-

ary state traffic equations corresponding to the two chains

are equivalent. The traffic equations are identical to the

local balance equations of the steady-state queue length

process.

5 Conclusion

This paper establishes the A* traffic process in queueing

networks. In addition to a queue’s arrival instant distri-
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bution, this traffic process captures a lot of information

about the network, such as visit counts, network configu-

ration, and service rates. The A* process is generated by

observing the state of a network just prior to every arrival

instant at all the queues in the network. The paper shows

that the A* queue length process is a Markov chain, and

is simpler than traffic processes generated by observing

network states prior to arrival at a specific queue in the

network. The A* process is a Markov renewal process, so

results pertaining to Markov renewal theory are valid for

this process.

In this paper, the A* traffic process is used to explain

why the feedback queue has identical queue length dis-

tribution as an ordinary M/M/1 queue. The A* embed-

ded Markov chain captures both the similarities and dif-

ferences in the two queues. This process is also used to

show the similarities between the open feedback queue

and a closed feedback network. The A* chain is the only

traffic process that explains why these dissimilar networks

have similar product-form behaviors.

This paper is preliminary; the A* process needs to be

evaluated in more detail for a class of networks, such as

the BCMP networks. The traffic process could be used

to understand the impact of network configuration, visit

counts, and service rates on the performance of the net-

work. The A* process could be used to independently

prove some well known results. For example, the embed-

ded Markov chain captures network wide information at

every arrival instant. For closed networks, this informa-

tion could be used to prove the equality of arrival instant

state distribution and the steady state state distribution in a

network with one less job [6, 8]. This paper does not look

at the queue departure instant distribution. It would be in-

teresting to see if a queue’s departure instant network state

distribution can be computed from the A* process (with-

out using the knowledge that arrival and departure instant

network state distributions are identical for product-form).

It would also be interesting to analyze the A* processes

of non-product form networks and compare them to those

of product form networks. In fact, our initial motivation

for looking at the A* traffic process was to help under-

stand certain types of non-product form networks. If one

can understand how the flows of product form networks

differ from non-product-form networks, then this could

lead to better tools to evaluate the performance of these

complex networks.
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