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Abstract

The fork-join queue models parallel resources where arriving jobs divide into various number of sub-tasks that
are assigned to unique devices within the parallel resource. Each device in the parallel resource is modeled by
M=M=1 queueing servers. A job completes execution and departs theparallel resource after all its sub-tasks complete
execution. This paper analyzesN-server fork-join queues where arriving jobs divide into1 � K � N sub-tasks that
are assigned to unique servers of the fork-join queue. Thereis no known closed-form solution forN > 2 fork-join
queues. The paper presents an O(logK) algorithm for computing the mean response time pessimistic and optimistic
bounds and for computing the mean response time approximation of the fork-join queue. The error bounds for the
response time bounds and approximation are presented.

Index Terms: fork-join synchronization, performance evaluation, parallel computer and storage systems.

1 Introduction

Modern computer systems rely on parallel resources, such asmultiple processors and disk arrays, to satisfy the perfor-

mance requirements of its application programs. For example, the response time of an application program is reduced

by concurrently executing sub-parts of the program on multiple processors. Similarly, the I/O throughput of a storage

system is increased by accessing data from multiple disks. The jobs submitted to a parallel resource are divided into

sub-tasks that are each submitted to separate devices within the parallel resource. A job completes execution and

departs the parallel resource only after all its sub-tasks complete.

From a performance analysis viewpoint, theN devices of a parallel resource are modeled byN parallel queueing

servers jointly referred to as afork-join queue. Figure 1 presents a fork-join queue. Jobs arrive at the fork-join queue

at rate�. Upon arrival, each job divides (at the fork point) intoK identical sub-tasks, where1 � K � N. Based on

a pre-defined allocation policy, each of theseK sub-tasks is submitted to a unique server within the fork-join queue.

The probability that a particular server is assigned a sub-task of an arriving job is given byserver aess probability.

The queueing discipline is first-come-first-served. The sub-tasks at each server are serviced at rate�. When a sub-task

completes execution, it will wait (at the join point) until all its sibling sub-tasks complete execution. A job completes

execution and departs the fork-join queue after all its sub-tasks complete. In this paper, we analyze fork-join queues

with exponential inter-arrival and service times. That is,theN servers of the fork-join model areM=M=1 queues with

synchronized arrivals.

Due to the wide-spread use of parallelism in computer and storage systems, the fork-join queue has been studied

extensively. Section 2 summarizes the fork-join literature. An exact analysis of the fork-join queue is presented only

for 2-server fork-join queues [2, 7, 18, 23]. There is no known closed-form solution forN > 2 server fork-join

queues. Hence, the performance measures of fork-join queues withN > 2 servers is computed using approximation

and bounding techniques. This paper also presents mean performance bounds and approximations for the fork-join

queue. Thecontribution of this paper is that it is the first to analyze theM=M=1 N-server fork-join queue where jobs

divide into1 � K � N sub-tasks. All previous papers onM=M=1 fork-join queues assume that every job divides into

N sub-tasks. It is important to analyze fork-join queues where jobs divide intoK < N sub-tasks because such fork-join

queues model the behavior of real parallel systems. For example, a parallel job may only be executed on some of the
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Figure 1: Fork-join queue

processors of a multi-processor system. Similarly, the I/Orequests submitted to a disk-array may only access some of

the disks in the array.

This paper presents simple pessimistic and optimistic meanresponse time bounds and a mean response time

approximation for the fork-join queue withK � N sub-tasks. The complexity of the response time bounds and

approximation computation is O(logK). This paper also presents the error bound for the response time approximation.

Comparison of the mean response time approximations against simulations show an average error of 5% forK (i.e.,

degree of parallelism) varying from 2 to 100 and parallel resource utilization varying from 0.1 to 0.9.

The remainder of this paper is organized as follows. Section2 summarizes related work on performance analysis

of fork-join queues. Section 3 presents a Markov analysis oftheM=M=1 fork-join queue. Sections 4 and 5 use

this Markov analysis to derive the mean response time boundsand response time approximation of fork-join queues.

Finally, conclusions and future work are presented in Section 6.

2 Related Work

Several papers study parallel (fork-join) queues and propose tools for analyzing their performance. Exact performance

measures have been derived only for fork-join queues with two servers [2, 7, 18, 23]. Of these, [2] and [7] derive

exact steady state distribution for two server fork-join queues in open networks, and [18] and [23], respectively, derive

exact mean response times of two server fork-join queues in open and closed networks. Results in [2] assumes general

service time distribution, and results in [7], [18], and [23] assume exponential service time distributions. Due to

the difficulty of analyzing fork-join queues exactly, all studies on fork-join queues with three or more servers are

approximation or bounding analysis. Heidelberger and Trivedi [8] consider a closed queuing network in which jobs

divide into two or more asynchronous tasks. The join synchronization is not modeled. The service centers are of

a type described in the BCMP theorem. They develop an iterative method for solving a sequence of product-form

models. In [9], the model is expanded to include the join synchronization. Nelson and Tantawi [18] consider a scaling

approximation technique to analyze the mean response time of an open homogeneous fork-join queue with exponential

service time distributions. They assume that the mean response time increases at the same rate as the increase in

the degree of parallelism. Closed-form approximation expressions for the mean response time are developed. An

extension of this approximation to heavy traffic, relying ona light traffic interpolation technique, is developed by

