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Abstract

An increasingly popular method of improving I/O performance is by distributing data across
multiple disks in parallel. This organization of data is called striping, and a group of disks
organized in this manner is called a disk array. This work investigates the performance of
striping data in an array of Serial Storage Architecture (SSA) disks connected in a loop topology.
A synthetic I/O workload that allows many parameters to be varied and is representative of
many real workloads is used. Performance metrics of this architecture are computed from
measurements of the experimental data. This study: 1) presents experimental measurements
on the performance of striping data in a loop of SSA disks under different workload scenarios,
2) identifies workload parameters that significantly affect I/O performance in this particular
architecture, 3) demonstrates the optimal amount of I/O parallelism given a specific workload,
and 4) compares these results to previous disk performance studies.

Index Terms: parallel input/output, RAID disks, performance evaluation, I/O performance,
disk striping.

1 Introduction

Magnetic disk performance has long been of concern to computer users and computer designers.
The performance differences between the CPU/memory and secondary storage devices requires im-
provements in the way data is stored and retrieved. Disk arrays provide improved I/O performance
by distributing data across multiple disks in parallel. This organization of data that results in
parallelism of I/O requests is called striping, and an array of disks organized in this format is
called a disk array, or a Redundant Array of Inexpensive Disks (RAID) [7].

In this work, the performance of non—redundant striping on a loop of Serial Storage Architecture
(SSA) disks is evaluated. Synthetic workloads with many parameters that may be varied execute
and issue I/O requests to the disks. These workloads represent a wide variety of real workloads.
Actual measurements of service and response times are taken. Based on measured performance and
the workload parameters varied, specific parameters that most significantly affect performance in
this architecture are identified. These results are compared to previous disk performance studies.

*This work done while a co-op student at IBM T.J. Watson Research Lab, Yorktown Heights, NY.



One of the primary goals of this study is to determine the “amount of parallelism” required to
produce optimal performance for any particular I/O workload executed on this architecture. The
“amount of parallelism” refers to the number of disks across which each I/O request is striped.
The workload parameter that defines the parallelism of an I/O request is the basic striping unit
(BSU) size. The BSU size is the amount of contiguous data written to or read from a single disk.
A logical disk request issued by an application is divided (i.e., striped) into equally sized physical
requests to the disk array. Each logical request is one stripe of data. Each smaller physical request
accesses a different disk, thereby reducing the amount of time to transfer the data.

In related work, Chen and Patterson|[1] use simulations of a non-redundant, disk array to con-
clude that the optimal BSU size depends most significantly on the number of outstanding I/0
requests or multiprogramming level (MPL) and only minimally on the request size. The opti-
mal striping unit is further examined by Chen and Lee[3] in a RAID level 5 via simulation. Parity is
modeled and a read/write ratio is included to investigate the effect of workloads composed of reads
and writes. They conclude that the optimal striping unit for read requests varies inversely with the
number of disks in the array and vice versa for write requests. Merchant and Yu[6] investigate strip-
ing strategies in RAID level 1 architectures utilized by on-line transaction processing workloads.
Weikum and Zabback[9] have proposed file-specific BSU sizes based on file access characteristics
and workload throughput requirements in a non-redundant disk array.

The results of this work both verify and expand upon previous work. Previous work in this
area is primarily based on simulations. The results of this work are derived from experimental
measurements on an interesting disk technology of a loop of Serial Storage Architecture (SSA)
disks (see Figure 1, discussed in more detail in Section 2). The optimal BSU size is determined
on this new disk architecture for a wide variety of workloads. The I/O workload incorporates
the scenario where processes alternate between computation and I/O, whereas previous work has
concentrated on workloads that continually issue I/O requests. It is determined via experimentation
that the MPL and I/O request size are significant workload parameters that affect performance on
this architecture. More generally, it is shown that disk array utilization affects the choice of optimal
BSU size. For a given workload, as the disk array utilization increases, optimal BSU size increases.
Other workload parameters such as the amount of sequentiality of requests and the request type
(read or write) are shown to have little affect on the choice of optimal BSU.

The remaining part of this paper is organized as follows: Section 2 describes the hardware and
software platform, Section 3 describes the experimental results, and conclusions and future work
are given in Section 4.

