Co-allocation in Data Grids: A Global,
Multi-user Perspective

Adam H. Villa and Elizabeth Varki

University of New Hampshire, Durham, NH 03824 USA
{ahvilla,varki}@cs.unh.edu

Abstract. Several recent studies suggest that co-allocation techniques
can improve user performance for distributed data retrieval in replicated
grid systems. These studies demonstrate that co-allocation techniques
can improve network bandwidth and network transfer times by concur-
rently utilizing as many data grid replicas as possible. However, these
prior studies evaluate their techniques from a single user’s perspective
and overlook evaluations of system wide performance when multiple users
are using co-allocation techniques. In our study, we provide multi-user
evaluations of a co-allocation technique for replicated data in a controlled
grid environment. We find that co-allocation works well under low-load
conditions when there are only a few users using co-allocation. However,
co-allocation works very poorly for medium and high-load conditions
since the response time for co-allocating users grows rapidly as the num-
ber of grid users increases. The decreased performance for co-allocating
users can be directly attributed to the increased workload that their
greedy retrieval technique places on the replicas in the grid. Overall,
we determine that uninformed, blind utilization of greedy co-allocation
techniques by multiple users is detrimental to global system performance.

1 Introduction

Research communities around the world are creating massive amounts of data
that need to be accessible to users in various locations. A major creator of such
scientific data is the particle physics community. The Large Hadron Collider
(LHC), a high energy particle accelerator at CERN; is expected to produce tens
of petabytes of raw data annually in 2008 [II2]. Geographically dispersed re-
searchers are eagerly anticipating access to these datasets. The task of providing
fast and efficient data access to these users is a major undertaking for many grid
computing research groups.

Replication is used in data grids to help improve users’ access to such large
and high-demand datasets, by reducing access latency and bandwidth consump-
tion [3]. Replication also helps in load balancing and can improve reliability by
creating multiple copies of the same data [4]. There are several replication strate-
gies used in data grids. These strategies can be separated into two categories:
static and dynamic. In static replication systems, replicas are specifically created
on storage components and remain in place. In contrast, dynamic replication au-
tomatically creates and deletes replicas in order to follow continually changing

S. Wu, L.T. Yang, and T.L. Xu (Eds.): GPC 2008, LNCS 5036, pp. 152 2008.
© Springer-Verlag Berlin Heidelberg 2008

Co-allocation in Data Grids: A Global, Multi-user Perspective 153

system parameters and user access patterns, which keep the performance high
and resource usage in reasonable limits [45]. For example, CERN’s replication
strategy for the LHC experimental data utilizes a tiered replica structure. Raw
data obtained from their instruments is immediately written to the center Tier-0
and is then replicated in a controlled fashion to multiple Tier-1 storage sites [2].
There are several Tier-2 replicas associated with each Tier-1 site that automat-
ically receive copies of the replicated data. End users have the ability to access
these Tier-2 replicas that are distributed around the world.

Replicas created by either static or dynamic strategies are managed by a
replica management service, a component of Grid middleware. A replica man-
agement service is responsible for managing the replication of complete and
partial copies of data sets. The service provides several functions: registers new
copies in a catalog, allows users to query this catalog to find all existing copies
of a particular file or collection of files, and selects the “best” replica for access
based on storage and network performance predictions provided by a Grid infor-
mation service [Gl7]. Selecting the appropriate replica to service a user’s request
is a complicated and crucial task, in order to minimize a user’s response time.

Even with replication and sophisticated replica management services, retriev-
ing these large data files can be extremely time-consuming, especially for users
with limited or congested network access. Network latency is a problem experi-
enced by many users. Researchers find that the long latency of data transfer on
the Internet often makes it difficult to ensure high-performance access to data
and that download speeds are often limited by bandwidth traffic congestion [§].

In order to increase the performance of accessing replicated data, researchers
developed the co-allocation technique, which allows a single user to simultane-
ously utilize multiple resources to service requests. Normally, when users want
to retrieve a data file from a remote grid resource, they contact the replica man-
agement service to receive a listing of available replicas that contain the specified
data. The users would then select a single replica from the listing that would
best service their request. Using co-allocation, however, the users could instead
utilize many or all of the available replicas. The users would then issue requests
for portions of data file from these replicas. The requests would be serviced in
parallel and therefore the longest response time that any user would experience
would be determined by the slowest replica to service any one of the partial data
requests.

