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Abstract

The fork-join queue models parallel resources where agiypbs divide into various number of sub-tasks that
are assigned to unique devices within the parallel resoukegch device in the parallel resource is modeled by
M/M/1 queueing servers. A job completes execution and deparfatiadiel resource after all its sub-tasks complete
execution. This paper analyzBsserver fork-join queues where arriving jobs divide intel K < N sub-tasks that
are assigned to unique servers of the fork-join queue. Tisare known closed-form solution fd¢ > 2 fork-join
queues. The paper presents an O@9@lgorithm for computing the mean response time pessicréstd optimistic
bounds and for computing the mean response time approximefithe fork-join queue. The error bounds for the
response time bounds and approximation are presented.

Index Terms: fork-join synchronization, performance evaluation, lat@omputer and storage systems.

1 Introduction

Modern computer systems rely on parallel resources, suctuliple processors and disk arrays, to satisfy the perfor-
mance requirements of its application programs. For exentipé response time of an application program is reduced
by concurrently executing sub-parts of the program on plelfprocessors. Similarly, the I/O throughput of a storage
system is increased by accessing data from multiple diske.jdbs submitted to a parallel resource are divided into
sub-tasks that are each submitted to separate devices whiiparallel resource. A job completes execution and
departs the parallel resource only after all its sub-taskspdete.

From a performance analysis viewpoint, fhelevices of a parallel resource are modeled\byyarallel queueing
servers jointly referred to asfark-join queue. Figure 1 presents a fork-join queue. Jobs arriveedotik-join queue
at rate\. Upon arrival, each job divides (at the fork point) irfoidentical sub-tasks, whefe< K < N. Based on
a pre-defined allocation policy, each of théésub-tasks is submitted to a unique server within the fomk-geue.
The probability that a particular server is assigned a sisk-df an arriving job is given bserver_access_probability.

The queueing discipline is first-come-first-served. Thetsislts at each server are serviced at patéd/hen a sub-task
completes execution, it will wait (at the join point) untll &s sibling sub-tasks complete execution. A job comete
execution and departs the fork-join queue after all its &dxs complete. In this paper, we analyze fork-join queues
with exponential inter-arrival and service times. Thatlig N servers of the fork-join model aid /M /1 queues with
synchronized arrivals.

Due to the wide-spread use of parallelism in computer andigéosystems, the fork-join queue has been studied
extensively. Section 2 summarizes the fork-join literatukn exact analysis of the fork-join queue is presented only
for 2-server fork-join queues [2, 7, 18, 23]. There is no knavlosed-form solution foN > 2 server fork-join
gueues. Hence, the performance measures of fork-join gqueiieN > 2 servers is computed using approximation
and bounding techniques. This paper also presents measrparice bounds and approximations for the fork-join
queue. Theontribution of this paper is that it is the first to analyze thig’M /1 N-server fork-join queue where jobs
divide intol < K < N sub-tasks. All previous papers &/M/1 fork-join queues assume that every job divides into
N sub-tasks. It is important to analyze fork-join queues whebs divide intd < N sub-tasks because such fork-join
queues model the behavior of real parallel systems. For pbeamm parallel job may only be executed on some of the
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processors of a multi-processor system. Similarly, theré/@uests submitted to a disk-array may only access some of
the disks in the array.

This paper presents simple pessimistic and optimistic nmteaponse time bounds and a mean response time
approximation for the fork-join queue witK < N sub-tasks. The complexity of the response time bounds and
approximation computation is O(ld¢). This paper also presents the error bound for the respomsapproximation.
Comparison of the mean response time approximations agsmslations show an average error of 5% Fofi.e.,
degree of parallelism) varying from 2 to 100 and parallebugse utilization varying from 0.1 to 0.9.

The remainder of this paper is organized as follows. Se@&isammarizes related work on performance analysis
of fork-join queues. Section 3 presents a Markov analysihefv/M/1 fork-join queue. Sections 4 and 5 use
this Markov analysis to derive the mean response time boandsesponse time approximation of fork-join queues.
Finally, conclusions and future work are presented in $adi

2 Redated Work

Several papers study parallel (fork-join) queues and pepaols for analyzing their performance. Exact perforneanc
measures have been derived only for fork-join queues withgervers [2, 7, 18, 23]. Of these, [2] and [7] derive
exact steady state distribution for two server fork-joireges in open networks, and [18] and [23], respectivelyyderi
exact mean response times of two server fork-join queugsen and closed networks. Results in [2] assumes general
service time distribution, and results in [7], [18], and [2&sume exponential service time distributions. Due to
the difficulty of analyzing fork-join queues exactly, alusgies on fork-join queues with three or more servers are
approximation or bounding analysis. Heidelberger andetfiy8] consider a closed queuing network in which jobs
divide into two or more asynchronous tasks. The join syneization is not modeled. The service centers are of
a type described in the BCMP theorem. They develop an iteratiethod for solving a sequence of product-form
models. In [9], the model is expanded to include the join syanization. Nelson and Tantawi [18] consider a scaling
approximation technique to analyze the mean response fimmeapen homogeneous fork-join queue with exponential
service time distributions. They assume that the mean nsgptime increases at the same rate as the increase in
the degree of parallelism. Closed-form approximation eggions for the mean response time are developed. An
extension of this approximation to heavy traffic, relying atight traffic interpolation technique, is developed by
Makowski and Varma [17]. Kim and Agrawala [10] analyze waigttimes for two server open, homogeneous fork-join
queues with exponential and 2-stage Erlang service tintghditions. In [15, 16], Lui, Muntz, and Towsley present