2 Experimental Platform

2.1 Hardware Description

All experiments are executed on an IBM RS/6000 uniprocessor running an AIX operating system.
Besides the executing experiments, no other applications are executing on the CPU and no other
applications are accessing the disk drives or using the lines connecting them.

The measured experiments are performed on a disk array consisting of four SSA disks connected
in a loop topology with the CPU (see Figure 1). SSA is a serial interface for connecting devices
and is one of the serial storage options of the SCSI-3 standard. It supports SCSI commands such
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Figure 1: SSA Disk Architecture

Disk capacity 4 GB

Average rotational latency | 4.17 ms

Average seek 8.8 ms

Cylinders 4390

Tracks per cylinder 8

Sectors per track 135

Disk transfer rate 7.9 MB per second

Bus communication rate 20 MB per second per route

Table 1: SSA Disk Specifications

as read, write and sense data. It also returns SCSI status codes. Frames are used to transmit data
and are multiplexed; more than one data communication may be sent simultaneously over a single
line. Each disk and the CPU has an adapter with two ports. Each port is capable of two 20 MB/sec
communications, one inbound line and one outbound line, for a total of 40 MB/sec per port. A
disk could be simultaneously sending and receiving data at each port, over each in and outbound
line, resulting in a maximum throughput of 80 MB/sec. The SSA interface uses store and forward
routing and each line is independent of the others resulting in alternate paths to each disk and no
single point of failure. If one line fails, all disks can still be accessed via another route. Table 1
summarizes the hardware specifications.

2.2 Workload Description

A synthetic workload is used to read and write data to the disks. It is composed of a varying
number (1, ---,4) of processes issuing requests to the disk array. This MPL is one of the workloads’
varied parameters. Each process in the experiment has the following variable parameters: 1) I/O
request size, 2) number of disks across which the data that the I/O request is accessing is striped,
3) average delay at a multiprocessor server where each process executes on exactly one CPU and
there is never a queue (i.e., computation time between I/O requests), 4) the percent of I/O requests
from this process that are sequential, and 5) the percent of I/O requests from this process that are
read requests. Table 2 summarizes these parameters and lists their value ranges.



Read probability, r 0, ..., 1.0
Multiprogramming level, m 1, ...,4

Delay time at infinite server, 1/A | 0, ..., 5000 ms
Sequential probability, s 0, ..., 1.0
Request size, ¢ 2 KB, ..., 4 MB
Number of disks striped across, n | 1, 2, 4

Table 2: Workload Parameters and their Value Ranges

Each experiment is comprised of 100 measurement cycles. During a measurement cycle, each
process reads or writes one stripe of data, waits for its completion, experiences a delay at the delay
server (unless the mean delay is set to 0), and then issues the next request The number of processes
issuing parallel I/O requests in each experiment is fixed, and hence the system is modeled as a
closed queuing model with multiprogramming level fixed at m.

For each experiment, the values of the parameters given in Table 2 are fixed. Each process in
an experiment experiences an exponentially distributed delay at the delay server, which models a
multiprocessor capable of dedicating a single CPU to each of its processes and represents computa-
tion between I/O requests. There is no wait time at the delay server for any of its processes. After
the delay, an I/O request of size ¢ is issued to the disk array. The amount of parallelism of this
I/O request is represented by n, the number of disks across which it is striped. Thus, the BSU,
the amount of contiguous data accessed on a single disk, is ¢/n. The process accessing the stripe
of data forks n threads, each responsible for one BSU of ¢/n bytes on one disk. A thread waits
in the queue of its respective disk (queuing discipline is first-come-first-served). When the thread
gets to the head of the disk queue, it is serviced by the disk. An I/O request is complete when
all of its threads join, that is, when all threads have completed accessing their BSU. Note that
for each iteration of the experiment, the first disk across which the stripe is accessed is chosen at
random. If the request will access more than one disk (i.e., n > 1), the second disk is adjacent to
the randomly chosen first disk. For example, if the request is striped across two disks and disk 3 is
the first disk chosen randomly, then the I/O request will access disks 3 and 4. If disk 4 is the first
randomly chosen disk, disk 1 is considered to be the next disk adjacent to it. For each iteration
of the experiment, the request type (read or write) is determined by the read probability, r, and
the beginning sector of a stripe (the same for each BSU on each disk) is determined based upon
the sequential probability, s. If an I/O request is sequential, its beginning sector is adjacent to
the ending sector of the previous request. If it is not sequential, it’s beginning sector is randomly
chosen.