Makowski and Varma [17]. Kim and Agrawala [10] analyze waiting times for two server open, homogeneous fork-join

queues with exponential and 2-stage Erlang service time distributions. In [15, 16], Lui, Muntz, and Towsley present

a bounding technique for an open, homogeneous fork-join network with a k-stage Erlang distribution. Response time

bounds are obtained for acyclic fork-join queuing networksby Baccelli et. al. [3] using stochastic ordering principles
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and association of random variables. In [4], Baccelli and Liu propose a new class of queuing models for evaluating

the performance of parallel systems. Using the concept of associated random variables, Kumar and Shorey [11] obtain

response time bounds for an open fork-join model in which a job forks into a random number of tasks. Service times

are drawn from a general distribution. Balsamo, Donatiello, and Van Dijk [5] propose a matrix-geometric algorithmic

approach for computing performance bounds of open heterogeneous fork-join systems. Ray [6] uses a dynamic-

bubblesort analysis technique to develop a response time bound for fork-join queues with exponential service times.

Varki [23] presents a response time approximation for fork-join queues that generalizes the response time expression

for single server queues.

There are fewer papers on fork-join queues in closed networks. Almeida and Dowdy [1] propose an iterative tech-

nique for obtaining lower performance bounds of closed fork-join networks with exponential service times. No proofs

for the technique are presented. Liu and Perros [13, 14] propose an approximation procedure based on decomposition

and aggregation for analyzing a closed queuing system with K-sibling fork-join queues. Their method provides an

upper bound for mean response time. In [22], Varki develops amean-value analysis technique for closed fork-join

parallel networks. The fork-join structure is studied withrelation to parallel storage systems (RAID) in [12, 19, 20].

All but one of the papers on open fork-join queues assume thatarriving jobs split into exactlyN sub-tasks upon

arrival at aN server fork-join queue. In [11], mean performance bounds are computed for M/G/1 fork-join queues

where jobs divide into random number of sub-tasks. This is the first paper to analyzeM=M=1 fork-join queues where

jobs divide intoK � N sub-tasks. It is important to compute performance measuresof such fork-join queues since

these queues model the behavior of parallel computer resources such as disk-arrays and multi-processor computers.

Furthermore, the response time computations presented here are computationally simple and scale well with increasing

parallelism and increasing load.

3 Markov Analysis

We use Markov state diagrams to analyze the fork-join queue.This analysis is then used in Sections 4 and 5 to derive

response time bounds and approximations. LetP

N

represent aN-server fork-join queue where every arriving job

divides intoN sub-tasks that are assigned to theN servers. The state ofP
N

is represented by the vector(n
1

; � � � ; n

N

),

wheren
i

represents the number of sub-tasks at a server ofP

N

. Since theN service centers are identical, then
i

’s are

ordered such thatn
1

� n

2

� � � � � n

N

. Thus,n
N

is equal to the number of tasks at the longest server queue. The

server queueing discipline is first-come-first-served and each job divides intoN sub-tasks, one for each server. Hence,

n

N

also represents the total number of jobs inP

N

.

Figure 2 presents the Markov diagram ofP

2

. The diagram maps the states ofP

2

when there are 0, 1, 2, and 3 jobs

in P

2

. Columni (i = 0; 1; 2; 3) of the diagram represents states withi jobs in the fork-join queue. Rowi (i = 0; 1; 2; 3)

of the diagram represents states withi sub-tasks at the join point. The horizontal transition arcsrepresent the arrival

of jobs atP
2

. The downward transition arcs,~t
1

, represent the movement of a sub-task to the join point. The diagonal

transition arcs,~t
2

, represent the movement of the last sub-task of a job to the join point at which instant this job departs

P

2

. The time spent by a job inP
2

can be factored into two phases, namely,phase

2

andphase
1

, in order. Inphase
2

,

two sub-tasks of the job are waiting for, or receiving, service at the service centers ofP
2

. In phase

1

, only one sub-task

of the job is at the service center while its sibling sub-taskwaits at the join point.

Next, we analyze the Markov state diagram ofP

3

given in Figure 3. The horizontal transition arcs again represent

the movement of jobs intoP
3

at rate�. The arcs~t
k

(k = 1; 2; 3) represent the movement of thekth sub-task of a job

to the join point. The response time of a job inP
3

can be factored into three phases. In general, the response time

of a job inP
N

can be factored intoN phases, namely,phase
N

; � � � ; phase

1

, in order. A phase,phase
k

, represents the

situation whenk sub-tasks of the job are at the service centers. A phase,phase

k

, ends with the movement of one of
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Figure 2: Markov diagram ofP
2

the executing sub-tasks to the join point, at which point thecorresponding job moves tophase
k�1

of its response time.