a bounding technique for an open, homogeneous fork-joiaritwith a k-stage Erlang distribution. Response time
bounds are obtained for acyclic fork-join queuing netwdrk®Baccelli et. al. [3] using stochastic ordering principle



and association of random variables. In [4], Baccelli and jriopose a new class of queuing models for evaluating
the performance of parallel systems. Using the conceptafcdsted random variables, Kumar and Shorey [11] obtain
response time bounds for an open fork-join model in whichbafgoks into a random number of tasks. Service times
are drawn from a general distribution. Balsamo, Donatjelfal VVan Dijk [5] propose a matrix-geometric algorithmic
approach for computing performance bounds of open hetasmyes fork-join systems. Ray [6] uses a dynamic-
bubblesort analysis technique to develop a response timedoir fork-join queues with exponential service times.
Varki [23] presents a response time approximation for fioik-queues that generalizes the response time expression
for single server queues.

There are fewer papers on fork-join queues in closed neva@kneida and Dowdy [1] propose an iterative tech-
nigue for obtaining lower performance bounds of closed-joikk networks with exponential service times. No proofs
for the technique are presented. Liu and Perros [13, 14]ge®pn approximation procedure based on decomposition
and aggregation for analyzing a closed queuing system wisiibkng fork-join queues. Their method provides an
upper bound for mean response time. In [22], Varki developgan-value analysis technique for closed fork-join
parallel networks. The fork-join structure is studied wigthation to parallel storage systems (RAID) in [12, 19, 20].

All but one of the papers on open fork-join queues assumeath@ing jobs split into exactlN sub-tasks upon
arrival at aN server fork-join queue. In [11], mean performance boundscamputed for M/G/1 fork-join queues
where jobs divide into random number of sub-tasks. Thiseditist paper to analyzel /M /1 fork-join queues where
jobs divide intoK < N sub-tasks. It is important to compute performance measfresch fork-join queues since
these queues model the behavior of parallel computer resswuch as disk-arrays and multi-processor computers.
Furthermore, the response time computations presente@recomputationally simple and scale well with increasing
parallelism and increasing load.

3 Markov Analysis

We use Markov state diagrams to analyze the fork-join qu€&bis analysis is then used in Sections 4 and 5 to derive
response time bounds and approximations. Rgtrepresent a\-server fork-join queue where every arriving job
divides intoN sub-tasks that are assigned to theervers. The state ®fy is represented by the vector, - - -, ny),
wheren; represents the number of sub-tasks at a servBgofSince theN service centers are identical, thés are
ordered such that; < n, < .-+ < ny. Thus,ny is equal to the number of tasks at the longest server queue. Th
server queueing discipline is first-come-first-served awhgob divides intdN sub-tasks, one for each server. Hence,
ny also represents the total number of job®jn

Figure 2 presents the Markov diagramRaf. The diagram maps the statesRafwhen there are 0, 1, 2, and 3 jobs
in P,. Columni (i = 0, 1, 2, 3) of the diagram represents states witbbs in the fork-join queue. Row(i = 0, 1, 2, 3)
of the diagram represents states witsub-tasks at the join point. The horizontal transition aeggesent the arrival
of jobs atP,. The downward transition arcs,, represent the movement of a sub-task to the join point. Tagodal
transition arcst, represent the movement of the last sub-task of a job to the@gint at which instant this job departs
P,. The time spent by a job iR, can be factored into two phases, namehgse, andphasey, in order. Inphase;,
two sub-tasks of the job are waiting for, or receiving, seg\at the service centers®$. In phase;, only one sub-task
of the job is at the service center while its sibling sub-tasits at the join point.