Each BSU is written by one or more consecutive SCSIread or write commands (SCSI.READ_EXTENDED
or SCSI.WRITE_EXTENDED). The maximum SCSI request size is 128 KB, so requests larger than
this are broken into multiple SCSI commands, resulting in increased overhead. SCSI commands
are issued to the raw device avoiding data buffering by the file system. In the SCSI command, a
flag is set to avoid reading ahead by the disk.

Figure 2 is a high level view of the algorithm used. The parent process forks MPL children and
waits. Each child process is responsible for writing one entire stripe of data. A child process uses
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Figure 2: High-Level Workload Algorithm

a pthread to write a single BSU of the data, spawning n pthreads, one per disk in that process’
stripe. The following is the main program algorithm that forks each child process which issues I/0O
requests.

1.

From command line input, initialize workload parameters of MPL, number of disks striped
across, BSU size, mean delay at delay server, the percent of requests that are sequential, the
percent of requests that are read requests.

. Dynamically allocate and align space for data (entire stripe) to be written to the disk array.

. Open devices for raw reads and writes to the disks, thus avoiding any buffering by the file

system.

. Mark all disk queues as empty using an array in a shared memory segment.
. Mark all children not yet finished with their 100 test iterations.

. For each BSU, fill SSA command structure with parameters that are static for this experiment

such as a pointer to portion of buffer to be written from/read to and its SCSI command
structure with the same pointer and length of the buffer.

. Each child that executes uses pthreads to access it’s data stripe, one pthread per disk (i.e.,

a pthread accesses one BSU). A pthread issues SCSI commands to each disk until the BSU
has been accessed. Set values such that pthread stack information remains intact and a join
of all pthreads of a particular child will complete successfully.

. Fork MPL processes and wait for all of them to complete. After all children have completed

execution, the parent process closes all devices and exits.

While the parent process waits, each child process executes the following algorithm.

1.

Initialize those portions of the SSA command structure that may change with each iteration
of this experiment and/or are different for each child process such as the first disk striped
across and beginning sector location on each disk (potentially different for each child process)
and type of request (read or write).

. Begin the 100 test iterations.

. If there’s a mean delay time, wait a randomly generated, exponentially distributed amount

of time.



4. Child process puts itself in shared memory disk queue at first available position. A semaphore
is used to control access to this shared memory segment.

5. Read the beginning time.

6. For all disks needed in this I/O, wait until each disk is acquired. When a single disk in the
stripe is acquired, that BSU access begins by creating a pthread that sends consecutive SCSI
commands to the disk until this BSU access is complete. If it is the first disk acquired, the
time is read in order to later compute wait time. When the pthread has completed the BSU
access, it takes itself off the disk queue and exits.

7. The child process, parent to its pthreads, waits until all pthreads have completed then reads
the time.

8. For each test iteration, wait time and response time are computed and stored in an array in
memory.

9. Non-static test parameters such as request type (read/write) and whether the next stripe
is sequential or not is recomputed and the appropriate parameters in the SSA and SCSI
structures are set and the next test iteration begins.

10. After every child has completed 100 test iterations, the child continues issuing I/O requests
until every child has finished. Then each child writes its response times and wait times to a
separate file identified by its process id and exits.

3 Experimental Results

The performance metric used in this work is average response time. Throughput can then be com-
puted using Little’s Law!. Because the experiments model a closed queueing system, throughput
is inversely proportional to response time. As average response time increases, average throughput
decreases.

Experimental results are presented in four sets depending on the three workload parameters r,
read probability, s, sequential probability, and 1/X, mean delay. These four experimental sets are:
1) random read requests, no delay (r = 1,s = 0, 1/XA = 0), 2) random write requests, no delay
(r =0,s =0, 1/Xx = 0), 3) sequential write requests, no delay (r = 0,s = 1, 1/X = 0), 4) and
random read requests with varying delays (r = 1,s = 0). For each of these sets of experiments
the remaining workload parameters, of multiprogramming level, request size, and number of disks
striped across are varied. The rest of this section focuses on the results for each of the experimental
sets.

