
Replica Traffic Manager for Data Grids

Adam H. Villa and Elizabeth Varki
University of New Hampshire

Department of Computer Science
Durham, NH, 03824 USA

Abstract

Replication is used in data grids to improve the ef-
ficiency of user requests. One or more copies of files are
stored on storage components, replicas, in the data grid.
Currently, users send their requests directly to these repli-
cas. There is no control over a request once it leaves the
user. The focus of this paper is controlling workload traf-
fic at data grid replicas, by managing the flow of requests
to each replica. We propose the creation of a replica traf-
fic manager that controls workload traffic sent to the in-
dividual replicas in the data grid. The traffic manager
receives all user requests and manages the traffic for all
replicas, by maintaining a certain number of outstanding
requests at each replica. When a particular replica is heav-
ily loaded, all incoming requests for that replica would be
held in queue at the traffic manager and/or directed to an-
other replica. Once the traffic decreases at the replicas,
the queued requests would be immediately forwarded. By
limiting the traffic to each replica, the traffic manager has
more control over the system than otherwise possible with
individual users submitting requests directly to the repli-
cas. In our evaluations, we observe that our replica traffic
manager has a significant and beneficial effect on the per-
formance of the data grid. It provides reliable and consis-
tent response times for user requests. In addition, the traf-
fic manager can adjust for overloaded or failing replicas,
while ensuring a starvation free environment that provides
dynamic load balancing.

1. Introduction

When a user requests a file from a data grid, servic-
ing the request could consume large amounts of bandwidth
and resources while the file is transferred from the stor-
age system to the user. As the number of users increases,
the consumption of resources could reach maximum ca-
pacity, forcing users to wait. A solution to this problem
is data replication. Replication is used to reduce access
latency and bandwidth consumption [16]. It also helps in
load balancing and can improve reliability by creating mul-
tiple copies of the same data [19]. One or more copies of
particular files are stored on different storage components,

replicas, in the data grid. Users can then submit requests to
any of these replicas.

Currently, users send their requests directly to the
replicas in the grid. There is no control over the request
once it leaves the user. Therefore it is possible that certain
events could occur that would affect the performance of the
data grid. For example, if the same idle replica is selected
to serve multiple user requests, it is possible that users sub-
mit their requests to the replica at the same time, causing it
to become overloaded. The traffic is not managed for any
replicas, so the traffic patterns could vary drastically, also
affecting system performance.

The replica traffic manager proposed here would work
in conjunction with the replica management service, which
manages the replicas in the data grid. This management
service is a component of the Grid system software, or
middleware, which facilitates writing grid applications and
manages the underlying grid infrastructure [3]. Specif-
ically, the replica management service is responsible for
managing the replication of complete and partial copies of
data sets. The service provides several functions: registers
new copies in a catalog, allows users to query this catalog
to find all existing copies of a particular file or collection
of files, and selects the “best” replica for access based on
storage and network performance predictions provided by a
Grid information service [4, 5]. More detailed information
about middleware and replica management can be found in
Section 2.

The steps currently taken for a user’s request to be
serviced in a data grid are described in [5]. When users
need data from the data grid, they submit the logical file
names of this data to the replica management service. The
service determines a list of physical locations for all regis-
tered copies of the logical file names, using its replica cat-
alog. The list of replica locations is then sent to a replica
selection service, which identifies the source and destina-
tion storage system locations for all possible data transfer
operations. The replica selection service sends the possi-
ble source and destination locations to one or more infor-
mation services, which provide estimates of transfer per-
formance based on grid measurements and/or predictions.
Using these estimates the replica selection service chooses
the best replica and returns the location information for the
selected replica to the user, who then forwards the request

User

Replica
Management

Service

Replica Selection
Service

Grid
Information

Services

Logical File names
requested

Physical address
of requested data

Locations of all
replicas containing

requested data

Physical addresses
 for all possible

data transmissions

Performance
information and
predictions

Information about
the“Best”replica to
service the request

Figure 1. Determining a replica to service a
user’s request

to the replica. Figure 1 illustrates this process.
The replica traffic manager that we propose would

take control after users submit their requests to the replica
management service. It would receive all user requests and
manage the traffic for each replica in the data grid. When
a replica is heavily loaded, all incoming requests for that
replica would be forwarded to a less loaded replica and/or
held in queue at the traffic manager. Once the traffic de-
creases at a replica, any queued requests would be immedi-
ately forwarded.