Next, we analyze the Markov state diagranPgfgiven in Figure 3. The horizontal transition arcs againespnt
the movement of jobs intB; at rate). The arcg, (k = 1,2, 3) represent the movement of th&* sub-task of a job
to the join point. The response time of a jobRa can be factored into three phases. In general, the respomse t
of a job inPy can be factored int®l phases, namelphasey, - - -, phasey, in order. A phasephasey, represents the
situation wherk sub-tasks of the job are at the service centers. A plphseey, ends with the movement of one of
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Figure 2: Markov diagram d?,

the executing sub-tasks to the join point, at which pointahieesponding job moves tthase,_; of its response time.
The time spent completing each phase of a job’s responseitirAg can be viewed as the time spent getting

service af\ non-parallel queueing centeSsrialy, Serialy_1, - - -, Serialy, in order [23]. A job at service cent8erialy

is in phasey, Of its response time. L&8erial_ Py_model represent th&erialy, Serialy_1, - - -, Serial; model ofPy. In

theSerial_Py_model, let nserial, represents the number of jobs in $eial, queue. By constructiomseia, represents

the number of jobs iy with k active sub-tasks. A stat@serialy ; serialy_y; * * * ; Serialy ; Nserial, ) OF Serial_Py_model

is equivalent to the stat@serialy , 7serialy +MSerialy_, » PSerialy + NSerialy_; + NSerialy 55" * * » NSerialy T -- +MSerial, » NSerialy +
.. + Nserial, ) Of Pn. The next example illustrates this mapping:

Example 1l The state (3,3,3) dP; represents the state when all sub-tasks of the 3 jobs withiare at the servers.

Thus, all 3 jobs are in the first phagghése;) of their response time, which implies that all 3 jobs ar8etals. This
state is equal to the state (3;0;0) of the serial model.

The state (0,3,4) oP; represents the state with job-1 phase, of its response time with 1 active sub-task; job-2,
job-3, and job-4 are iphase, of their response time with 2 active sub-tasks each. Thisljs at serveberial;,
job-2, job-3, and job-4 are at sersrial,. This is equivalent to state (0;3;1) of the serial model. |

There is a 1-1 and onto mapping from the state space o$dhiel_Py_model to the state space ¢fy. (That is,
every state inPy can be mapped to a state Serial_Py_model, and vice-versa.) Set the rates along the transition
arcs in the Markov diagram derial_Py_model to be equal to the rates along the corresponding transitics Gt
Pn. Figure 4 presents the Markov diagram of Seeial_Py_model. By constructionPy andSerial_Py_model have
identical Markov processes and are equivalent models.

The advantage of the serial model is that the fork-join quewe can be analyzed from the viewpoint of a job’s
response time at the parallel queue. If a job arrivingyativides intol < K < N sub-tasks, then the response time
of a job can be mapped to the response time of a job &dtisl_Px_model, the serial model equivalent . In the

next section, we use this serial mapping of the fork-joingi® compute mean performance bounds and approximate
performance measures of the fork-join queues.
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4 N Sub-Tasks

This section presents the derivation of the response timmad®and the response time approximation foNkeerver
fork-join queue where every job divides into exadtlysub-tasks. Before presenting this derivation, we brieffylaix
the harmonic number and the partial sum of a sequence sinc@afmused in the remainder of this paper.

4.1 Harmonic Number and Partial Sums

A well known result in probability theory is that when thene & identical sub-tasks executing concurrently on
exponential servers, the mean time taken to finish exectitia¢k sub-tasks iHk/u, the mean of the&k*" order
statistic of sub-task execution times [21]. Hel ¢y represents the mean execution time of a sub-task, and

1 1
Hk =14+ =4+ --- 4+ =
k=144t

represents th&!”* harmonic number. Since the response time of a job at a farkgoeue is the time taken from
arrival instant until all theK sub-tasks of the job complete execution, the harmonic nuplags a key role in the
response time computation of fork-join queues.

We now define th&!" partial sumSum,,, of a sequence. Consider a sequenae= <%, AT >
TheK?!" partial sumSum, . of the sequence is given by:

1 1 1
Sumg, = — + — + -+ —
a a2 aK
The K" harmonic number is th&!" partial sum Sumg, of the sequence =< 1,1/2,1/3,---,1/K,--- > where

ak = K. Thatis,
HK = SumK

4.2 Response Time Bounds and Approximation

We first present the mean response time pessimistic andispitilnounds and then use these bounds to compute the
response approximation. The paramete= \/u represent the utilization of a server within the fork-joinege.

Let Ry represent the mean response time df-aerver fork-join queue. The next theorem presents opticrésd
pessimistic bounds dy.

Theorem 4.1 The mean response time, Ry, of a N-server fork-join queue where each arriving job divides into V
sub-tasks is bounded by

1 H
— (Hn + p* Sumyn—p)) < Ry < — (1 + L)
Iz I 1-p

where p = A/ isthe utilization of a server in the fork-join queue,
Hv=14%+ %4 + 5 isthe N** harmonic number, and

1

Sumyin—p) = T+ 35— +i5—++ 5 v isthe N partial sumofthesequence<L 11 -

1
1—p " 22—p " 33—p N N—p 1—p’22—p? >N N—p? >

Proof: The pessimistic bound is proved in [18] using associatedoanvariables. Here, we present an informal
argument for the pessimistic bound.