Several recent studies, presented in Section 2, develop different co-allocation
techniques. Some of these techniques utilize information services, like the Net-
work Weather Service [9], to determine how to split a given request amongst
available replicas in order to maximize throughput and decrease network trans-
fer times. Other techniques use past request histories or heuristics to deter-
mine a replica’s workload. Since network performance can vary greatly, some
co-allocation techniques dynamically adjust the amount of data requested from
each replica, as data retrieval progresses.

These recent studies compare the efficiency of their new co-allocation tech-
nique with previous work and evaluate the performance of their techniques from

154 A.H. Villa and E. Varki

a single user’s perspective. They do not address situations where multiple users
in different locations are simultaneously utilizing their techniques, nor do they
discuss the effects that these additional users would have on overall grid perfor-
mance.

These overall performance effects are significant, since co-allocation increases
the workload at the replicas in the system, especially as the number of users
utilizing these strategies increases. Instead of a single user issuing a request
to a single server, the user could be issuing tens or even hundreds of requests
to various servers during the course of file retrieval. This increased workload
has a negative effect on the replicas receiving the requests. The impact is even
more dramatic for other users in the system that are not using any co-allocation
techniques, since co-allocation increases the workload at all of the servers, even
though the number of users remains the same.

We find that these recent studies overlook some important issues related to
the evaluations of their co-allocation techniques. Firstly, they evaluate their tech-
niques in terms of network transfer time and network throughput. These per-
formance values provide only a limited view of the impact of their techniques.
They neglect to examine response times experienced by users. Response time
is an important performance value since it includes wait times, which are key
indicators of queue lengths at resources in the grid. Without this information,
it is difficult to ascertain the conditions of the resources in their experiments. In
addition, they do not provide information about replica workloads or the number
of users in the grid when their experiments were conducted. This information is
important in order to understand and evaluate their results.

The impact of these techniques on the internal systems of the replicas is also
not presented in these studies. Prefetching and caching are used by operating
systems and storage systems in an effort to decrease costly disk service times. As
the number of incoming user requests increases, caches throughout the system
will quickly be flushed and any prefetched data will be lost. This will greatly
affect disk service times and therefore impact user response times. Disk service
time is becoming increasingly important in grid data retrieval, since the network
resources involved in transferring the data are becoming increasingly faster and
more efficient. The electromechanical nature of storage devices limits their per-
formance at orders of magnitude lower than microprocessor and memory devices
and, thereby, creates I/O bottlenecks [10]. In [II], the authors found that disk
I/O, using high-end RAID servers, can account for up to 30% of the service
time in grid requests and the effect of disk I/O would be even more significant
in lower-end disk systems. Additionally, trends in disk storage and networking
suggest that disk I/O will be of great importance in the future. Disk capacity
has improved 1,000 fold in the last fifteen years, but the transfer rate has im-
proved only 40 fold in the same time period [I2]. The ratio between disk capacity
and disk accesses per second is increasing more than 10 times per decade, which
implies that disk accesses will become even more important [I2]. In contrast,
network bandwidth continues to grow. Gilder [I3] predicted that network band-
width would triple every year for the next 25 years and his prediction has been

Co-allocation in Data Grids: A Global, Multi-user Perspective 155

accurate so far [12]. Network speed and bandwidth will continue to grow at a
much faster rate than disk throughput, and thus disk I/O is a critical component
of service time for data grid requests.

In addition to examining the impact on the internal systems of a replica, a
system-wide evaluation of multiple users utilizing co-allocation techniques has
yet to be presented by the grid research community. To the best of our knowledge,
we provide the first global, multi-user evaluations of a co-allocation technique
for replicated data in a controlled, simulated environment. Our study evaluates
the performance effects of multiple users utilizing a co-allocating strategy to
retrieve replicated data in a grid environment. We evaluate grid user response
times for both co-allocating and normal data retrieval techniques under varying
user workloads. We find that there is a significant difference between the response
times of both data retrieval techniques. We find that co-allocation works well
under low-load conditions when there are only a few users using co-allocation.
However, co-allocation works very poorly for medium and high-load conditions
since the response time for co-allocating users increases greatly as the number
of grid users increases. For example, when there are 85 grid users all utilizing
a co-allocating technique, the average response time is 72% larger than the re-
sponse times would have been if the users simply requested data from a single
server. Overall, we determine that the system-wide use of co-allocation tech-
niques for data retrieval can lead to overloading replicated data servers and can
be detrimental to global grid performance.