By controlling the traffic to each replica, the traffic
manager has more control over the system than otherwise
possible with individual users submitting requests directly
to the replicas. Users with specific quality of service (QoS)
requirements can also be satisfied. The traffic manager can
adjust for overloaded or failing replicas. It can also ensure
a starvation free environment and provide dynamic load-
balancing.

The focus of this paper is controlling workload traffic
at replicas in a data grid, by managing the flow of requests
to the individual replicas in the system. The contributions
of this paper are:
• showing the need for a replica traffic manager whose

job is managing the traffic to each replica in the data
grid and

• evaluating possible traffic controlling policies for disk

I/O.
The paper is organized as follows. Section 2 lists re-

lated work. Section 3 describes the replica traffic manager.
Section 4 explains our evaluations. Conclusions and future
work are presented in section 5.

2. Related Works

Grid computing has emerged as a framework for sup-
porting complex computations over large data sets. Ap-
plications suitable for grid computing often involve large
amounts of data and/or computing and frequently require
secure resource sharing across organizational boundaries,
and thus are not easily handled by today’s Internet and
Web infrastructures [17]. Large, complex tasks can eas-
ily be completed in a grid environment, since grids are
able to efficiently share and manage computing resources
[10]. Grids also provide coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual or-
ganizations [12]. Virtual organizations [3] could be depart-
ments in a small university that are in the same physical
location or could be large groups of people from various
offices that are dispersed around the world. These virtual
organizations can be large or small, static or dynamic, and
can come together for a particular event and then be dis-
banded once the event transpires [3].

In some virtual organizations, extremely large data
sets with gigabytes or terabytes of data are shared between
geographically distributed users. In the near future, several
physics projects will produce multiple petabytes of data per
year [17]. Users need efficient and reliable access to these
data sets. In [9], the authors propose design principles for
a data management architecture, a data grid, that satisfies
these needs. In a data grid, data may be stored in differ-
ent locations and on different devices. Users do not need
to be aware of the specific low-level mechanisms required
to access data from a particular location. They should be
presented with a uniform view of data and with uniform
mechanisms for accessing that data [9]. Data grids provide
a unified interface for all data repositories in an organiza-
tion and allows data to be queried, managed, synchronized,
and secured [17, 10]. Data grids have been adopted as the
next generation platform by many scientific communities
that need to share, access, transport, process and manage
large data collections distributed worldwide [23].

Replication is used in data grids to reduce access la-
tency and bandwidth consumption [16]. It also helps in
load balancing and can improve reliability by creating mul-
tiple copies of the same data [19]. There are several repli-
cation strategies used in data grids. These strategies can
be separated into two categories: static and dynamic. In
static replication systems, replicas are specifically created
on storage components and remain in place. In contrast, dy-
namic replication automatically creates and deletes replicas
in order to follow continually changing system parameters
and user access patterns, which keep the performance high
and resource usage in reasonable limits [19, 20].

Replicas created by either static or dynamic strategies
are managed by a replica management service. This ser-
vice is a component of the Grid system software, or middle-
ware, which facilitates writing grid applications and man-
ages the underlying grid infrastructure [3]. The infrastruc-
ture used in most data grids is coordinated by the Globus
Toolkit middleware services. The Globus Toolkit contains
code contributed by many organizations. It is the result of
the Grid community’s attempts to solve real problems that
are encountered by real application projects [1]. It con-
tains components that are useful in addressing problems
that arise during implementations of Grid applications and
systems. These components are generalized so that they
function within a wide variety of applications [1].