Let R, represent the mean service time of a singléM/1 queue. ThenHy * Ry represents the response time of
the M/M/1 fork-join queue if the service time of each job at the patalleeue equal$ly/u. The service time of

a parallel job equalsly/p only if all the N sub-tasks of the job execute concurrently. In a paralldd-fom queue,
however, some sub-tasks of a job may have completed exaanibbe at the join-point, while other sub-tasks of the
job are waiting for service or receiving service. Thus, duthe presence i independent queues, the sub-tasks of a
job in a fork-join queue may not all execute at the same tintés Fives

Rn

IN

HN*R]_

H
_N<]__|_L>
Iz L—p

The optimistic bound is proved using the Markov analysisspméed in the previous section. By construction, the
response time of a job iRy is equal to the response time of the job in 8wial_Py_model. The response time of

a job in theSerial_P\_model is equal to the sum of the response times atSévéaly, Serialy_1, - - -, Serial; queues.
The mean service rate &trial, can equalu, 2u, 3u, -+, (k — 1)u, or ku depending on the number of jobs at
gueuesSerialy_1,- - -, Serialy, andSerial;. (Refer to Appendix A for details on the service rate at a @eiw the
Serial_Pn_model.) Thus, the overall mean service rateSatial, (k > 1) is less tharku. LetR;(ku) represent the
mean response time ofld/M/1 queue with arrival rate\ and service ratéu. Since the mean service rate at the
Serialy queue lies betwed, k], the mean response timeSaftrial, (k > 1) is greater than the response tiRg k).
That is,

R_Serialk Z R]_ (k,u)

This gives,

Ry > (u)+R1(2u)+R1(3u) -+ Ry(Np)

1 »p 1 »p 1 »p
Hy Z ey —_7
22—p+33—p+ +NN—p>

TR T 2

(HN + p * SumN(N_p))
O

Let Ropt andRpes, respectively, represent the optimistic and pessimigtiponse time bounds computed in Theo-
rem4.1. Thatis,

1
Ropt = ; (HN + px SumN(N_p))

HN P 1
Rpes = P (]_ + ]_Tp) = ; (HN + p* SumN(l,p))

The difference betweeR,.s andRo: iS

Rait = Rpes — Ropt
= E(SUmNufp) — Sumn(n-p))
— 1 p < 1 + 2 + 3 4+ &)
pl—p\22—-p) 3B-p) 44-p) N(N —p)

7



The maximum error in the spread of the response time bourgiean by

. Rai
Maximum error= —— 3% ___ 4100
Rpes + Ropt

For a givenp, the value ofRgis is non-decreasing for increasing valueshbf For a givenN, the value ofRgy; is
increasing for increasing. The bounds are tight fgr < 0.6. If A = 1 time unit,Rg = 0.6 time unit whenp = 0.1
andN = 1000; Rgqi¢ = 3.05 time units wherp = 0.5 andN = 1000; R4 = 5.5 time units wherp = 0.6 and
N = 1000. The relative difference between the bounds increases 010.6. Ry = 10.2 time units wherp = 0.7
andN = 1000; Rgir = 20.2 time units wherp = 0.8 andN = 1000; Rgir = 33.2 time units wherp = 0.9 and
N = 100; Rgir = 51.8 time units wherp = 0.9 andN = 1000. To address this spread in the boundsi/fas 0.6, we
present a response time approximation that is relativetgriant to the values gf andN. The next corollary presents
the response time approximation, computed from the regpiime optimistic and pessimistic bounds.

Corollary 4.1
RN ~ Ropt + Rpes
2
-1 H -I-L(Sum + (1 —2p) * Sum )
p TR M
where p = 2,

o

Hi=1+3+3+ - +1
1 1 1 1
Sumn-, = 15 + 5 + 5 o

-+ 411 ,1 1 , .41 1
Sumn(N—p) = -, t 335, t 3355, "+ aun=,-

Let R,pprox represent the mean response time approximation compu@atailary 4.1. The tightness of the response
time approximation is verified by comparing against simalaresults forN varying from2,3,4,---,99,100 and

p varying from 0.1 to 0.9. The simulated response tiRgyuiation, IS @ccurate within 1% at 95 percent confidence.
Figure 5 plots the mean simulated response times, the mspornse time bounds, and the mean approximate response
times forN-server fork-join queues where every job divides inNk@ub-tasks. There are three graphs in the figure
corresponding te values of 0.1, 0.5, and 0.9. The error in the response timeoajpation is given by

. . . R — Ry ;
Relative approximation errog —22prex — “simulation 4

Rsimulation

Tables 1 and 2 present the approximate and simulated megaonsestime values and the error in the approximation.
The errors increase for increasing valuep @hd are maximumst 13%) for p = 0.9. An interesting point is that the
errors are relatively invariant to the valueldf That is, for a fixeg, the relative error remains approximately constant
as N increases. On analyzing the response timespfes 0.1,0.2,0.3,---,0.9, we observe that the approximate
response time is a pessimistic bound o 0.5 and becomes an optimistic bound foe> 0.5. This suggests that at

p ~= 0.5 the approximate response time matches the exact resporsetiough mathematical analysis is required
to verify this observation.
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Figure 5: Model and simulated mean response time values WherN