The time spent completing each phase of a job’s response timein P

N

can be viewed as the time spent getting

service atN non-parallel queueing centersSerial
N

, Serial
N�1

; � � � ; Serial

1

, in order [23]. A job at service centerSerial
k

is in phase

k

of its response time. LetSerial P
N

model represent theSerial
N

, Serial
N�1

; � � � ; Serial

1

model ofP
N

. In

theSerial P
N

model, letn
Serial

k

represents the number of jobs in theSerial

k

queue. By construction,n
Serial

k

represents

the number of jobs inP
N

with k active sub-tasks. A state(n
Serial

N

;n

Serial

N�1

; � � � ;n

Serial

2

;n

Serial

1

) of Serial P
N

model

is equivalent to the state(n
Serial

N

; n

Serial

N

+n

Serial

N�1

; n

Serial

N

+n

Serial

N�1

+n

Serial

N�2

; � � � ; n

Serial

N

+::+n

Serial

2

; n

Serial

N

+

::+ n

Serial

1

) of P
N

. The next example illustrates this mapping:

Example 1 The state (3,3,3) ofP
3

represents the state when all sub-tasks of the 3 jobs withinP

3

are at the servers.

Thus, all 3 jobs are in the first phase (phase

3

) of their response time, which implies that all 3 jobs are atSerial

3

. This

state is equal to the state (3;0;0) of the serial model.

The state (0,3,4) ofP
3

represents the state with job-1 inphase
1

of its response time with 1 active sub-task; job-2,

job-3, and job-4 are inphase
2

of their response time with 2 active sub-tasks each. Thus, job-1 is at serverSerial
1

,

job-2, job-3, and job-4 are at serverSerial
2

. This is equivalent to state (0;3;1) of the serial model. 2

There is a 1-1 and onto mapping from the state space of theSerial P

N

model to the state space ofP
N

. (That is,

every state inP
N

can be mapped to a state inSerial P
N

model, and vice-versa.) Set the rates along the transition

arcs in the Markov diagram ofSerial P
N

model to be equal to the rates along the corresponding transition arcs of

P

N

. Figure 4 presents the Markov diagram of theSerial P

N

model. By construction,P
N

andSerial P
N

model have

identical Markov processes and are equivalent models.

The advantage of the serial model is that the fork-join queue, P
N

, can be analyzed from the viewpoint of a job’s

response time at the parallel queue. If a job arriving atP

N

divides into1 � K � N sub-tasks, then the response time

of a job can be mapped to the response time of a job at theSerial P

K

model, the serial model equivalent toP
K

. In the

next section, we use this serial mapping of the fork-join queue to compute mean performance bounds and approximate

performance measures of the fork-join queues.
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4 N Sub-Tasks

This section presents the derivation of the response time bounds and the response time approximation for theN-server

fork-join queue where every job divides into exactlyN sub-tasks. Before presenting this derivation, we briefly explain

the harmonic number and the partial sum of a sequence since both are used in the remainder of this paper.

4.1 Harmonic Number and Partial Sums

A well known result in probability theory is that when there are K identical sub-tasks executing concurrently on

exponential servers, the mean time taken to finish executingthe K sub-tasks isH
K

=�, the mean of theKth order

statistic of sub-task execution times [21]. Here,1=� represents the mean execution time of a sub-task, and

H

K

= 1 +

1

2

+ � � �+

1

K

represents theKth harmonic number. Since the response time of a job at a fork-join queue is the time taken from

arrival instant until all theK sub-tasks of the job complete execution, the harmonic number plays a key role in the

response time computation of fork-join queues.

We now define theKth partial sum,Sum
a

K

, of a sequencea. Consider a sequencea =

D

1

a

1

;

1

a

2

;

1

a

3

; � � � ;

1

a

K

; � � �

E

.

TheKth partial sum,Sum
a

K

of the sequence is given by:

Sum

a

K

=

1

a

1

+

1

a

2

+ � � �+

1

a

K

TheKth harmonic number is theKth partial sum,Sum
K

, of the sequencea =< 1; 1=2; 1=3; � � � ; 1=K; � � � > where

a

K

= K. That is,

H

K

= Sum

K

4.2 Response Time Bounds and Approximation

We first present the mean response time pessimistic and optimistic bounds and then use these bounds to compute the

response approximation. The parameter� = �=� represent the utilization of a server within the fork-join queue.

Let R
N

represent the mean response time of aN-server fork-join queue. The next theorem presents optimistic and

pessimistic bounds ofR
N

.