One of these components is the replica management
service, which is responsible for managing the replication
of complete and partial copies of data sets. The service
provides several functions: registers new copies in a cata-
log, allows users to query this catalog to find all existing
copies of a particular file or collection of files, and selects
the “best” replica for access based on storage and network
performance predictions provided by a Grid information
service [4, 5].

An important service provided by the replica manage-
ment system is replica selection. Selecting the appropriate
replica to service a user’s request is a crucial and some-
times complicated task. In general however, the “best” pos-
sible replica is typically selected by using network latencies
and storage system service times as predictors for estimated
transfer time. Most replica selection policies focus heavily
on network traffic and bandwidth. These policies consider
network conditions to be the limiting factor in the service
time for a user’s request. Storage systems, however, play an
important role in servicing a request and therefore should
be given increased consideration.

The electromechanical nature of storage devices lim-
its their performance at orders of magnitude lower than mi-
croprocessor and memory devices and, thereby, creates I/O
bottlenecks [11]. In [21], the authors found that disk I/O,
using high-end RAID servers, can account for up to 30% of
the transfer time in grid transfers and the effect of disk I/O
would be even more significant in lower-end disk systems.
Additionally, trends in disk storage and networking suggest
that disk I/O will be of great importance in the future. Disk
capacity has improved 1,000 fold in the last fifteen years,
but the transfer rate has improved only 40 fold in the same
time period [14]. The ratio between disk capacity and disk
accesses per second is increasing more than 10 times per
decade, which implies that disk accesses will become even
more important [14]. In contrast, network bandwidth con-
tinues to grow. Gilder [13] predicted that network band-
width would triple every year for the next 25 years and his
prediction has been accurate so far [14]. Network speed
and bandwidth will continue to grow at a much faster rate
than disk throughput, and thus disk I/O is a critical compo-
nent of service time for data grid requests.

The Globus Replica Management architecture pro-

vides a service for selecting the “best” replica for access
based on storage and network performance predictions pro-
vided by a Grid information service [4]. The replica se-
lection process allows an application to choose a replica,
from among those in a replica catalog, based on its perfor-
mance and data access features [22]. Several studies ana-
lyze different methods of replica selection. The following
[8, 18, 7, 24] presents a few of these varying selection tech-
niques.

The replica management system for the European
Data Grid is detailed in [8]. The European Data Grid
utilizes a Replication Optimization Service (ROS), whose
function is the selection of the best replica of a data file
for a given request. They take into account the location of
the computing resources and network latencies. Network
monitoring services provide the ROS with network laten-
cies, which are used to calculate expected transfer times.

In [18], the authors describe an optimization tech-
nique that considers both disk throughput and network la-
tencies when selecting the best replica. Disk throughput
however, is not a good indicator of traffic. They utilize the
k-nearest neighbor rule as a predictive technique for select-
ing replicas. When a new request arrives, all previous data
is analyzed to find a subset of previous file requests that are
similar to the new request, which are the k nearest neigh-
bors. The technique then uses these previous requests to
predict the best site that can hold the replica.

Several studies take a completely different approach
to replica selection. The following are two examples of
such studies. Cai et al. [7] present a peer-to-peer repli-
cation location service that allows for self-organization,
fault-tolerance and improved scalability. They utilize a dis-
tributed hash table to aid in the best replica selection pro-
cess. In [24], the authors suggest the use of a co-allocation
technology for servicing requests. Instead of selecting a
single best replica to service the request, the co-allocation
scheme selects several replicas and sends a portion of the
request to each replica. This technique enables the client
to download data from multiple locations in parallel, while
reducing the idle time spent waiting for the slowest server.

During our related work search, we did not encounter
any component, currently used in data grid environments,
that is similar to our replica traffic manager. We also find
that replica selection policies only use limited storage per-
formance information when making decisions. Most poli-
cies only examine disk service time when deciding stor-
age performance. These policies do not consider workload
traffic, which is extremely influential on disk performance.
For example, a fast disk, which provides smaller mean seek
times, might have a large number of outstanding requests,
whereas a slower disk with slightly higher seek times could
have only a handful of waiting requests. Most policies
would send requests to the fast disk, even though the slower
disk could service the requests in less time. Traffic is a
very important factor that must be considered when mak-
ing scheduling decisions. In this paper, we evaluate how a
traffic manager impacts the performance of a data grid.