5 1<K <N Sub-Tasks

This section presents the response time optimistic andrpistis bounds and the response time approximation for
N-server fork-join queues where arriving jobs divide inte< K < N sub-tasks. LeP¥ represent such a fork-join
queue. The workload is single class so all jobs divide Ktsub-tasks that each have a mean service timg/ pf
The arrival rate tP¥ is \. The arrival rate to servers &, however, is less thah. The server arrival rate can be
computed from the value df and the sub-task allocation policy. For example, if kngub-tasks of a job can only
be submitted tdK adjoining service centers of the fork-join queue, then thival rate to service centers is given
by K/N = A. Let server_access_probability represent the probability that an arriving job’s sub-taeiessubmitted to
a server. In the above exampterver_access_probability = K/N. If all arriving jobs divide intoN sub-tasks then
server_access_probability = 1. In general, if we assume a allocation policy that treathemever uniformly, then
server_access_probability = K/N. The next theorem shows that the response tinfe{ofiith arrival rate) is equal to
the response time d¢fx with arrival rate) * server_access_probability.

Theorem 5.1 The response time, RK, of a N-server fork-join queue P{ with arrival rate A and service rate ; and
where each arriving job dividesinto 1 < K < N sub-tasksis equal to the response time, Rg, of a K-server fork-join
queue Pk with arrival rate A « K/N and service rate ¢, and where each arriving job dividesinto K sub-tasks.

Proof: ConsiderPK (a N-server fork-join queue where each arriving job divide®int< K < N sub-tasks) with
arrival rate lambda and service rate mu. The probability éhaerver queue iRY is assigned a sub-task i§/N.
Therefore, the arrival rate to a server queudffis A « K/N. That is, each server ¢t is aM/M/1 queue with
arrival rate\ « K/N and service ratg.

Now, considerPk (a K-server fork-join queue where each arriving job divide® it sub-tasks) with arrival rate
A« K/N and service ratg. Thus, each server & is aM/M/1 queue with arrival «+ K/N and service ratg.



Hence, avi/M/1 queue of theP fork-join queue is identical to ®/M/1 queue of thePk fork-join queue.

In both fork-join queue®K andP, the response time of a job is the time taken fokadiub-tasks of the job to finish.
The response time of a job at tRE fork-join queue is only dependent on the state offhgueues it is assigned to. To
a job arriving at thePk fork-join queue, th&k M/M/1 queues assigned to the job’s sub-tasks are statisticalhtiihl
to theK M/M/1 queues of thék fork-join queue. Hence, the response time of a job attfjdork-join queue is
identical to the response time of a job at fhefork-join queue.

m|

An implication of Theorem 5.1 is that by settipg= (\ * server_access_probability) /i, andN = K, Theorem 4.1 and
Corollary 4.1, respectively, can be used to compute theoresptime bounds and the response time approximation of
the Py fork-join queue.

Corollary 5.1 The mean response time, RK, of a N-server fork-join queue, PX, where each arriving job divides into
1 < K < N sub-tasksis bounded by

1 Hg p
~(H ) <RS <214 -
u( <P Sumkep)) < Ry < 7 <_+1—p>

The mean response time RK of PX is approximated by

1 p
RE ~ Z(H _ 1-2
N M < K + 2(1 _ p) (SUmK 14 + ( p) * SumK(KP)))

where p = 25 isthe utilization of a server in the fork-join queue,

Hk =143 4+ % 4+ + % isthe K harmonic number,

Sumk(k—p) = T+ i3 5 T kg, isthe K partial sumofthesequence<1%p, TR TRRRE %ﬁ’>
and
Sumk—, = 155 + 35, + 35, + -+ + g isthe K partial sumofthesequence<ﬁ, ﬁ"":ﬁ:"»

The mean response time bounds and approximatidt{{dé equal to the mean response time bounds and approxi-
mation of Px. The Markov state diagrams Bﬁ andPg are, however, different. The difference between the Markov
diagrams oP¥ andPk account for the differences in the throughput and the quength ofP§ andPk. The through-

put of PX equals\ while the throughput oPx equals\ x K/N. Subsequently, the queue lengtie( number of jobs)
atPK andP are different. The queue length can be computed using kittksw.

We validate our model response time against simulated nsgtomes. The simulated response times are accurate
within 1% at 95% confidence. Figures 6, 7, and 8 plots the madeélsimulated response times far+ N)/K =
0.1,0.5,0.9. Each figure has three graphs that correspond to 10, 50, 100. In each case, the number of sub-tasks
vary fromK = 1,2,--- N. SinceA/u is held constant, the server utilizatiprvaries asi varies.

10
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6 Conclusions

This paper derives mean response time bounds and appraxmmdor M/M/1 N-server fork-join queues where
arriving jobs divide intal < K < N sub-tasks. This work is notable for two key reasons, nana&lthe response time
bounds and approximation are computationally simple ardhegsented as close-form equations, and b) the paper
shows that the mean response tim&{jf(a N-server fork-join queue where jobs divide irosub-tasks) with arrival
rate A and service ratg is equal to the mean response timePaf (a K-server fork-join queue where jobs divide into
K sub-tasks) with arrival rat& « K/N and service ratg. The relative error in the approximation, as compared to
simulated values, is less than 5% fér< 100 andp varying from 0.1 to 0.9. Moreover, the relative error in the
approximation remains approximately constant for fixeabN varies from 2 to 100.