The paper is organized as follows. Related work is presented in Section 2. Our
evaluations are detailed in Section 3 and we present our conclusions in Section 4.

2 Related Work

In many research communities, extremely large data sets with gigabytes or ter-
abytes of data are shared between geographically distributed users. Data grids
have been adopted as the next generation platform by many communities that
need to share, access, transport, process and manage large data collections dis-
tributed worldwide [T4UT5]. Data grids provide a unified interface for all data
repositories in an organization and allows data to be queried, managed, syn-
chronized, and secured [16/].

Grid researchers examine methods for increasing the performance of accessing
remote, replicated data. One of these methods is co-allocation, where a single
user simultaneously utilizes several resources. There are several recent studies
on the topic of co-allocation in grid computing. We present a selection of these
studies focusing on the co-allocation of user data requests.

Vazhkudai presents an architecture for co-allocating grid data transfers across
multiple connections [I7UI8]. He illustrates several techniques for downloading
data in parallel. The simplest technique is brute force co-allocation, where each
replica is assigned an equal portion to service. The author found this method
constraining and therefore devised other techniques, including the dynamic load
balancing method, which is subdivided into conservative and aggressive load

156 A.H. Villa and E. Varki

balancing techniques. The conservative technique monitors the transfer rates of
the replicas and automatically adjusts the load for each replica. The aggres-
sive technique progressively increases the amount of data requested from faster
replicas and reduces the amount data requested from slower replicas. Overall,
the author found that the dynamic methods out performed the static methods.
The author’s experiments consisted of a single resource requesting data from a
small number of servers over the course of several weeks. The results of the ex-
periments were presented as changes in bandwidth (MB/s). The author neglects
to mention the workloads of the replicas and overlooks other performance values,
such as response time or wait times.

In [I9], the authors believe that when several available replicas have almost the
same network and disk throughput, choosing a single replica and disregarding
the rest is unreasonable and unfair. They therefore developed algorithms that
utilize multiple replicas simultaneously. Their workload placement algorithms
utilize existing Grid components, such as the replica location service (RLS) [20],
the network weather service (NWS) [9] and GridFTP[21]. They developed five
algorithms that decide when and which replica should transfer portions of a
data file. Their Baseline algorithm simply divides the whole file evenly among
all available replicas, while two of their algorithms utilize the NWS to analyze
the network throughput of the replicas to make informed scheduling decisions.
The final algorithm presented by the authors is NoObserve, which simply uses
a fixed-size segment as the basic scheduling unit and each replica is assigned an
initial portion to service. When a replica finishes, it is assigned an outstanding
portion to service. The authors find that their NoObserve method is character-
ized by superior performance and simplicity, since it is without infrastructure
requirements. In their experiments, the authors have a single resource retrieving
data from four servers on a grid system. The results of their experiments are
presented as the aggregated bandwidth (KB/s) achieved and the duration (in
seconds) of each experiments. The authors do not specify if this duration is only
network transfer time or if it includes queue or storage service times, thus its
meaning is unclear.

Another co-allocation technique called ReCon (Replica Convoy) is presented
in [22]. ReCon simultaneously transfers portions of a source file from several
replicas by utilizing several co-allocation algorithms. ReCon’s greedy algorithm
is similar to the NoObserve [19] algorithm. When a server completes a portion,
it is immediately assigned another portion to service. The authors also present
a probe-based algorithm for ReCon that uses mechanisms, such as NWS, to test
current network performance. In their experiments, they find that the probe-
based algorithm provides the best performance. Their experiments consisted of
a single machine requesting data from five servers on the PlanetLab grid system.
The authors analyze only the transfer times of their algorithms and never specify
the workload of the replicas used in their experiments.

The authors of [23I24] attempt to reduce the idle time spent waiting for
the slowest replica to service a request by developing a dynamic co-allocation
algorithm called Anticipitative Recursive-Adjustment. The algorithm initially

Co-allocation in Data Grids: A Global, Multi-user Perspective 157

assigns a portion to each replica and then continuously adjusts the workload of
each replica by analyzing transfer rates. The algorithm assigns smaller portions
of the data file to replicas with slower network connections. In their experiments,
the authors examined the bandwidth used by their algorithms and analyzed the
differences in transmission times.