3. Replica Traffic Manager

We propose the creation of a replica traffic manager
that controls workload traffic sent to the individual replicas
in the data grid. The traffic manager receives all user re-
quests and manages the traffic for each replica in the data
grid, by setting a maximum limit on the number of out-
standing requests at each replica. When a replica is heav-
ily loaded, all incoming requests for that replica would be
directed to another available replica. If all replicas are
equally loaded, then the requests are held in queue at the
traffic manager. Once the traffic decreases at the replicas,
the queued requests would be immediately forwarded.

Our replica traffic manager would take control af-
ter users submit their requests to the replica management
service. First, the management service determines all of
physical locations for the requested data. Using estimates
from information services, the replica selection service
then chooses an appropriate replica to service the request.
The management service finally forwards the request with
physical location information about the selected replica to
the replica traffic manager.

When the traffic manager receives a request, it an-
alyzes the workload traffic of the replica selected to ser-
vice the request. If the traffic is low, the request is imme-
diately forwarded. The request is placed in the replica’s
outstanding request queue and is serviced by its disk con-
troller. If the traffic is heavy however, the traffic manager
tries to locate another replica that could service the request.
The traffic manager attempts to balance the traffic at each
replica when the traffic is heavy. If all replicas are heavily
loaded, then the request is placed in the traffic manager’s
queue. When traffic decreases, requests are forwarded from
the traffic manager to the appropriate replicas for servic-
ing. The traffic manager queue is serviced in a FCFS man-
ner, which can be considered as a worst-case scenario. A
FCFS policy is generally regarded as an inefficient schedul-
ing policy for disks, however when requests have specific
quality of service requirements, it allows us to efficiently
satisfy them. FCFS is shown to be an effective scheduling
policy under similar circumstances [15].

We evaluate our replica traffic manger in the follow-
ing section.

4. Evaluations

In our preliminary evaluations, we evaluate the per-
formance impact of our replica traffic manager on disk
I/O, since hard disk drives are bottleneck devices and can
greatly affect the system performance of a data grid [11].
We find that the replica traffic manager produces a signifi-
cant impact on the performance of disk I/O.

4.1 Evaluation Setup

We evaluate the performance impact of a replica traf-
fic manager by using a storage system simulator, DiskSim

[6]. We choose to model each replica as a single disk, since
many replicas in data grids are simple workstations with
available storage. It also provides for a worst-case mod-
eling of advanced storage devices, like RAID arrays that
would be more efficient than a single disk. The specifica-
tions for the hard disk drive used in our model are presented
in Table 1.

Disk Specifications
Name: Cheetah 9.2 LP

Model # ST39102LW
Storage Capacity: 9.1 GB
Rev. per minute: 10,000 RPM

Interface: Ultra2 SCSI
Scheduling Policy: SCAN

Table 1. Hard disk drive specifications [2]

In our evaluations, we model a simple data grid com-
posed of two replicas that contain the same data and have
the same hardware. We evaluate the use of our replica traf-
fic manager compared to unmanaged traffic when servicing
requests in this data grid.

In unmanaged traffic, users submit their requests di-
rectly to any of the replicas in the data grid and there is no
control over the routing of their requests. The users submit
their requests to the replica with the shortest queue.

The storage system simulator creates different user
workloads where there are between 1 and 100 outstand-
ing requests always present in the data grid. The requests
submitted by all users are read requests for random data
locations. The sizes of these requests follow an exponen-
tial distribution, where the mean request size is 512MB.
We choose this request size for our preliminary evaluations,
since many organizations are sharing large datasets, possi-
bly several terabytes.