There are several extensions of this work. One extensiarcisrisider multiple-class workloads where the value of
K is not constant across all jobs and where the service ragaeirg. is different for each job class. Another interesting
extension to this work is to consider fork-join queues witlage-type service time distributions and variable sukstas

A Appendix

The mean service rate &érial, of the Serial_Py_model is dependent on the number of jobsSatial,_1, - - -, Serialy,
andSerial;. By analysing the Markov diagram &y, we find that the rate varies according to the following rute:
there is at least one job in service cerierial,_;, the service rate &erial, equalsy, else if there is at least one
job in service centeSerial,_», the service rate &erial, equals2yu, else if there is at least one job in service center
Serialy_3, the service rate &erial, equals3y, - - -, else if there is at least one job in service ceBtetal;, the service
rate atSerial, equals(k — 1), else (if there are no jobs Berial,_1, Serialx_», - - -, Serial;), the service rate &erialy
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| rho=0.1]

| rho=05]

rho=0.9]

k || apprRT | simRT |

err% || apprRT| simRT |

err% || apprRT |

SIMRT |

err%

0.16520

0.16504

0.09695

1.41667

1.43928

1.57092

11.65909

12.52336

6.90126

0.20096

0.20090

0.02987

1.68333

1.71854

2.04883

13.37338

14.50522

7.80298

0.22767

0.22770

0.01318

1.87976

1.92015

2.10348

14.64354

16.10673

9.08434

0.24899

0.24971

0.28833

2.03532

2.08383

2.32793

15.65329

17.58570

10.98853

0.26672

0.26787

0.42931

2.16411

2.22879

2.90202

16.49153

18.63964

11.52442

0.28191

0.28275

0.29708

2.27400

2.34337

2.96027

17.20816

19.69006

12.60484

0.29518

0.29666

0.49889

2.36983

2.44826

3.20350

17.83404

20.46240

12.84483

0.30697

0.30781

0.27290

2.45480

2.53071

2.99955

18.38959

21.02895

12.55108

0.31758

0.31766

0.02518

2.53111

2.61548

3.22579

18.88904

22.08428

14.46839

0.32721

0.32762

0.12514

2.60038

2.68423

3.12380

19.34269

22.77161

15.05787

0.33605

0.33566

0.11619

2.66378

2.73650

2.65741

19.75823

22.94005

13.87015
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[EEY
IS
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0.08821

2.77648
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2.62133

20.49735

23.71785

13.57838
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0.35882

0.35921

0.10857

2.82705

2.90611

2.72048

20.82927

23.90498

12.86640
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(o))

0.36544

0.36526

0.04928

2.87443

2.95269

2.65046

21.14032

24.36873

13.24817
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0.37166

0.36982

0.49754

2.91899

2.99210

2.44343

21.43298

24.76445

13.45263
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(ee]

0.37754

0.37621

0.35353

2.96106

3.03529

2.44557

21.70929

25.07899

13.43635

[y
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0.38311

0.38318

0.01827

3.00089

3.07339

2.35896

21.97100

25.29888

13.15426
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0.38840

0.38798

0.10825

3.03871

3.10882

2.25520

22.21956

25.58520

13.15464
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0.39344

0.39286

0.14764

3.07471

3.13841

2.02969

22.45623

25.90421

13.31050
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0.39825

0.39785

0.10054

3.10907

3.16828

1.86884

22.68210

26.31574

13.80786
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0.40285

0.40155

0.32375

3.14192
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2.03786

22.89812

26.60038
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23.30377
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0.41555