In all of the studies presented in this section, we find that the authors devel-
oped co-allocation techniques that are inherently selfish and greedy since they
utilize as many replicas as possible without consideration for other users. Each
user request generates multiple sub-requests and in some cases, the number of
secondary requests could be in the hundreds. In addition, these authors analyze
their techniques from a single user’s perspective and neglect to examine their
algorithms from a global, system wide perspective when they are utilized by
multiple users. The effects their algorithms have on other users in the grid are
also omitted from these studies.

Most of these recent studies examine the results of their experiments in terms
of network bandwidth or network transfer times. They focus on changes in net-
work performance values and neglect to examine the effects their algorithms have
on service or queue times at the replicas that receive their requests. Many studies
also focus on throughput as the most important performance value. However,
throughput does not give an accurate representation of overall system perfor-
mance since throughput can be quite high when a system is overloaded. Response
time is a better indicator for user performance.

Co-allocation retrieval mechanisms have yet to be examined from a global,
multi-user perspective. Our study provides the first global, multi-user evaluations
of a co-allocation technique for replicated data in a controlled grid environment.
Our study evaluates the performance effects of multiple users utilizing a co-
allocating strategy to retrieve replicated data. We evaluate grid user response
times for both co-allocating and normal data retrieval techniques under varying
user workloads.

3 Evaluations

In our evaluations we utilize a grid simulator, GridSim [25], in order to conduct
repeatable and controlled experiments. The Gridsim simulator also allows us
to model realistic network environments [26], including packet schedulers, and
components of real data grid systems, such as a replica management service [27].
GridSim also allows us to examine disk I/O overheads, which is an important
factor of service time for user requests.

In our experiments, all users and data servers are connected via a high perfor-
mance router that allows up to 1 GB/s data transfer rates from the data servers
and provides users with 100 MB/s data connections. In addition, the only users
in the system are those stated in our experiments. Using GridSim, we create an
experimental grid environment where ten data servers contain replicated data
files. The same files are present on each server and users have the ability to access

158 A.H. Villa and E. Varki

any of these servers. Each replicated data server has the same storage hardware,
with a fixed average seek time of 9ms.

We design experiments that evaluate a simple, straightforward co-allocation
technique, similar to the brute force technique in [I7] and the baseline algorithm
in [19). Since all of the users and servers in our evaluations have the same network
access rates, our co-allocation technique does not have to adjust for fluctuating
network conditions. There is also a fixed number of servers that contain the same
data accessible for all users, which allows our technique to utilize all servers in
the grid. Additionally, our evaluations are conducted in a controlled environment
where no outside users are accessing the system, so our technique need not adjust
for other users’ workloads.

In order to evaluate our co-allocation technique, we create two users groups
called co-allocated and whole file. Both user groups have different strategies for
accessing the replicated data files. The whole file user group attempts to retrieve
a desired data file from a single server. The co-allocated user group instead at-
tempts to retrieve an equal portion of the data file from all servers. For both
user groups, when a user submits a request to server, it is processed in a FCFS
manner and priority is not given to any user. When our experiments start, all
servers are idle, all network connections are free of traffic and all users starting
submitting their requests at the same time.

Retrieving Large Data Files (1 GB)

We begin our evaluations by creating a series of experiments where the number
of users in the grid increases from 1 to 140. We limit the number of users to 140,
since in many grid environments dynamic replica creation occurs when traffic
on a replica is greatly increased. Each user attempts to retrieve a unique 1 GB
data file from the replicas or servers according to their retrieval strategy. A user
in the whole file group, selects a replica with the fewest number of outstanding
requests and then submits a request for the entire 1 GB file from the selected
replica. A user in the co-allocated group requests a 100 MB portion of the data
file from each replica in the system. When any user receives its entire file, the
user’s overall response time is calculated and then the user is disconnected from
the grid. We examine both user groups under these conditions.

We begin our examination by evaluating the average response time experi-
enced by any given user. The response time for a user’s request can be com-
puted by the combination of the network service time and the replica service
time. The network service time includes the time spent during transmission and
communication between resources, whereas the replica service time includes the
time spent performing disk I/O and internal communication. Both of these ser-
vice times include the time elapsed while waiting to use various resources. These
wait times depend on the number of outstanding requests and therefore a larger
number of outstanding requests will result in longer wait times. The response
time gives an accurate view into the current state of the system.