We analyze the response time values for the user
workload requests. The response time is the time between
issuance of the request and the receipt of the requested data.
We also examine the range of possible response time val-
ues, or standard deviation, as well as maximum values.

4.2 Observations

We observe a significant difference in performance
between unmanaged traffic and the use of our replica traf-
fic manager. Unmanaged traffic exhibits a larger range of
possible response time values, as well as greater maximum
values.

The range of possible response time values for un-
managed traffic is vastly larger than observed with the
replica traffic manager. Figure 2 demonstrates this in-
creased variance by showing the response time standard de-
viations from our evaluations. It is evident that as the num-
ber of outstanding requests increases, the response time
standard deviation grows much faster when the traffic is
unmanaged. For example, when there are 100 requests

Figure 2. Response time standard deviations
(thin black lines) with linear regression lines
(thick grey lines).

Figure 3. Maximum response time values
(thin black lines) with linear regression lines
(thick grey lines).

present in the system, the unmanaged traffic produces a
response time standard deviation that is 416% larger than
when using the traffic manager.

In addition to a larger range of possible values for
response time, the unmanaged traffic also exhibits higher
maximum values for response time. Figure 3 shows the
maximum response time values for our observations. As
the number of requests increases, the unmanaged traffic
has much larger maximum values. In fact, when there are
100 requests in the system, the maximum response time for
the unmanaged traffic is 75% higher than the replica traffic
manager’s maximum response time.

To gain further insight into these differences, we

Figure 4. Response time distributions for 80
outstanding requests in the data grid.

closely examine the complete response time distributions
when there are 80 requests in the system. Figure 4 demon-
strates the difference between these distributions. It is clear
that the replica traffic manger produces a much narrower
range of possible values for response time. In fact, 91% of
all requests can expect response time values within a range
of 2000 ms. The unmanaged traffic, however, has a much
wider range and 91% of all requests can expect to have re-
sponse times within a range of 14000 ms. A user has a
greater chance of waiting longer when the traffic is unman-
aged. For example, when the traffic manager is used, 6%
of requests have response times greater than 10000 ms. An
unmanaged traffic, however, has a much larger percentage
of requests, 41%, that can expect response times of that
size.

To further our study, we expand our evaluations to
a data grid system that contains four replicas. We ob-
serve similar results to our previous findings. The range in
response times is extremely larger for unmanaged traffic.
Figure 5 demonstrates this increased variance by showing
the response time standard deviations for our four-replica
evaluations. When there are 100 outstanding requests in the
system, unmanaged traffic produces a response time stan-
dard deviation that is 303% larger than we observe with our
replica traffic manager. In addition, the maximum response
time for the unmanaged traffic is 71% higher.

Overall, our evaluations demonstrate that our replica
traffic manager has a significant and beneficial effect on
the performance of the data grid. The response time stan-
dard deviations for the replica traffic manager illustrate the
small range of possible response time values in comparison
to unmanaged traffic. The traffic manager also provides
reliable and consistent response times for users’ requests.
It ensures that a request will not incur unnecessarily long
wait times or be a victim of starvation. It also satisfies re-

Figure 5. Four replica evaluation: Response
time standard deviations (thin black lines)
with linear regression lines (thick grey lines).

quests with quality of service requirements that have re-
sponse time constraints.

4.3 Analysis of Evaluations

In our observations, we found that there is a signif-
icant performance difference between unmanaged traffic
and our replica traffic manager. The traffic manager pro-
vides response time values that fall within a narrow range
of values. Unlike unmanaged traffic, which has a vast range
of response time values and has much larger maximum re-
sponse times.

We can attribute this difference in part to the queuing
of outstanding requests. When the replica traffic is unman-
aged, users submit their requests directly to the replica with
the shortest queue. The queue of outstanding requests at
these replicas continues to grow as the number of requests
increases. The replica’s queue is serviced by the disk con-
troller using a SCAN scheduling policy, which chooses re-
quests to service depending on the current position of the
disk’s read/write heads. Requests are not necessarily ser-
viced in the order in which they arrive at the disk. There-
fore, requests will spend a varying amount of time in the
queue, which produces large response time standard devia-
tions.