3.1 Random, Read and Write Requests with no Delay

In this experiment, stripes are read from or written to the disk array with the beginning sector
of the BSU’s randomly chosen. The flag set in the SCSI command that prohibits the disk from

1Little’s Law implies that Throughput — Number of processes — Request sizexMPL

Response time Response time




reading ahead does not affect random reads. It is left to future work to incorporate the effects of
reading ahead for sequential read requests, thereby determining the exact performance impact of
this buffering. Each BSU at a disk has the same beginning sector position. There is no delay at
the delay server. An example of real workloads represented by these synthetic workloads include
on-line transaction processing where I/O requests are randomly distributed throughout the file
system with little or no computation incurred between requests.

Figure 3 plots the average of measured read request response times for varying request sizes
striped across n = 1,2,4 disks. Each separate graph plots response times for a differing number of
requests in the system. When the MPL is 2, there are two processes issuing I/O requests to the
disk array, each with its own beginning BSU sector per experiment iteration. Since the BSU size is
q/n, for each point in the graph the BSU size changes. For example, in the first graph with MPL =
1, the BSU size for a 4 MB stripe distributed across 4 disks is 1 MB which, in this case, results in
lowest response time compared to a BSU size of 2 MB or 4 MB when this stripe is distributed across
2 and 1 disk(s), respectively. While it is advantageous to stripe a 4 MB request, the performance
of the smallest I/O request investigated, 2KB, suffers from striping, from a decrease in BSU size.
Note, however, that in the 2 KB case, from no striping response time increases at 2 disks (a BSU
size of 1 KB) then decreases at 4 disks (a BSU size of 512 bytes). The increase at 2 disks results
from an increase in seek? and rotational delay®. The disk arms and spindles are not synchronized
and at each iteration of the experiment a new set of 2 disks is chosen so that the arms of the 2
selected disks may never be synchronized. When the arms are not synchronized, overall seek time,
the time for both arms to seek to the desired sector, increases. It is equal to the maximum of
both seek times. At MPL = 1 when the 2 KB request is striped across all four disks in the array,
the arms are always synchronized and the increase in seek time is not experienced. If the disk
array were composed of more than four disks, there would be no decrease in response time at four
disks. However, this anomaly would become evident for some request sizes as the stripe accessed an
increasing number of disks in the array. For request sizes larger than 2 KB, the same reduction in
the maximum seek time is experienced, but is not as clearly evident because a reduction in transfer
time* outweighs it. At higher MPL’s, response time is also significantly affected by the request
size. At MPL = 4, a 4 MB request size gains a decrease of 17% from no striping to striping across
all four disks whereas at MPL = 1, the decrease is 65%. Each request size experiences a different
speed up (or slow down) in response time as the request is striped across an increasing number of
disks. The graph clearly indicates that request size significantly affects performance.

Performance of striped I/O requests is also significantly affected by the MPL. In Figure 4, a
different view of the data in Figure 3, note the performance of the 8 KB request in the first graph
as the MPL increases. When MPL = 1, as the request is striped across more disks, response time
changes little. An 8 KB request experiences a slight decrease in response time when it is distributed
across two disks and its BSU size is 4 KB. As the MPL increases, response time from no striping to
striping across four disks increases until at MPL = 4, the increase in response time is almost 300%.
The performance degradation of the 8 KB request increases as the MPL increases. For the 4 MB
request, at MPL = 1, response time decreases dramatically from no striping to striping across four
disks, For all request sizes, as the MPL increases the benefit from striping decreases. It is better

2Seek time is the time for the read/write head to be positioned at the appropriate cylinder.
3Rotational latency is the time for the requested sector to rotate under the read/write head.
“Transfer time is the time taken to transfer data from the disk to the I/O bus and vise-versa.



to reduce the amount of data striping via an increase in the BSU size so that more I/O requests
may be serviced concurrently.