We calculate the average user response time for both user groups as the num-
ber of users in the system increases from 1 to 140 and the results are shown in

Co-allocation in Data Grids: A Global, Multi-user Perspective 159

Figure [al We observe that the average response time for the co-allocated user
group increases at much faster rate than the whole file user group, as the number
of grid users increases. When then number of grid users is less than the number
of servers, the co-allocated group provides a smaller average user response time.
When there are a large number of users however, the whole file group provides
the lowest average response times. In Figure [[D we illustrate the percentage
increase in user response times for the co-allocated group. For example, when
there are 135 users, the average user response time for the co-allocated group is
78% larger than the whole file group.

We also evaluate the maximum response times experienced by any given user.
In Figure [[d we show the maximum user response times for both user groups,
which are similar. When there are fewer users in the system, the co-allocated
group provides slightly decreased maximum response times. The difference be-
tween the two groups decreases however, as the number of grid users increases.
When there are 75 users in the system, the maximum response time for the
co-allocated group is only 2% lower than the whole file group. In fact, there are
several occasions where the whole file group provides smaller maximum response
times.

In order to gain further insight into the response time differences between
the two groups, we analyze the response time distribution for a specific number
of users. In Figure [[dl we illustrate the difference between the response time
distributions for both user groups when there are 89 users present in the system.
We see that the majority of users in the co-allocated group have higher user
response times than the whole file users. In fact, 93% of co-allocated users have
response times greater than 50,000ms. Whereas, 78% of the whole file users have
response times less than 50,000ms. The whole file user group also has 23% of
users with response times less than 20,000ms.

We can attribute the decrease in user response time performance for co-
allocated users to the increased workload their retrieval mechanism places on
the servers in the grid. For every user request, ten user requests are created
and one request is sent to all ten servers in the grid. Figure [Id illustrates the
dramatic difference in the workload presented to the servers between the co-
allocated and whole file users. This increased workload directly relates to the
decrease in user response time performance that we notice in our evaluations.
Even though the co-allocated requests are for smaller file sizes, the shear number
of requests waiting at the servers decreases their performance. The queue time
for the co-allocated requests grows as the number of grid users increases.

Retrieving Smaller Data Files (100 MB)

We continue our evaluations by examining the user groups when we decrease the
size of the entire data files requested by all users to 100 MB. An evaluation of
decreased file size is relevant, since in many instances a user may only require a
portion of larger data sets for their computations. We conduct experiments to
see how the trends observed with 1 GB data files compare to requesting smaller
data files. In this set of experiments all variables are the same except for the

160 A.H. Villa and E. Varki

100000 90.00%

R? = 0.9999 R? = 0.9446

90000 80.00%

80000

CO-ALLOCATED 70.00%

70000
60.00%
60000
50.00%
50000
40.00%
40000

30.00%
30000 WHOLE FILE

20.00%

Average User Response Time (ms)

20000

% Increase in Average User Response Time

10000 10.00%

0 0.00%

1 21 a1 61 81 101 121 140 10 30 50 70 20 110 130 140
Number of Grid Users Number of Grid Users
(a) Average user response times (b) Percentage increase in average user

response times

120000 60.00%
BWWHOLE_FILE
CO-ALLOCATED
. 100000 50.00%
g]
o 2
E 50000 —t 8 s0.00%
£ :
3 o g
£ H
g — i
E 60000 | 3 30.00%
: ’
E 40000] o
E r Ell}ﬂﬂﬂ/
£
: -
=z
20000 10.00%
’—r_ CO-ALLOCATED
- =~ WHOLE_FILE
0 0.00%
T m @ @ m wm m me Goom o w0 o s o o soow
Number of Grid Users User Response Time (ms)
(¢) Maximum user response times (d) User response time distribution
1200
1000
CO-ALLOCATED
3
$ s00
S
2
2
§
g 600
g
s
E 400
£
£
E
200
WHOLE_FILE
o
1 11 21 31 41 51 61 71 81 91
Number of Grid Users

(e) Number of User Requests

Fig. 1. Average response times for both user groups as the number of grid users in-
creases are shown with a tight-fitting, R? close to 1, linear trend line (a). The percentage
increase for the co-allocated users in response time is shown for the number of grid users
with an exponential trend line, in black (b). The maximum response times experienced
by any grid user (c). The response time distributions for both user groups when there
are 89 grid users submitting requests (d). The number of requests generated by each
user group, as the number of users increases for both groups (e).