When the replica traffic manager is used however, a
small number of requests are present at each replica in the
data grid. The lengths of the queues at the replicas’ disk
controllers are much smaller. This indicates that a request
will spend less time in these queues and therefore the vari-
ance of queue times is minimized. Meanwhile, all other
outstanding requests, waiting to be sent to the replicas, are
in queue at the traffic manager. The traffic manager ser-
vices its queue in a FCFS manner. This scheduling policy
produces more consistent queue times for user requests,

since requests are serviced in the order in which they ar-
rive. The majority of the variance in response times for
the replica traffic manager can therefore be attributed to the
varying queue times experienced at the replica.

The variance in outstanding requests’ queue times is
affected by the scheduling policy servicing the queue. The
replica traffic manager produces a narrower range of re-
sponse times, since the FCFS scheduling policy services
requests in fair manner. In addition, as the queue lengths in-
crease, the variance also increases. This is turn affects the
response time and its standard deviation. As the demand
on replicas increases, the replica management component
of the grid middleware will automatically create new repli-
cas to meet the increase in demand. Therefore, extremely
long queue lengths at the replica traffic manager should not
occur.

By controlling the workload traffic at the traffic man-
ager, we are able to provide reliable and consistent response
times. The response time standard deviations are much
smaller for the replica traffic manager, which demonstrates
the narrower range of possible response times. The max-
imum response time values are also decreased when the
traffic manager is utilized.

5. Conclusions and Future Work

Currently, data grid users send their requests directly
storage system replicas. There is no control over the re-
quest once it leaves the user. The traffic is not managed for
any of the replicas, so the traffic pattern could vary dras-
tically, affecting system performance. Replicas could be-
come overloaded or fail and the performance of the data
grid would suffer.

We find that there is a general need for more studies
that analyze the impact of storage systems and disk I/O on
data grid performance. We propose the creation of a replica
traffic manager whose job is managing the traffic to each
replica in the data grid. The replica traffic manager would
take control after users submit their requests. It would
receive all user requests and manage the traffic for each
replica in the data grid, by maintaining a certain number
of outstanding requests at each replica. When all replicas
are heavily loaded, all incoming requests for that replica
would be held in queue at the traffic manager. Once the
traffic decreases at the replica, the queued requests would
be immediately forwarded.

By controlling the traffic to each replica, the traffic
manager has more control over the system than otherwise
possible with individual users submitting requests directly
to the replicas. The traffic manager can adjust for over-
loaded or failing replicas and can service requests with
quality of service requirements. It can also ensure a starva-
tion free environment and provide dynamic load balancing.

In our evaluations, we observe that our replica traf-
fic manager has a significant and beneficial effect on the
performance of the data grid. The response time standard
deviations for the replica traffic manager illustrate the small

range of possible response time values in comparison to un-
managed traffic. The traffic manager also provides reliable
and consistent response times for users’ requests. It ensures
that a request will not incur unnecessarily long wait times
or be a victim of starvation.

For future work, we would like to evaluate the replica
traffic manager under varying storage and network condi-
tions. We want to integrate the storage system simulator
into a data grid simulator in order to conduct further, de-
tailed evaluations. Real workload traces from actual data
grids would also be beneficial to our study.

Acknowledgements

This work was supported by the US National Science
Foundation under grant CCR-0093111.

References

[1] The globus alliance, http://www.globus.org/.
[2] Seagate technology inc. cheetah 9lp product manual. Pub-

lication number: 83329240, Rev. C., August 1998.
[3] A. Abbas. Grid Computing: A Practical Guide to Technol-

ogy and Applications. Charles River Media, Inc., Hingham,
MA, 2004.

[4] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Secure, efficient data transport and replica man-
agement for high-performance data-intensive computing. In
IEEE Mass Storage Conference, 2001.

[5] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Data management and transfer in highperfor-
mance computational grid environments. Parallel Comput-
ing Journal, 28(5):749–771, May 2002.