Figure 5 graphs the optimal BSU size for each request size at each MPL. The optimal BSU
size is dependent upon the MPL and the request size. For 2 KB, the optimal BSU size is 2 KB
regardless of MPL. The same is true for 8 KB, ..., 128 KB. The optimal BSU size for these request
sizes is the request size itself. For this hardware platform, it is not beneficial to stripe data less
than or equal to 128 KB in size. At MPL = 1, request sizes of 512 KB and 1 MB achieve their
best response times with BSU sizes of 256 KB, across 2 disks and 4 disks, respectively. As the
MPL increases, the optimal BSU size increases to 512 KB where the 512 KB request is not striped
and the 1 MB request is striped across 2 disks. This optimal BSU size remains unchanged through
MPL = 4. A request size of 2 MB has an optimal BSU size of 512 KB until the MPL = 4 where
the optimal BSU size changes to 1 MB. Thus, it is better to stripe a 2 MB request across 4 disks
until MPL = 4 where the best response time is reached when it is striped across only two disks.
The optimal BSU size for a 2 MB request is 512 KB for MPL =1, 2 and 1 MB for MPL = 3, 4. For
a request size of 4 MB, the optimal BSU is 1 MB, regardless of MPL. Note that several response
times were almost identical as in the case of a 4 MB request with MPL = 2, striped across 2 disks
or 4. In these cases, the optimal BSU size was chosen as the larger of the two. The addition of
more disks accessed doesn’t result in any performance gain but does utilize disks that could be
used by another I/O request. These trends verify and expand upon Chen and Patterson’s[1] work.
Chen and Patterson show, via simulations, that the selection of BSU for a workload is based on
the multiprogramming level of the system. The previous three graphs in Figures 3, 4, and 5 show
that both MPL and request sizes are important factors in the choice of BSU sizes.

As in other hardware platforms, performance improvements resulting from striping occur when
request sizes increase to the point where a major component of disk service time is the transfer
time. In general, smaller I/O requests do not benefit from striping. The media transfer time is
negligible compared to the seek and rotate times. Therefore, the overhead involved in increased
seek and rotate times when striping across more disks is greater than the reduction in disk transfer
time. For large request sizes, where disk transfer time is the major component of disk service time,
the reduction in transfer time due to striping across more disks is significant and outweighs the
increase in seek/rotate times.

Response times for write requests whose beginning sector is randomly generated for MPL = 1, 2
are shown in Figure 6. Measurements are the result of writing to the disks themselves since delayed
write buffering has been avoided by opening the raw device. Since the array has no redundant data
as in a RAID level 5, write requests do not generate additional data to be written. Redundancy and
write buffering are left for future work. The response time curves of this experimental set follow
the response time curves of the random, read requests. Write requests result in slightly higher
response times because of the additional time needed to more accurately position the read/write
head in order to write data to the device. Although performance is affected by the request type,
the optimal BSU size is not. Whether a request is a read or write request in a non-redundant disk
array, the optimal BSU size is the same.



Response Time (seconds)

Response Time (seconds)

Multiprogramming Level = 1 Multiprogramming Level =2
BSU=q  BSU=g2 " Bsusqa | [BSU=q  Bsu=q2 BSU=g/4
07 \’/;
06 -|Request Size (q)
o5t J 4MB
04 B
77777777777777777777777777777777 2MB
03 —
02 B 1MB
LTI I e 1
o e 512KB
o | |
1 2 3 4 1 2 3 4
Number of Disks Striped Across Number of Disks Striped Across — — -128KB
. ] : ) 32KB
. Multiprogramming Level =3 12 Multiprogramming Level =4
; : : ; :
1 B
08 =
2KB

Number of Disks Striped Across

Number of Disks Striped Across

Figure 3: Response Times for Workload - Random Reads for varying Request Sizes

Response Time (seconds)

Response Time (seconds)

Request Size= 8KB Request Size= 128 KB
02 T T 02

BSU=8K  pgg= 4K BSU=2K BSU=128K BSU= 64K  BSU=32K
0181 -~ o018 A
016 - ’ 1 ow.h 1

014 T B
014 R

012 4
- _-| oxf N

01p PR -7
-7 01 L= N
0.08 - - - 4 .-
oo e ] oo - 1
ool oI : 1 oosk R
b — 1 o —
o \ . | .
1 2 3 4 0'021 2 3
Request Size= 1 MB Request Size= 4 MB
04 12
BSU=IM  BSU=512K BSU=256K _ BSU=a2m " BSU=1Mm

035 e T 1
. L B
03F T ooop--mmmmea i
P 1 osf T
07|’ N

02F g

2 3
Number of Disks Striped Across

02 . .