0.41360

0.47147
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2.32950

23.49477

27.12726

13.39055
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0.41689

0.61887

3.26058

3.35315

2.76069

23.67868

27.16729

12.84121

N
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0.42324

0.42010

0.74744

3.28753

3.37493

2.58968

23.85600

27.25337

12.46587

N
©

0.42689

0.42556

0.31253

3.31354

3.39886

2.51025

24.02719

27.31246

12.02847

w
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0.43041

0.43013

0.06510

3.33868

3.42525

2.52741

24.19265

27.88652

13.24608

w
(=S

0.43382

0.43265

0.27043

3.36301

3.45339

2.61714

24.35276

28.07468

13.25721
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0.43713

0.43617

0.22010

3.38657

3.48081

2.70742

24.50786

28.31394

13.44242

w
w

0.44033

0.43985

0.10913

3.40941

3.50426

2.70671

24.65824

28.44451

13.31107

w
N

0.44344

0.44224

0.27135

3.43158

3.53273

2.86322

24.80419

28.51275

13.00667

w
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0.44646

0.44526

0.26951

3.45311

3.55145

2.76901

24.94596

28.97331

13.90021

w
(o2}

0.44940

0.44822

0.26326

3.47404

3.57518

2.82895

25.08378

29.06224

13.68945

w
~

0.45225

0.45004

0.49107

3.49441

3.59181

2.71172

25.21786

29.09154

13.31549

w
oo

0.45503

0.45229

0.60581

3.51423

3.61442

2.77195

25.34841

29.25261

13.34650

w
©

0.45774

0.45580

0.42563

3.53355

3.63170

2.70259

25.47561

29.33367

13.15233

N
o

0.46039

0.45843

0.42755

3.55238

3.65081

2.69611

25.59962

29.59205

13.49156

D
[aN

0.46296

0.46157

0.30115

3.57074

3.66868

2.66963

25.72060

29.79437

13.67295

N
N

0.46548

0.46366

0.39253

3.58867

3.69162

2.78875

25.83869

29.90492

13.59719

D
w

0.46794

0.46633

0.34525

3.60618

3.70603

2.69426

25.95403

30.05418

13.64253

SN
SN

0.47034

0.46924

0.23442

3.62329

3.72220

2.65730

26.06674

30.13776

13.50804

D
6]

0.47269

0.47189

0.16953

3.64002

3.74472

2.79594

26.17695

30.26644

13.51163

N
(o]

0.47498

0.47454

0.09272

3.65639

3.76540

2.89504

26.28475

30.35382

13.40546

D
~

0.47723

0.47707

0.03354

3.67240

3.77731

277737

26.39026

30.47955

13.41650

D
(o]

0.47943

0.47668

0.57691

3.68808

3.78821

2.64320

26.49356

30.62197

13.48186

N
(o]

0.48159

0.48085

0.15389

3.70344

3.80357

2.63253

26.59475

30.58877

13.05714

al
o

0.48370

0.48150

0.45691

3.71849

3.81371

2.49678

26.69392

30.62528

12.83698

Table 1: Model and simulated mean response time valud$ fer2, - - - | 50
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| rho=0.1]

| rho=05]

| rho=0.9]