Theorem 4.1 The mean response time, R
N

, of a N -server fork-join queue where each arriving job divides into N

sub-tasks is bounded by

1

�

�

H

N

+ � � Sum

N(N��)

�

� R

N

�

H

N

�

�

1 +

�

1� �

�

where � = �=� is the utilization of a server in the fork-join queue,

H

N

= 1 +

1

2

+

1

3

+ � � �+

1

N

is the Nth harmonic number, and

Sum

N(N��)

=

1

1��

+

1

2

1

2��

+

1

3

1

3��

+� � �+

1

N

1

N��

is the Nth partial sum of the sequence
D

1

1��

;

1

2

1

2��

; � � � ;

1

N

1

N��

; � � �

E

Proof: The pessimistic bound is proved in [18] using associated random variables. Here, we present an informal

argument for the pessimistic bound.
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Let R
1

represent the mean service time of a singleM=M=1 queue. Then,H
N

� R

1

represents the response time of

theM=M=1 fork-join queue if the service time of each job at the parallel queue equalsH
N

=�. The service time of

a parallel job equalsH
N

=� only if all theN sub-tasks of the job execute concurrently. In a parallel fork-join queue,

however, some sub-tasks of a job may have completed execution and be at the join-point, while other sub-tasks of the

job are waiting for service or receiving service. Thus, due to the presence ofN independent queues, the sub-tasks of a

job in a fork-join queue may not all execute at the same time. This gives

R

N

� H

N

� R

1

=

H

N

�

�

1 +

�

1� �

�

The optimistic bound is proved using the Markov analysis presented in the previous section. By construction, the

response time of a job inP
N

is equal to the response time of the job in theSerial P

N

model. The response time of

a job in theSerial P
N

model is equal to the sum of the response times at theSerial

N

, Serial
N�1

, � � �, Serial
1

queues.

The mean service rate atSerial
k

can equal�, 2�, 3�, � � �, (k � 1)�, or k� depending on the number of jobs at

queuesSerial
k�1

; � � � ; Serial

2

, andSerial
1

. (Refer to Appendix A for details on the service rate at a server in the

Serial P

N

model.) Thus, the overall mean service rate atSerial

k

(k > 1) is less thank�. Let R
1

(k�) represent the

mean response time of aM=M=1 queue with arrival rate� and service ratek�. Since the mean service rate at the

Serial

k

queue lies between[�; k�℄, the mean response time atSerial

k

(k > 1) is greater than the response timeR

1

(k�).

That is,

R Serial

k

� R

1

(k�)

This gives,

R

N

� R

1

(�) + R

1

(2�) + R

1

(3�) + � � �+ R

1

(N�)

=

1

�

�

H

N

+

�

1� �

+

1

2

�

2� �

+

1

3

�

3� �

+ � � �+

1

N

�

N � �

�

=

1

�

�

H

N

+ � � Sum

N(N��)

�

2

Let R
opt

andR
pes

, respectively, represent the optimistic and pessimistic response time bounds computed in Theo-

rem 4.1. That is,

R

opt

=

1

�

�

H

N

+ � � Sum

N(N��)

�

R

pes

=

H

N

�

�

1 +

�

1� �

�

=

1

�

�

H

N

+ � � Sum

N(1��)

�

The difference betweenR
pes

andR
opt

is

R

di�

= R

pes

� R

opt

=

�

�

(Sum

N(1��)

� Sum

N(N��)

)

=

1

�

�

1� �

�

1

2(2� �)

+

2

3(3� �)

+

3

4(4� �)

+ � � �+

N� 1

N(N� �)

�
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The maximum error in the spread of the response time bounds isgiven by

Maximum error=
R

di�

R

pes

+ R

opt

� 100

For a given�, the value ofR
di�

is non-decreasing for increasing values ofN. For a givenN, the value ofR
di�

is

increasing for increasing�. The bounds are tight for� � 0:6. If � = 1 time unit,R
di�

= 0:6 time unit when� = 0:1

andN = 1000; R
di�

= 3:05 time units when� = 0:5 andN = 1000; R
di�

= 5:5 time units when� = 0:6 and

N = 1000. The relative difference between the bounds increases for� > 0:6. R
di�

= 10:2 time units when� = 0:7

andN = 1000; R
di�

= 20:2 time units when� = 0:8 andN = 1000; R
di�

= 33:2 time units when� = 0:9 and

N = 100; R
di�

= 51:8 time units when� = 0:9 andN = 1000. To address this spread in the bounds for� > 0:6, we

present a response time approximation that is relatively invariant to the values of� andN. The next corollary presents

the response time approximation, computed from the response time optimistic and pessimistic bounds.

Corollary 4.1

R

N

�

R

opt

+ R

pes

2

=

1

�

�

H

N

+

�

2(1� �)

�

Sum

N��

+ (1� 2�) � Sum

N(N��)

�

�

where � =

�

�

,

H

N

= 1 +

1

2

+

1

3

+ � � �+

1

N

,

Sum

N��

=

1

1��

+

1

2��

+

1

3��

+ � � �+

1

N��

,

Sum

N(N��)

=

1

1��

+

1

2

1

2��

+

1

3

1

3��

+ � � �+

1

N

1

N��

.

LetR
approx

represent the mean response time approximation computed inCorollary 4.1. The tightness of the response

time approximation is verified by comparing against simulation results forN varying from2; 3; 4; � � � ; 99; 100 and

� varying from 0.1 to 0.9. The simulated response time,R

simulation

, is accurate within 1% at 95 percent confidence.

Figure 5 plots the mean simulated response times, the mean response time bounds, and the mean approximate response

times forN-server fork-join queues where every job divides intoN sub-tasks. There are three graphs in the figure

corresponding to� values of 0.1, 0.5, and 0.9. The error in the response time approximation is given by

Relative approximation error=
R

approx

� R

simulation

R

simulation

� 100

Tables 1 and 2 present the approximate and simulated mean response time values and the error in the approximation.

