
The traffic process linking open, closed, and feedback networks

1 Introduction

The M/M/1 queue with instantaneous Bernoulli feedback,

shown in Figure 1, embodies the mystique of product-

form networks - the limiting queue length process of a

queue with feedback has the same distribution as the or-

dinary M/M/1 queue (without feedback), even though the

two queue systems have completely different traffic pro-

cesses1. External arrivals are drawn from a Poisson dis-

tribution with parameterλ. The service time at the queue

is drawn from an exponential distribution with rateµ. A

job after completing execution instantaneously departs the

network with probabilityq or is fed back to the queue with

probabilityp = 1−q. Thus, the input process to the queue

consists of new arrivals from outside and returning jobs.

The Chapman-Kolmogorov equations (and therefore, the

steady state flow balance equations) of this network are

identical to those of the ordinary M/M/1 queue with ar-

rival rateλ and service rateqµ. Whenλ < qµ, the limit-

ing queue length distribution for the network exists.

The feedback queue and the ordinary M/M/1 queue are

single queue networks. Here, we treat the external Pois-

son source of arrivals as an “external” queue with infinite

number of jobs. The feedback network now consists of

two queues - queue 1 is the feedback queue and queue 2

is the external queue as shown in Figure 2. The external

queue always has an infinite number of jobs. The state of

the network is the number of jobs in the feedback queue.

Observe the state of the network at every transition; this

1The traffic processes refer to the arrival, input, output, feedback, and
departure processes.

embedded stochastic process is a Markov chain, and the

properties of this chain are well known [1, 3]. Each tran-

sition in the network occurs as a result of a job completing

service at a queue and departing the queue. This departing

job then instantaneously arrives at a queue in the network.

Thus, every transition is the result of a job departing a

queue (external or feedback) and instantaneously arriving

at a queue. We observe the state of the network at every

transition, but we view the network from the perspective

of the job participating in the transition. The job partic-

ipating in the transition is not included in the state de-

scription. Every transition consists of a queue departure

and a queue arrival. For every transition, the state of the

network can be viewed just after departure and just prior

to arrival. We observe the state of the network just prior

to every arrival at both queues (feedback and external) in

the network. The resulting embedded stochastic process

is called the Arrival* process, or in short, the A* process.
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Figure 1: The M/M/1 queue with Bernoulli feedback
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Figure 2: The feedback queue viewed as a network of two
queues
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We show that the A* process is a Markov chain that is

recurrent and irreducible. Prior studies of arrival instant

traffic processes have viewed the state of the network just

prior to arrival at a single queue [2, 4]. The A* traffic

process views the network state prior to arrival at every

queue in the network. Typically, such traffic processes are

very complex [4]. However, this is not the case with the

A* traffic process. It is surprising that this traffic process

has not been analyzed since it is simple and captures a lot

of information about the queueing network.

2 A* Traffic Process

The queue length process for the network is given by:

Y = {Y (T) : T ∈ R+}

whereY (T) = (i,∞) represents the state of the network

at timeT. There arei ≥ 0 jobs in the feedback queue

and an infinite number of jobs in the external queue. For

notational simplicity, the state of the feedback network

can be written as:

Y (T) = i; i ≥ 0

wherei is the number of jobs in the feedback queue at

time T. Y is a Markov process that is irreducible. The

state space ofY is the setE = {0, 1, 2, 3, · · · }. If λ < qµ,

thenY has a limiting state distribution [3].

Observe the processY just prior to every arrival at the

feedback queue and the external queue. Consider the em-

bedded stochastic process

X = {Xn = Y (T−

n
), n = 1, 2, 3, ..}

whereT−

n is time just prior to thenth arrival instant and

Xn =

{

(i∗,∞) = i∗ if the arrival is to feedback queue;

(i,∞∗) = i if the arrival is to external queue.

The network state is viewed just prior to an arrival, so the

arriving job is not included in the state description. The *

symbol in the state description denotes the queue at which

the job arrives. The embedded queue length processX =

{Xn : n = 1, 2, · · · } is called the Arrival* (or A*) process

for the network. The state space ofX is the setE ∪ E∗ =

{0, 0∗, 1, 1∗, 2, 2∗, 3, 3∗, · · · }.
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Figure 3: Markov state diagram of the A* process for the
feedback network

Theorem 2.1 X is a Markov chain.

(The proof is given in a technical paper.) The Markov

state diagram of the A* process is given in Figure 3. If

λ < qµ, then the system of traffic equations

πQ = π

along with the boundary condition
∑

E∪E∗ π(i) = 1, has

a solution called the stationary distribution [3]. Note that

it is possible to get a solution for the stationary equations

of the Markov chain even when the Markov chain has no

limiting distribution [1, 3]. Letp denote the limiting state

probability of the queue length processY:
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p(i) = limT→∞ Prob{Y (T) = i}

The fundamental theorem that relates the stationary dis-

tribution ofY at any instant to the stationary distribution

of the embedded Markov chainX [1] leads to:

Theorem 2.2

p(i) =
π(i − 1∗)/γ(i − 1∗) + π(i)/γ(i)

∑

j∈E∪E∗ π(j)/γ(j)
i ∈ E

where1/γ(j) represents the mean sojourn time in statej,

j ∈ E ∪ E∗.

Result 2.1 The system of traffic equations of the A* pro-

cess reduce to:

λπ(i) = qµπ(i + 1) i = 0, 1, 2, · · ·

λπ(i∗) = qµπ(i + 1∗) i∗ = 0∗, 1∗, 2∗, · · ·

These are identical to the local balance equations for both

the feedback queue and the ordinary M/M/1 queue with

parametersλ andqµ.

Result 2.2

V(2)

∞
∑

i=0

π(i∗) = V(1)

∞
∑

i=0

π(i)

whereV(1) andV(2) are the relative visit counts for the

network.

Result 2.3

V(2)π(i∗) = V(1)π(i)

Let Xa

n
represent the state of the Markov processY just

prior to job arrivals at the feedback queue. The job ar-

rivals include external arrivals and feedback arrivals. The

A* process incorporates both the arrival instant queue in-

formation and the visit count information. The embedded

Markov processXa

n
only incorporates the arrival instant

queue information. The following result follows:

Result 2.4 Let pa(i) represent the limiting probability of

findingi jobs in the feedback queue just prior to arrival at

the feedback queue.

pa(i) = Ca × π(i∗), i = 0, 1, 2, · · ·

whereCa = 1
P

∞

i=0
π(i∗) .

The A* process of the M/M/1 queue can be similarly an-

alyzed.

3 Conclusion

This paper establishes the A* traffic process that is gener-

ated by observing the state of a network just prior to every

arrival instant at all the queues in the network. In addition

to a queue’s arrival instant distribution, this traffic pro-

cess captures a lot of information about the network, such

as visit counts, network configuration, and service rates.

The underlying Markov chain could be periodic or non-

periodic depending on the configuration. The A* traffic

process is used to explain why the feedback queue has

identical queue length distribution as an ordinary M/M/1

queue. Most of the well known results on product-form

networks, such as the Arrival theorem, can be proved us-

ing the A* process. The A* process could be used to un-

derstand the behavior of non-product form networks.

References
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