2 3
Number of Disks Striped Across

Figure 4: Response Times for Workload - Random Reads for varying MPLs



g
T
|

g

MPL=1 MPL=2 MPL=3 MPL=4

Optimal BSU (KBytes)
5 8
T T
| |

g

-
-
=

OpmMOmomMmMOm M §m§§§§m§ gmg@ggmg [iaReagsalsafsalealoallien]

XYXXXSS S X > X > XYXXXSS S

NBHEITST NOYRYTNT NTYRNAS & NEYRINTI T
— L0 — —n — 0

Figure 5: Optimal BSU sizes - Random Reads for varying Request Sizes

Multiprogramming Level = 1 Multiprogramming Level = 2

0.8 - - 09 - -

08 —

07 -
0.6 - -

051 -

04 B
03 B

02 B

Response Time (seconds)

01r !

1 2 3 4 1 2 3 4
Number of Disks Striped Across Number of Disks Striped Across
o o
4 X
[ee] N

4MB
... 2MB
1MB
... 512KB
_ _ . 128KB
2KB

Request Size (q)

Figure 6: Response Times for Workload - Random Writes for varying Request Sizes

10



3.2 Sequential Accesses with No Delay

This experiment involves processes repeatedly issuing 100 percent sequential requests to the disk
array (as opposed to random in the previous cases). Similar real workloads include multimedia video
and audio and data back up and restore. For each process, the beginning sector of subsequent I/0O
requests begins at the sector adjacent to the last sector of the previous request. The first sector of
each request is generated randomly. Read ahead buffering has been disabled, therefore read request
results are similar to write request results excepting the additional overhead time needed to write
data to the device. Future work will include incorporating the effects of buffering data that has
been read ahead.

Figure 7 graphs response time for this experimental suite. When the MPL = 1, I/O requests
experience almost no seek time since the beginning sector is adjacent to the end of the previously
read BSU. More generally, this is true for any MPL in the particular case where a disk has been idle
since the last I/O serviced from the same current process. At MPL = 1, sequential write requests
have a slightly lower response time, more evident for smaller requests where seek time makes up a
large portion of service time, than random write requests. For large I/O requests at any MPL, the
decrease in seek time is an insignificant portion of service time and the gain of sequential requests
is negligible. At higher MPL’s, the decrease in seek time is most often lost because a disk arm has
moved as a result of a separate I/O request. Because the gain from sequential accesses is either
lost (at MPL’s higher than 1) or insignificant (for larger request sizes), the response time curves of
sequential write requests follows the response time curves of random read and write requests. Thus,
the amount of parallelism (i.e., optimal BSU size) is insensitive to the percentage of sequentiality
in the workload.

3.3 Accesses with Delay

In this experimental suite, every process issues I/O requests, waits for its completion, experiences
a delay at the delay server, and then issues the next request. This workload might represent
some scientific computing applications such as matrix manipulations. The delay is exponentially
distributed with a mean given as an input parameter to the experiment. The delay server models
a multiprocessor server with each process allocated exactly one CPU. Thus, there is never a queue
of processes waiting for a CPU.