The errors increase for increasing values of� and are maximum (� 13%) for � = 0:9. An interesting point is that the

errors are relatively invariant to the value ofN. That is, for a fixed�, the relative error remains approximately constant

asN increases. On analyzing the response times for� = 0:1; 0:2; 0:3; � � � ; 0:9, we observe that the approximate

response time is a pessimistic bound for� < 0:5 and becomes an optimistic bound for� � 0:5. This suggests that at

� �= 0:5 the approximate response time matches the exact response time, though mathematical analysis is required

to verify this observation.
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Figure 5: Model and simulated mean response time values whenK = N

5 1 � K � N Sub-Tasks

This section presents the response time optimistic and pessimistic bounds and the response time approximation for

N-server fork-join queues where arriving jobs divide into1 � K � N sub-tasks. LetPK

N

represent such a fork-join

queue. The workload is single class so all jobs divide intoK sub-tasks that each have a mean service time of1=�.

The arrival rate toPK

N

is �. The arrival rate to servers ofPK

N

, however, is less than�. The server arrival rate can be

computed from the value ofK and the sub-task allocation policy. For example, if theK sub-tasks of a job can only

be submitted toK adjoining service centers of the fork-join queue, then the arrival rate to service centers is given

by K=N � �. Let server aess probability represent the probability that an arriving job’s sub-tasksare submitted to

a server. In the above example,server aess probability = K=N. If all arriving jobs divide intoN sub-tasks then

server aess probability = 1. In general, if we assume a allocation policy that treats each server uniformly, then

server aess probability = K=N. The next theorem shows that the response time ofP

K

N

with arrival rate� is equal to

the response time ofP
K

with arrival rate� � server aess probability.

Theorem 5.1 The response time, RK

N

, of a N-server fork-join queue P

K

N

with arrival rate � and service rate � and

where each arriving job divides into 1 � K � N sub-tasks is equal to the response time, R
K

, of a K-server fork-join

queue P
K

with arrival rate � � K=N and service rate � and where each arriving job divides into K sub-tasks.

Proof: ConsiderPK

N

(a N-server fork-join queue where each arriving job divides into 1 � K � N sub-tasks) with

arrival rate lambda and service rate mu. The probability that a server queue inPK

N

is assigned a sub-task isK=N.

Therefore, the arrival rate to a server queue ofP

K

N

is � � K=N. That is, each server ofPK

N

is aM=M=1 queue with

arrival rate� � K=N and service rate�.

Now, considerP
K

(a K-server fork-join queue where each arriving job divides into K sub-tasks) with arrival rate

� � K=N and service rate�. Thus, each server ofP
K

is aM=M=1 queue with arrival� � K=N and service rate�.
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Hence, aM=M=1 queue of thePK

N

fork-join queue is identical to aM=M=1 queue of theP
K

fork-join queue.

In both fork-join queuesPK

N

andP
K

, the response time of a job is the time taken for allK sub-tasks of the job to finish.

The response time of a job at thePK

N

fork-join queue is only dependent on the state of theK queues it is assigned to. To

a job arriving at thePK

N

fork-join queue, theKM=M=1 queues assigned to the job’s sub-tasks are statistically identical

to theK M=M=1 queues of theP
K

fork-join queue. Hence, the response time of a job at theP

K

N

fork-join queue is

identical to the response time of a job at theP

K

fork-join queue.

2

An implication of Theorem 5.1 is that by setting� = (� � server aess probability)=�, andN = K, Theorem 4.1 and

Corollary 4.1, respectively, can be used to compute the response time bounds and the response time approximation of

thePK

N

fork-join queue.

Corollary 5.1 The mean response time, RK

N

, of a N-server fork-join queue, PK

N

, where each arriving job divides into

1 � K � N sub-tasks is bounded by

1

�

�

H

K

+ � � Sum

K(K��)

�

� R

K

N

�

H

K

�

�

1 +

�

1� �

�

The mean response time RK

N

of PK

N

is approximated by

R

K

N

�

1

�

�

H

K

+

�

2(1� �)

�

Sum

K��

+ (1� 2�) � Sum

K(K��)

�

�

where � =

��K

��N

is the utilization of a server in the fork-join queue,

H

K

= 1+

1

2

+

1

3

+ � � �+

1

K

is the Kth harmonic number,

Sum

K(K��)

=

1

1��

+

1

2

1

2��

+

1

3

1

3��

+� � �+

1

K

1

K��

is the Kth partial sum of the sequence
D

1

1��

;

1

2

1

2��

; � � � ;

1

K

1

K��

; � � �

E

,

and

Sum

K��

=

1

1��

+

1

2��

+

1

3��

+ � � �+

1

K��

. is the Kth partial sum of the sequence
D

1

1��

;

1

2��

; � � � ;

1

K��

; � � �

E

.