Co-allocation in Data Grids: A Global, Multi-user Perspective 161

14000 160.00%

2
R? = 0.6999 R? = 0.9453

12000 140.00%

ime

120.00%
10000

100.00%
8000

80.00%

6000
60.00%
4000 R? = 0.9992
40.00%
WHOLE_FILE

Average User Response Time (ms)

2000

% Increase in Average User Response Ti

20.00%

0.00%
1 21 41 61 81 101 121 140 10 30 50 70 90 110 130 140
Number of Grid Users Number of Grid Users

(a) Average user response times (b) Percentage increase in average user re-
sponse times

Fig. 2. Average response times for both user groups as the number of grid users in-
creases (a). The users are retrieving a 100 MB data file. Each user group’s curve is
shown with a tight-fitting, R? close to 1, linear trend line. The percentage increase in
response time for the co-allocated users when they are retrieving a 100MB data file is
shown for the number of grid users (b). The curve is shown with an exponential trend
line, in black.

requested data file size. A user in the whole file group, selects a replica with the
fewest number of outstanding requests and then submits a request for the entire
100 MB file from the selected replica. A user in the co-allocated requests a 10
MB portion of the data file from each replica in the system.

We begin by analyzing the average user response times for both groups in
Figure Bal We observe a similar trend in average response time as we did with
the larger file size. As the number of grid users increases, the average response
time for the co-allocated users increases much faster than for the whole file users.
There is an even greater difference with the decreased file size, since the transfer
time is minimized. For example, when there are 135 grid users, the average
co-allocated user response time is 138% larger than the average whole file user
response time. This greater increase in average user response time is also evident
in Figure 2Bl which shows the percentage increase in average co-allocated user
response time over average whole file user response time.

We also find a significant change in the maximum user response times. With
larger file size, we find that both user groups have relatively the same maximum
user response times. With smaller file size however, we find that there is a notice-
able difference between the maximum user response times for both setups as the
number of grid users increases. This is illustrated in Figure Bal We notice that
the maximum response time for 130 grid users is 42% larger for the co-allocated
user group.

To further illustrate the remarkable difference between the two user groups
when they are requesting decreased file sizes, we analyze the response time dis-
tribution when there are 89 grid users in the system. The response time distri-
butions for both groups are shown in Figure B, which demonstrates that 90%

162 A.H. Villa and E. Varki

16000 20.00%

WWHOLE_FILE
14000 8000% | CO-ALLOCATED

70.00%
12000

ts

$ 60.00%
10000

50.00%

f All User Reqy

B 40.00%
°

@
8
3
3
tage

H
$ 30.00%
I

20.00%

Maximum User Response Time (ms)
®
8
3
3

—— CO-ALLOCATED
—— WHOLE_FILE 10.00%

0 0.00%
1 21 41 61 81 101 121 140 <1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Grid Users User Response Time (ms)

(a) Maximum user response times (b) User response time distribution

Fig.3. The maximum response times experienced by any grid user, requesting a
100MB file (a). The response time distributions for both user groups when there are
89 grid users submitting requests for 100 MB data files (b).

of whole file user’s have response times that are less than any of the co-allocated
users. In fact, 98% of co-allocated users have larger response times than any of
the whole file users.

Summary of Evaluations
Overall, we find in our evaluations that the co-allocated user group has higher av-
erage user response times as the number of grid users increases. The co-allocated
user group also has response time distributions where a greater percentage of
requests have large response times in comparison to the whole file user group.
The difference between the two groups is even more distinct when the entire
requested data file size is decreased to 100 MB. We find that the maximum and
average user response times for co-allocated users is drastically larger than the
whole file user group. The performance decrease for the co-allocated users can
be attributed to the increased workload their retrieval mechanism places on the
servers in the grid. The increased workload that they generate directly relates to
the decrease in user response time performance that we notice in our evaluations.
Our evaluations in GridSim also allow us to examine disk service time as an
integral component of overall request service time. Since disk I/O is becoming
increasingly important as network technologies improve, it is valuable to have
these evaluations where disk service time is computed. The GridSim simulator
uses fixed, average values that are based on real disk I/O performance in order to
calculate disk service time, such as the seek and rotation times. Since these disk
service parameters are static, it is difficult to examine the intricate effects that
caching and pre-fetching have on user performance when co-allocation techniques
are utilized. We expect that the performance difference between the co-allocated
and whole file data retrieval techniques would be even more noticeable in real
grid systems where disk service time is dynamic, with costly seek and rotation
times. The request service time would also be notably affected by caching and
pre-fetching mechanisms at many resources throughout the grid.