Figure 8 graphs the response times of 2 MB random read requests for different mean delay
times. The graph plotting no delay is shown for comparison purposes. These differing delay times
result in a change in the utilization of the disk array. As the average delay increases, a process
spends a higher percentage of time at the delay server and a smaller percentage of time at the disk
array, leaving it idle more frequently. Disk array utilization decreases as the mean delay increases.
The addition of delay between requests has the same affect as decreasing the MPL at the disk
array. For example, response times curves at MPL = 2 when the mean delay is 345 ms is similar
to the response time curve when mean delay is 0 and the MPL is set to 1. There is enough delay
between requests that each separate process has almost sole access to the disk array. When the
MPL = 3 with a mean delay of 345 ms, response times follow the same trend as with no delay and
MPL = 1, but are slightly higher indicating that the disk array is slightly more utilized than the
base case when MPL = 1. This higher utilization results in some queueing time which leads to a
slight increase in response time. When the MPL = 4 and the mean delay is 1000 ms, the response
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Figure 7: Response Times for Workload - Sequential Writes for varying Request Sizes

time curve is similar to no delay and an MPL = 1. For MPL = 4 with a mean delay of 345 ms,
the response time curve follows the same trend as with MPL = 1 and no delay but is from 18%
to 125% higher from the addition of queueing time waiting for one or more disks that are not free.
Compared to MPL = 2 with no delay, random reads at MPL = 4 and a mean delay of 345 ms
have response times differing by 2% to 26% but the response time curve is not as flat. Thus, there
is not enough queueing time to negate the benefits of striping, but enough to increase response
time substantially. In general, as mean delay decreases, the disk array utilization increases and the
benefits of striping data decreases. An increase in the mean delay has the same affect as lowering
the MPL. Just as MPL significantly effects the choice of optimal BSU size, more generally, so does
the utilization of the disk array.

3.4 Comparison with Previous Disk Performance Studies

The performance predictions of analytic models introduced by Chen and Patterson[1] and Lee and
Katz[5] are compared with the experimental results pertaining to SSA disks. Chen and Patterson|[1]
use simulations of a non-redundant 16-disk array system to derive an equation for the BSU as:
S x (mean disk positioning time®) x (disk transfer rate) * (MPL — 1) + sector size, where S refers
to the MPL-slope coefficient and is found to be approximately 1/4 for a 16-disk array system. In
their formula, the request size is not a factor in the computation of the BSU. These experimental
results clearly show that both request size and MPL are significant workload parameters in the
computation of BSU size. The value of S given in [1] is particular to a 16-disk array system and

®Positioning time refers to the sum of seek time and rotational latency.
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Figure 8: Response Times for Workload - Random Reads with Delay for varying MPLs

cannot be used for the 4-disk array SSA system used in the experimental platform. Hence, it is not
applicable.

Lee and Katz[5] develop an analytic model of non-redundant disk arrays and use simulations
to validate their model. They derive the following equation for BSU:

positioning time * transfer rate * (MPL -1 ) * request size
number of disks
They conclude that both the request size and the MPL are important workload parameters in

determining the BSU and this is consistent with the experimental results shown here. Table 3
compares the BSU sizes determined by the Lee and Katz model with the experimental results. The
table shows that the BSU sizes computed by the Lee and Katz model are, in general, much smaller
than that shown by the experimental results. This indicates that a better model is required and
the working paper[8] deals with this aspect.

4 Conclusions

Previous work has used simulations of classical disk arrays and analytical models to identify work-
load parameters that determine the optimal amount of parallelism for I/O requests. This work
verifies previous results and expands upon it. Experimental data on a SSA loop of disks is used
to identify workload parameters that significantly affect the choice of BSU size. It is verified that
for this architecture the request size and multiprogramming level affect the optimal amount of
parallelism in the disk array. More generally, it is shown that disk array utilization has a significant
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Request Size (KB) || BSU (KB) when MPL = 2 | BSU (KB) when MPL = 4
Experimental | Lee/Katz || Experimental | Lee/Katz

8 8 14 8 25

128 128 58 128 100

1024 512 164 512 284

2048 512 232 2048 401

4096 1024 328 1024 568

Table 3: Comparison with the Lee and Katz Model

impact on the choice of BSU size. It is also found that the workload parameters of I/O sequential-
ity and request type do not affect the optimal amount of parallelism when read ahead and write
buffering have been disabled.

Future work includes enabling read ahead and write buffering to determining the performance
significance of these parameters by comparing the data to measurements without this buffering.
Redundancy as in a RAID Level 5 disk array will also be incorporated into the disk array and the
read and write workloads. Finally, this work is leading to a file system that attempts to dynamically
determine a “good” BSU size for a file based upon such parameters as average request size and
average measured disk array utilization.
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