| k [ apprRT| simRT |

err% || apprRT| sSimRT |

err% || apprRT | sSimRT |

err%

14

51 || 0.48577| 0.48352| 0.46534| 3.73324| 3.83598 | 2.67832|| 26.79113| 30.72810| 12.81228
52 || 0.48781| 0.48540| 0.49650| 3.74771| 3.85288 | 2.72965|| 26.88648| 30.82968| 12.79027
53 || 0.48980| 0.48720| 0.53366|| 3.76191| 3.86712 | 2.72063|| 26.98002| 30.96477| 12.86866
54 || 0.49176| 0.48874| 0.61792|| 3.77584| 3.88111| 2.71237|| 27.07183| 31.07436| 12.88049
55 || 0.49368| 0.48990 | 0.77159| 3.78952| 3.89668 | 2.75003|| 27.16197| 31.12176| 12.72354
56 || 0.49556| 0.49170| 0.78503| 3.80295| 3.89999 | 2.48821| 27.25049| 31.03390| 12.19122
57 || 0.49742| 0.49366 | 0.76166|| 3.81615| 3.90009 | 2.15226|| 27.33746| 31.05607| 11.97386
58 || 0.49924| 0.49592 | 0.66946| 3.82912| 3.89688 | 1.73883|| 27.42293| 31.12450| 11.89279
59 || 0.50103| 0.49793| 0.62258| 3.84187| 3.90858 | 1.70676|| 27.50694| 31.24641| 11.96768
60 || 0.50279| 0.49929 | 0.70100| 3.85440| 3.91969 | 1.66569| 27.58956| 31.34717| 11.98708
61 || 0.50452| 0.50080 | 0.74281| 3.86673| 3.93788| 1.80681| 27.67081| 31.51585| 12.20034
62 || 0.50622| 0.50215| 0.81051| 3.87886| 3.95266 | 1.86710| 27.75076| 31.60768| 12.20248
63 || 0.50790| 0.50395| 0.78381| 3.89080| 3.95517 | 1.62749| 27.82944| 31.75880| 12.37251
64 || 0.50955| 0.50512 | 0.87702| 3.90255| 3.97587 | 1.84412| 27.90688| 31.79126| 12.21839
65 || 0.51118| 0.50656 | 0.91203| 3.91411| 3.97864 | 1.62191| 27.98313| 31.82286| 12.06595
66 || 0.51278| 0.50833 | 0.87542| 3.92551| 4.00802 | 2.05862| 28.05822| 31.95715| 12.20049
67 || 0.51435| 0.50949 | 0.95390| 3.93673| 4.02072 | 2.08893| 28.13220| 32.03017| 12.16968
68 || 0.51591| 0.51305| 0.55745| 3.94779| 4.03205| 2.08976|| 28.20508| 32.16927| 12.32291
69 || 0.51744| 0.51575| 0.32768| 3.95868| 4.04604 | 2.15915|| 28.27691| 32.20213| 12.18932
70 || 0.51895| 0.51903 | 0.01541| 3.96942| 4.05400 | 2.08633| 28.34770| 32.33649| 12.33526
71 || 0.52044| 0.51921 | 0.23690| 3.98001| 4.06758 | 2.15288|| 28.41750| 32.25241| 11.89031
72 || 0.52190| 0.51831 | 0.69264| 3.99045| 4.06968 | 1.94684| 28.48633| 32.30628| 11.82417
73 || 0.52335| 0.52006 | 0.63262| 4.00075| 4.09051 | 2.19435|| 28.55422| 32.42987| 11.95087
74 || 0.52478| 0.52160 | 0.60966| 4.01091| 4.04455| 0.83174| 28.62118| 32.50519| 11.94889
75 || 0.52618| 0.52311| 0.58687| 4.02093| 4.04414 | 0.57392|| 28.68726| 32.59632| 11.99234
76 || 0.52757| 0.52434 | 0.61601| 4.03082| 4.05956 | 0.70796|| 28.75246| 32.65664| 11.95524
77 || 0.52895| 0.52639 | 0.48633| 4.04058| 4.07151 | 0.75967| 28.81681| 32.71402| 11.91297
78 || 0.53030| 0.52788 | 0.45844| 4.05022| 4.08450 | 0.83927| 28.88034| 32.84456| 12.06964
79 || 0.53164| 0.52987 | 0.33404| 4.05973| 4.09528 | 0.86807| 28.94307| 32.94905| 12.15810
80 || 0.53296| 0.53142| 0.28979| 4.06913| 4.10653| 0.91074|| 29.00501| 33.03771| 12.20635
81 || 0.53426| 0.53244 | 0.34182| 4.07840| 4.12366 | 1.09757|| 29.06618| 33.07987| 12.13333
82 || 0.53555| 0.53342| 0.39931| 4.08757| 4.14053| 1.27906]|| 29.12661| 33.18181| 12.22115
83 || 0.53682| 0.53468 | 0.40024| 4.09662| 4.15241 | 1.34356|| 29.18630| 33.26090| 12.25042
84 || 0.53808| 0.53537 | 0.50619| 4.10557| 4.15200| 1.11826]| 29.24529| 33.36544| 12.34856
85 || 0.53932| 0.53660 | 0.50690| 4.11441| 4.15070| 0.87431|| 29.30358| 33.43354| 12.35275
86 || 0.54055| 0.53788 | 0.49639| 4.12315| 4.16797 | 1.07534|| 29.36120| 33.50060| 12.35620
87 || 0.54176| 0.53902 | 0.50833| 4.13179| 4.16559 | 0.81141| 29.41815| 33.60166| 12.45031
88 || 0.54296| 0.53987 | 0.57236|| 4.14032| 4.16098 | 0.49652|| 29.47445| 33.66284| 12.44218
89 || 0.54415| 0.54078| 0.62317|| 4.14877| 4.18753| 0.92561| 29.53012| 33.56976| 12.03357
90 || 0.54532| 0.54177| 0.65526| 4.15712| 4.19412 | 0.88219|| 29.58517| 33.62919| 12.02533
91 || 0.54648| 0.54315| 0.61309| 4.16537| 4.20692 | 0.98766|| 29.63961| 33.56958| 11.70694
92 || 0.54763| 0.54416 | 0.63768|| 4.17354| 4.21308 | 0.93851|| 29.69347| 33.67562| 11.82502
93 || 0.54877| 0.54544| 0.61052| 4.18162| 4.21775| 0.85662|| 29.74674| 33.71413| 11.76774
94 || 0.54989| 0.54632| 0.65346| 4.18961| 4.22130| 0.75072|| 29.79945| 33.80737| 11.85517
95 || 0.55100| 0.54755| 0.63008| 4.19752| 4.25127 | 1.26433|| 29.85160| 34.10062| 12.46024
96 || 0.55210| 0.54885| 0.59215|| 4.20535| 4.26028 | 1.28935|| 29.90320| 34.14585| 12.42508
97 || 0.55319| 0.55032| 0.52151| 4.21309| 4.27167 | 1.37136|| 29.95428| 34.25186| 12.54700
98 || 0.55427| 0.55198 | 0.41487|| 4.22076| 4.26439 | 1.02312|| 30.00483| 34.31641| 12.56419
99 || 0.55534| 0.55273| 0.47220|| 4.22835| 4.27091 | 0.99651| 30.05487| 34.33054| 12.45442
100 || 0.55639| 0.55353 | 0.51668|| 4.23586| 4.27306 | 0.87057|| 30.10441| 34.43731| 12.58199
Table 2: Model and simulated mean response time valuds fer51, - - -, 100



equalskyu. The service rate at servBerial; is equal tou. Thus, service rates at all queussialy, k = N,---,2 are
dependent on the states of the quebetal,_1, - - -, Serialp, andSerial;. Only queuéserial; is state independent.
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