The mean response time bounds and approximation ofP

K

N

is equal to the mean response time bounds and approxi-

mation ofP
K

. The Markov state diagrams ofPK

N

andP
K

are, however, different. The difference between the Markov

diagrams ofPK

N

andP
K

account for the differences in the throughput and the queue length ofPK

N

andP
K

. The through-

put ofPK

N

equals� while the throughput ofP
K

equals� � K=N. Subsequently, the queue length (i.e., number of jobs)

atPK

N

andP
K

are different. The queue length can be computed using Little’s Law.

We validate our model response time against simulated response times. The simulated response times are accurate

within 1% at 95% confidence. Figures 6, 7, and 8 plots the modeland simulated response times for(� � N)=K =

0:1; 0:5; 0:9. Each figure has three graphs that correspond toN = 10; 50; 100. In each case, the number of sub-tasks

vary fromK = 1; 2; � � � ;N. Since�=� is held constant, the server utilization� varies asK varies.
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Figure 6: Model and simulated mean response time values whenK � N and(� � N)=K = 0:1
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Figure 8: Model and simulated mean response time values whenK � N and(� � N)=K = 0:9

6 Conclusions

This paper derives mean response time bounds and approximations for M=M=1 N-server fork-join queues where

arriving jobs divide into1 � K � N sub-tasks. This work is notable for two key reasons, namely:a) the response time

bounds and approximation are computationally simple and are presented as close-form equations, and b) the paper

shows that the mean response time ofP

K

N

(aN-server fork-join queue where jobs divide intoK sub-tasks) with arrival

rate� and service rate� is equal to the mean response time ofP

K

(aK-server fork-join queue where jobs divide into

K sub-tasks) with arrival rate� � K=N and service rate�. The relative error in the approximation, as compared to

simulated values, is less than 5% forN � 100 and� varying from 0.1 to 0.9. Moreover, the relative error in the

approximation remains approximately constant for fixed� asN varies from 2 to 100.

There are several extensions of this work. One extension is to consider multiple-class workloads where the value of

K is not constant across all jobs and where the service requirement� is different for each job class. Another interesting

extension to this work is to consider fork-join queues with phase-type service time distributions and variable sub-tasks.