Co-allocation in Data Grids: A Global, Multi-user Perspective 163

4 Conclusions

Research communities are generating massive amounts of data that need to be
readily accessible to users around the world. The task of providing fast and
efficient access to this data is a primary focus for many grid computing research
groups. Even with replication and sophisticated replica management services,
users still experience delays when accessing large data files from remote servers.
Researchers attempt to find new techniques to reduce the amount of time a user
must wait to retrieve large data files. The co-allocation technique was developed
to serve this purpose.

Current co-allocation techniques for data retrieval from remote, replicated
sources have only been evaluated from a single user’s perspective. Situations
where multiple users in different locations are simultaneously utilizing these
techniques have yet to be evaluated. The effects that these additional users would
have on overall grid performance are also unknown. For example, the internal
systems of data grid replicas would be affected by these additional co-allocating
users. Since prefetching and caching are used by a replica’s operating systems
and storage systems, the increased number of user requests would quickly flush
caches throughout the system and any time saving, prefetched data would be
lost. This loss will greatly affect disk service times and therefore greatly impact
user response times.

Since co-allocation retrieval mechanisms have yet to be examined from a
global, multi-user perspective, we develop experiments where we compare users
that utilize a straightforward co-allocation technique with users that employ nor-
mal data retrieval methods. We evaluate the performance of the co-allocating
technique as the number of users in the grid increases, up to 140 users. We
find that there is a significant and negative change in performance for the co-
allocating users as the number of grid users grows. We find that co-allocation
works well under low-load conditions when there are only a few users utilizing
the technique. However, we determine that under medium and high workload
conditions, co-allocating users have higher average user response times and have
response time distributions where a greater percentage of requests have large
response times in comparison to normal data retrieval users. When there are
135 grid users all utilizing a co-allocating technique, the average response time
is 78% larger than the response times would have been if the users simply re-
quested data from a single server. This decreased performance for co-allocating
users can be directly attributed to the increased workload their retrieval mech-
anism places on the replicas in the grid.

Overall, we find that the global use of co-allocating techniques for replicated
data retrieval when done in a greedy or selfish manner is detrimental to user
performance in a data grid. Replica workload must be considered when making
co-allocated requests in a multi-user environment, in order to prevent overload
situations. Only under low utilization conditions should co-allocation be used
unchecked.

Clearly, more work is needed to fully understand the specific conditions when
co-allocation is beneficial to all grid users. Co-allocation in prior work has been

164 A.H. Villa and E. Varki

shown to be very beneficial for single users in isolation. We believe that co-
allocation could also be advantageous for multiple grid users, however it must
be used cautiously and wisely. More information should be required before users
decide which resources they are going to allocate, in order to make knowledgeable
and conscientious decisions. There are several possible ways that this task could
be accomplished and individual grids might require different techniques. One
possible solution could be the creation of a co-allocation management service that
monitors the workloads present at each of the replicas in the grid. A user would
then have to either contact this service for replica status or receive allocation
suggestions from the service before the user could start issuing requests. Another
possible solution could be to simply allow a user to make a best guess decision
based on existing replica information. These suggested techniques and any other
mechanisms for controlling user co-allocation need to be closely examined in
order to see how they would intricately affect global grid performance. Since data
sets will continue to grow at incredible rates, new co-allocation mechanisms need
to be carefully developed and closely evaluated from all perspectives in order to
provide users with fast and efficient data access.

Acknowledgements

This work was supported by the US National Science Foundation under grant
CCR-0093111.