[6] J. Bucy and G. Granger. The disksim simulation environ-
ment, version 3.0. Reference Manual. Technical report,
School of Computer Science, Carnegie Mellon University,
2003.

[7] M. Cai, A. Chervenak, and M. Frank. A peer-to-peer replica
location service based on a distributed hash table. In SC
’04: Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing, page 56, Washington, DC, USA, 2004. IEEE
Computer Society.

[8] D. Cameron, J. Casey, L. Guy, P. Kunszt, S. Lemaitre,
G. McCance, H. Stockinger, K. Stockinger, G. Andron-
ico, W. Bell, I. Ben-Akiva, D. Bosio, R. Chytracek,
A. Domenici, F. Donno, W. Hoschek, E. Laure, L. Lucio,
P. Millar, L. Salconi, B. Segal, and M. Silander. Replica
management in the european datagrid project. Journal of
Grid Computing, 2(4):341–351, 2004.

[9] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications,
23:187–200, 2001.

[10] M. DiStefano. Distributed Data Management for Grid
Computing. John Wiley and Sons, Inc., 2005.

[11] M. Farley. Storage Networking Fundamentals: An In-
troduction to Storage Devices, Subsystems, Applications,
Management, and Filing Systems. Cisco Press, 2004.

[12] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the Grid: Enabling scalable virtual organizations. The In-
ternational Journal of High Performance Computing Appli-
cations, 15(3):200–222, Fall 2001.

[13] G. Gilder. Fiber keeps its promise. Forbes, April 7, 1997.
[14] J. Gray and P. Shenoy. Rules of thumb in data engineer-

ing. In IEEE International Conference on Data Engineer-
ing, pages 3–12, April 2000.

[15] V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. Evaluation of job-scheduling strate-
gies for grid computing. Grid Computing - GRID 2000:
First IEEE/ACM International Workshop, Bangalore,
India, December 2000. Proceedings, pages 191–, 2000.

[16] H. Lamehamedi, B. Szymanski, Z. shentu, and E. Deelman.
Data replication strategies in grid environments. In Proc. Of
the Fifth International Conferenceon Algorithms and Archi-
tectures for Parallel Processing (ICA3PP’02), 2002.

[17] D. Minoli. A Networking Approach to Grid Computing.
John Wiley and Sons, Inc., 2005.

[18] R. M. Rahman, K. Barker, and R. Alhajj. Replica selection
in grid environment: a data-mining approach. In SAC ’05:
Proceedings of the 2005 ACM symposium on Applied com-
puting, pages 695–700, New York, NY, USA, 2005. ACM
Press.

[19] K. Ranganathan and I. T. Foster. Identifying dynamic repli-
cation strategies for a high-performance data grid. In GRID,
pages 75–86, 2001.

[20] R. Slota, D. Nikolow, L. Skital, and J. Kitowski. Imple-
mentation of replication methods in the grid environment.
Advances in Grid Computing - EGC, pages 474–484, 2005.

[21] S. Vazhkudai and J. M. Schopf. Using disk throughput data
in predictions of end-to-end grid data transfers. In Grid
Computing - GRID 2002 : Third International Workshop,
volume 2536/2002, pages 291–304, Baltimore, MD, USA,
November 18, 2002.

[22] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection in
the globus data grid. In Proceedings of the First IEEE/ACM
International Conference on Cluster Computing and the
Grid (CCGRID 2001), pages 106–113. IEEE Computer So-
ciety Press, May 2001.

[23] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxon-
omy of data grids for distributed data sharing, management,
and processing. ACM Comput. Surv., 38(1):3, 2006.

[24] C.-T. Yang, I.-H. Yang, C.-H. Chen, and S.-Y. Wang. Im-
plementation of a dynamic adjustment mechanism with ef-
ficient replica selection in data grid environments. In SAC
’06: Proceedings of the 2006 ACM symposium on Applied
computing, pages 797–804, New York, NY, USA, 2006.
ACM Press.