A Appendix

The mean service rate atSerial
k

of theSerial P
N

model is dependent on the number of jobs atSerial

k�1

, � � �, Serial
2

,

andSerial
1

. By analysing the Markov diagram ofP
N

, we find that the rate varies according to the following rule:if

there is at least one job in service centerSerial

k�1

, the service rate atSerial
k

equals�, else if there is at least one

job in service centerSerial
k�2

, the service rate atSerial
k

equals2�, else if there is at least one job in service center

Serial

k�3

, the service rate atSerial
k

equals3�, � � �, else if there is at least one job in service centerSerial

1

, the service

rate atSerial
k

equals(k� 1)�, else (if there are no jobs inSerial
k�1

, Serial
k�2

; � � � ; Serial

1

), the service rate atSerial
k

12



rho = 0.1 rho = 0.5 rho = 0.9

k apprRT simRT err% apprRT simRT err% apprRT simRT err%

2 0.16520 0.16504 0.09695 1.41667 1.43928 1.57092 11.65909 12.52336 6.90126
3 0.20096 0.20090 0.02987 1.68333 1.71854 2.04883 13.37338 14.50522 7.80298
4 0.22767 0.22770 0.01318 1.87976 1.92015 2.10348 14.64354 16.10673 9.08434
5 0.24899 0.24971 0.28833 2.03532 2.08383 2.32793 15.65329 17.58570 10.98853
6 0.26672 0.26787 0.42931 2.16411 2.22879 2.90202 16.49153 18.63964 11.52442
7 0.28191 0.28275 0.29708 2.27400 2.34337 2.96027 17.20816 19.69006 12.60484
8 0.29518 0.29666 0.49889 2.36983 2.44826 3.20350 17.83404 20.46240 12.84483
9 0.30697 0.30781 0.27290 2.45480 2.53071 2.99955 18.38959 21.02895 12.55108
10 0.31758 0.31766 0.02518 2.53111 2.61548 3.22579 18.88904 22.08428 14.46839
11 0.32721 0.32762 0.12514 2.60038 2.68423 3.12380 19.34269 22.77161 15.05787
12 0.33605 0.33566 0.11619 2.66378 2.73650 2.65741 19.75823 22.94005 13.87015
13 0.34419 0.34465 0.13347 2.72224 2.79350 2.55092 20.14157 23.47786 14.21037
14 0.35176 0.35145 0.08821 2.77648 2.85122 2.62133 20.49735 23.71785 13.57838
15 0.35882 0.35921 0.10857 2.82705 2.90611 2.72048 20.82927 23.90498 12.86640
16 0.36544 0.36526 0.04928 2.87443 2.95269 2.65046 21.14032 24.36873 13.24817
17 0.37166 0.36982 0.49754 2.91899 2.99210 2.44343 21.43298 24.76445 13.45263
18 0.37754 0.37621 0.35353 2.96106 3.03529 2.44557 21.70929 25.07899 13.43635
19 0.38311 0.38318 0.01827 3.00089 3.07339 2.35896 21.97100 25.29888 13.15426
20 0.38840 0.38798 0.10825 3.03871 3.10882 2.25520 22.21956 25.58520 13.15464
21 0.39344 0.39286 0.14764 3.07471 3.13841 2.02969 22.45623 25.90421 13.31050
22 0.39825 0.39785 0.10054 3.10907 3.16828 1.86884 22.68210 26.31574 13.80786
23 0.40285 0.40155 0.32375 3.14192 3.20728 2.03786 22.89812 26.60038 13.91807
24 0.40725 0.40631 0.23135 3.17339 3.23581 1.92904 23.10510 26.64745 13.29339
25 0.41148 0.41004 0.35119 3.20359 3.27767 2.26014 23.30377 26.73399 12.83093
26 0.41555 0.41360 0.47147 3.23263 3.30973 2.32950 23.49477 27.12726 13.39055
27 0.41947 0.41689 0.61887 3.26058 3.35315 2.76069 23.67868 27.16729 12.84121
28 0.42324 0.42010 0.74744 3.28753 3.37493 2.58968 23.85600 27.25337 12.46587
29 0.42689 0.42556 0.31253 3.31354 3.39886 2.51025 24.02719 27.31246 12.02847
30 0.43041 0.43013 0.06510 3.33868 3.42525 2.52741 24.19265 27.88652 13.24608
31 0.43382 0.43265 0.27043 3.36301 3.45339 2.61714 24.35276 28.07468 13.25721
32 0.43713 0.43617 0.22010 3.38657 3.48081 2.70742 24.50786 28.31394 13.44242
33 0.44033 0.43985 0.10913 3.40941 3.50426 2.70671 24.65824 28.44451 13.31107
34 0.44344 0.44224 0.27135 3.43158 3.53273 2.86322 24.80419 28.51275 13.00667
35 0.44646 0.44526 0.26951 3.45311 3.55145 2.76901 24.94596 28.97331 13.90021
36 0.44940 0.44822 0.26326 3.47404 3.57518 2.82895 25.08378 29.06224 13.68945
37 0.45225 0.45004 0.49107 3.49441 3.59181 2.71172 25.21786 29.09154 13.31549
38 0.45503 0.45229 0.60581 3.51423 3.61442 2.77195 25.34841 29.25261 13.34650
39 0.45774 0.45580 0.42563 3.53355 3.63170 2.70259 25.47561 29.33367 13.15233
40 0.46039 0.45843 0.42755 3.55238 3.65081 2.69611 25.59962 29.59205 13.49156
41 0.46296 0.46157 0.30115 3.57074 3.66868 2.66963 25.72060 29.79437 13.67295
42 0.46548 0.46366 0.39253 3.58867 3.69162 2.78875 25.83869 29.90492 13.59719
43 0.46794 0.46633 0.34525 3.60618 3.70603 2.69426 25.95403 30.05418 13.64253
44 0.47034 0.46924 0.23442 3.62329 3.72220 2.65730 26.06674 30.13776 13.50804
45 0.47269 0.47189 0.16953 3.64002 3.74472 2.79594 26.17695 30.26644 13.51163
46 0.47498 0.47454 0.09272 3.65639 3.76540 2.89504 26.28475 30.35382 13.40546
47 0.47723 0.47707 0.03354 3.67240 3.77731 2.77737 26.39026 30.47955 13.41650
48 0.47943 0.47668 0.57691 3.68808 3.78821 2.64320 26.49356 30.62197 13.48186
49 0.48159 0.48085 0.15389 3.70344 3.80357 2.63253 26.59475 30.58877 13.05714
50 0.48370 0.48150 0.45691 3.71849 3.81371 2.49678 26.69392 30.62528 12.83698

Table 1: Model and simulated mean response time values forN = 2; � � � ; 50
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rho = 0.1 rho = 0.5 rho = 0.9