References

1. Minoli, D.: A Networking Approach to Grid Computing. Wiley Press, Chichester
(2005)

2. Nicholson, C., Cameron, D.G., Doyle, A.T., Millar, A.P., Stockinger, K.: Dynamic
data replication in lcg 2008. In: UK e-Science All Hands Conference, Nottingham
(2006)

3. Lamehamedi, H., Szymanski, B., Shentu, Z., Deelman, E.: Data replication strate-
gies in grid environments. In: ICA3PP (2002)

4. Ranganathan, K., Foster, I.T.: Identifying dynamic replication strategies for a high-
performance data grid. In: GRID, pp. 75-86 (2001)

5. Slota, R., Nikolow, D., Skital, L., Kitowski, J.: Implementation of replication meth-
ods in the grid environment. Advances in Grid Computing, 474-484 (2005)

6. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Secure, efficient data transport
and replica management for high-performance data-intensive computing. In: IEEE
Mass Storage (2001)

7. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Foster, 1., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S.: Data management and transfer
in high performance computational grid environments. Parallel Computing Jour-
nal 28, 749-771 (2002)

8. Yang, C.T., Yang, [.LH., Chen, C.H., Wang, S.Y.: Implementation of a dynamic
adjustment mechanism with efficient replica selection in data grid environments.
In: SAC (2006)

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Co-allocation in Data Grids: A Global, Multi-user Perspective 165

Wolski, R., Spring, N.T., Hayes, J.: The network weather service. Future Gener.
Comput. Syst. 15, 757-768 (1999)

Farley, M.: Storage Networking Fundamentals: An Introduction to Storage Devices,
Subsystems, Applications, Management, and Filing Systems. Cisco Press (2004)
Vazhkudai, S., Schopf, J.M.: Using disk throughput data in predictions of end-to-
end grid data transfers. In: GRID, pp. 291-304 (2002)

Gray, J., Shenoy, P.: Rules of thumb in data engineering. In: IEEE International
Conference on Data Engineering, April 2000, pp. 3-12 (2000)

Gilder, G.: Fiber keeps its promise. Forbes (April 7, 1997)

Chervenak, A., Foster, 1., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer Applications, 187-200 (2001)
Venugopal, S., Buyya, R., Ramamohanarao, K.: A taxonomy of data grids. ACM
Comput. Surv. 38, 3 (2006)

DiStefano, M.: Distributed Data Management for Grid Computing. John Wiley
and Sons, Inc., Chichester (2005)

Vazhkudai, S.: Enabling the co-allocation of grid data transfers. In: GRID (2003)
Vazhkudai, S.: Distributed downloads of bulk, replicated grid data. Journal of Grid
Computing 2, 31-42 (2004)

Feng, J., Humphrey, M.: Eliminating replica selection - using multiple replicas to
accelerate data transfer on grids. In: ICPADS, p. 359 (2004)

Chervenak, A., Deelman, E., Foster, 1., Guy, L., Hoschek, W., Tamnitchi, A., Kessel-
man, C., Kunszt, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K.,
Tierney, B.: Giggle: a framework for constructing scalable replica location services.
Supercomputing, 1-17 (2002)

Bresnahan, J., Link, M., Khanna, G., Imani, Z., Kettimuthu, R., Foster, I.: Globus
gridftp: What’s new in 2007. In: GridNets (2007)

Zhou, X., Kim, E., Kim, J.W., Yeom, H.Y.: Recon: A fast and reliable replica
retrieval service for the data grid. In: CCGRID, pp. 446-453 (2006)

Yang, C.T., Chi, Y.C., Fu, C.P.: Redundant parallel file transfer with anticipa-
tive adjustment mechanism in data grids. Journal of Information Technology and
Applications (2007)

Yang, C.T., Yang, [.H., Li, K.C., Wang, S.Y.: Improvements on dynamic adjust-
ment mechanism in co-allocation data grid environments. The Journal of Super-
computing (2007)

Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of
scheduling for grid computing. In: CCPE (2002)

Sulistio, A., Poduval, G., Buyya, R., Tham, C.K.: On incorporating differentiated
levels of network service into gridsim. Future Gen. Computer Systems (2007)
Sulistio, A., Cibej, U., Robic, B., Buyya, R.: A tool for modelling and simulation
of data grids. Technical Report GRIDS-TR-2005-13, Grid Computing Laboratory,
University of Melbourne (2005)

	Co-allocation in Data Grids: A Global, Multi-user Perspective
	Introduction
	Related Work
	Evaluations
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