k apprRT simRT err% apprRT simRT err% apprRT simRT err%

51 0.48577 0.48352 0.46534 3.73324 3.83598 2.67832 26.79113 30.72810 12.81228
52 0.48781 0.48540 0.49650 3.74771 3.85288 2.72965 26.88648 30.82968 12.79027
53 0.48980 0.48720 0.53366 3.76191 3.86712 2.72063 26.98002 30.96477 12.86866
54 0.49176 0.48874 0.61792 3.77584 3.88111 2.71237 27.07183 31.07436 12.88049
55 0.49368 0.48990 0.77159 3.78952 3.89668 2.75003 27.16197 31.12176 12.72354
56 0.49556 0.49170 0.78503 3.80295 3.89999 2.48821 27.25049 31.03390 12.19122
57 0.49742 0.49366 0.76166 3.81615 3.90009 2.15226 27.33746 31.05607 11.97386
58 0.49924 0.49592 0.66946 3.82912 3.89688 1.73883 27.42293 31.12450 11.89279
59 0.50103 0.49793 0.62258 3.84187 3.90858 1.70676 27.50694 31.24641 11.96768
60 0.50279 0.49929 0.70100 3.85440 3.91969 1.66569 27.58956 31.34717 11.98708
61 0.50452 0.50080 0.74281 3.86673 3.93788 1.80681 27.67081 31.51585 12.20034
62 0.50622 0.50215 0.81051 3.87886 3.95266 1.86710 27.75076 31.60768 12.20248
63 0.50790 0.50395 0.78381 3.89080 3.95517 1.62749 27.82944 31.75880 12.37251
64 0.50955 0.50512 0.87702 3.90255 3.97587 1.84412 27.90688 31.79126 12.21839
65 0.51118 0.50656 0.91203 3.91411 3.97864 1.62191 27.98313 31.82286 12.06595
66 0.51278 0.50833 0.87542 3.92551 4.00802 2.05862 28.05822 31.95715 12.20049
67 0.51435 0.50949 0.95390 3.93673 4.02072 2.08893 28.13220 32.03017 12.16968
68 0.51591 0.51305 0.55745 3.94779 4.03205 2.08976 28.20508 32.16927 12.32291
69 0.51744 0.51575 0.32768 3.95868 4.04604 2.15915 28.27691 32.20213 12.18932
70 0.51895 0.51903 0.01541 3.96942 4.05400 2.08633 28.34770 32.33649 12.33526
71 0.52044 0.51921 0.23690 3.98001 4.06758 2.15288 28.41750 32.25241 11.89031
72 0.52190 0.51831 0.69264 3.99045 4.06968 1.94684 28.48633 32.30628 11.82417
73 0.52335 0.52006 0.63262 4.00075 4.09051 2.19435 28.55422 32.42987 11.95087
74 0.52478 0.52160 0.60966 4.01091 4.04455 0.83174 28.62118 32.50519 11.94889
75 0.52618 0.52311 0.58687 4.02093 4.04414 0.57392 28.68726 32.59632 11.99234
76 0.52757 0.52434 0.61601 4.03082 4.05956 0.70796 28.75246 32.65664 11.95524
77 0.52895 0.52639 0.48633 4.04058 4.07151 0.75967 28.81681 32.71402 11.91297
78 0.53030 0.52788 0.45844 4.05022 4.08450 0.83927 28.88034 32.84456 12.06964
79 0.53164 0.52987 0.33404 4.05973 4.09528 0.86807 28.94307 32.94905 12.15810
80 0.53296 0.53142 0.28979 4.06913 4.10653 0.91074 29.00501 33.03771 12.20635
81 0.53426 0.53244 0.34182 4.07840 4.12366 1.09757 29.06618 33.07987 12.13333
82 0.53555 0.53342 0.39931 4.08757 4.14053 1.27906 29.12661 33.18181 12.22115
83 0.53682 0.53468 0.40024 4.09662 4.15241 1.34356 29.18630 33.26090 12.25042
84 0.53808 0.53537 0.50619 4.10557 4.15200 1.11826 29.24529 33.36544 12.34856
85 0.53932 0.53660 0.50690 4.11441 4.15070 0.87431 29.30358 33.43354 12.35275
86 0.54055 0.53788 0.49639 4.12315 4.16797 1.07534 29.36120 33.50060 12.35620
87 0.54176 0.53902 0.50833 4.13179 4.16559 0.81141 29.41815 33.60166 12.45031
88 0.54296 0.53987 0.57236 4.14032 4.16098 0.49652 29.47445 33.66284 12.44218
89 0.54415 0.54078 0.62317 4.14877 4.18753 0.92561 29.53012 33.56976 12.03357
90 0.54532 0.54177 0.65526 4.15712 4.19412 0.88219 29.58517 33.62919 12.02533
91 0.54648 0.54315 0.61309 4.16537 4.20692 0.98766 29.63961 33.56958 11.70694
92 0.54763 0.54416 0.63768 4.17354 4.21308 0.93851 29.69347 33.67562 11.82502
93 0.54877 0.54544 0.61052 4.18162 4.21775 0.85662 29.74674 33.71413 11.76774
94 0.54989 0.54632 0.65346 4.18961 4.22130 0.75072 29.79945 33.80737 11.85517
95 0.55100 0.54755 0.63008 4.19752 4.25127 1.26433 29.85160 34.10062 12.46024
96 0.55210 0.54885 0.59215 4.20535 4.26028 1.28935 29.90320 34.14585 12.42508
97 0.55319 0.55032 0.52151 4.21309 4.27167 1.37136 29.95428 34.25186 12.54700
98 0.55427 0.55198 0.41487 4.22076 4.26439 1.02312 30.00483 34.31641 12.56419
99 0.55534 0.55273 0.47220 4.22835 4.27091 0.99651 30.05487 34.33054 12.45442
100 0.55639 0.55353 0.51668 4.23586 4.27306 0.87057 30.10441 34.43731 12.58199

Table 2: Model and simulated mean response time values forN = 51; � � � ; 100
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equalsk�. The service rate at serverSerial
1

is equal to�. Thus, service rates at all queuesSerial

k

, k = N; � � � ; 2 are

dependent on the states of the queuesSerial

k�1

; � � � ; Serial

2

, andSerial
1

. Only queueSerial
1

is state independent.
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