IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 12, DECEMBER 2001 1

Response Time Analysis of
Parallel Computer and Storage Systems

Elizabeth Varki, Member, IEEE

Abstract—Fork-join structures have gained increased importance in recent years as a means of modeling parallelism in computer and
storage systems. The basic fork-join model is one in which a job arriving at a parallel system splits into K independent tasks that are
assigned to K unique, homogeneous servers. In this paper, a simple response time approximation is derived for parallel systems with
exponential service time distributions. The approximation holds for networks modeling several devices, both parallel and nonparallel.
(In the case of closed networks containing a stand-alone parallel system, a mean response time bound is derived.) In addition, the
response time approximation is extended to cover the more realistic case wherein a job splits into an arbitrary number of tasks upon
arrival at a parallel system. Simulation results for closed networks with stand-alone parallel subsystems and exponential service time
distributions indicate that the response time approximation is, on average, within 3 percent of the seeded response times. Similarly,
simulation results with nonexponential distributions also indicate that the response time approximation is close to the seeded values.
Potential applications of our results include the modeling of data placement in disk arrays and the execution of parallel programs in

multiprocessor and distributed systems.

Index Terms—Performance evaluation, fork-join networks, parallel computer and storage systems, mean-value analysis.

1 INTRODUCTION

THE power of parallelism is being exploited in computing
and storage systems because of the increased efficiency
it provides. In the case of parallel computing, a program
divides into subtasks that execute in parallel on different
nodes of a system. In the case of storage systems, it is an
I/O request that is distributed across multiple disks. In
order to predict the performance of such systems, it
becomes important to be able to model the parallel
behavior.

The performance of parallel systems is often analyzed
using queueing models since they provide a favorable
balance between efficiency and accuracy [14]. Queueing
systems that model parallel devices are called fork-join
systems. The name is derived from the manner in which
jobs arriving at a parallel system are executed. An arriving
job forks into tasks that execute independently on different
service centers of a parallel device. On completing execu-
tion, each task waits at the join point for its sibling tasks to
complete execution. A job finally leaves the parallel device
once all its tasks complete execution.

The parameters of the fork-join model are introduced in
Fig. 1, which show both an open and a closed parallel
network. The upper half of Fig. 1 shows an open
network containing a parallel subsystem, Py, that consists
of K > 1 identical service centers with exponential service
time distributions with mean s = 1. Upon arrival at the
parallel subsystem, a job forks into K independent and
identical tasks, where tasks k, kK = 1,2, - - -, K are assigned to
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the kth service center. The service discipline is first-come-
first-served. The interarrival time to the parallel subsystem
is exponentially distributed with mean A~'. The lower half
of Fig. 1 shows a closed network where jobs arrive at Pg
from a server with mean service time A~

The fork-join structure is central to all parallel systems
and, hence, has been extensively studied in performance
evaluation. See Section 5 for a short description of prior
work. Though the job structure is simple, the fork-join
network is non-product-form [5]. Hence, none of the
solution techniques developed for product-form systems
can be used in the modeling and analysis of parallel
systems. Consequently, much of the performance evalua-
tion work in fork-join systems has been in the development
of approximation or bounding techniques for the mean
response time of such systems. Our work is along the lines
of this earlier literature in terms of coming up with close
approximations for the mean response time of fork join
systems. Where this paper differs from the earlier papers is
that 1) the response time approximation given here
considers the effect of other devices (and not just that of a
stand-alone parallel subsystem) on the mean response time
of the parallel subsystem in a closed network and 2) the
performance technique based on the approximation is
computationally efficient for increasing values of K and
workload intensity. Further, the paper provides exact mean
response time values for stand-alone P, subsystems and
response time bounds for Px (K > 2) stand-alone parallel
subsystems in closed networks. The response time
approximation is also shown to be valid for parallel
subsystems with nonexponential servers and for parallel
subsystems where arriving jobs split into an arbitrary
number of tasks. The response time approximation holds
for parallel subsystems in both closed and open networks.
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Fig. 1. K-sibling fork-join model.

However, one of the arguments in the approximation is
the longest arrival queue length at a server from among
the K servers and this argument is difficult to compute for
parallel subsystems in open networks. Consequently, a
limitation of this paper is that no performance evaluation
techniques for parallel subsystems in open networks are
provided.

The notation used in the paper is given in Appendix B;
the superscript K being used only when required explicitly.
The rest of the paper is organized as follows: The next
section presents the derivation of the response time
expression. In Section 3, the response time expression is
extended to parallel systems where arriving jobs split
into an arbitrary number of tasks. Section 4 presents
performance techniques for different types of closed
networks based on the response time approximation.
Section 5 presents a brief description of prior work in
the area of fork-join networks. Finally, the conclusion and
future research directions are provided in Section 6.

2 DERIVATION OF RESPONSE TIME APPROXIMATION

The derivation of the response time approximation is
approached at two levels. First, a simple intuitive argument
for the approximation is provided by defining a simple way
of looking at jobs executing on parallel systems. Second, a
more formal proof of the approximation is provided by
analyzing parallel systems from alternative frameworks

u
CLOSED MODEL

and employing Markov diagrams. Note that the intuitive
argument is independent of the second, more formal proof.

2.1 Intuitive Argument for
Response Time Approximation

By definition, the response time of a job in a parallel system
is the time taken from its arrival instant until all its tasks at
K independent servers finish execution. Typically, this is
expressed as the sum of a job’s service time and wait time.
However, since tasks of a job are assigned to independent
servers, it is possible for the execution time of jobs to
“overlap” in that some tasks of the arriving job are executed
along with tasks of preceding and following jobs. For
example, task 1 of job 1 could be executing on server A
while task 1 of job 2 could be executing on server B as task 2
of job 1 has finished execution and is at the join point. Thus,
in parallel systems, the distinction between when a job is
waiting and when it is being serviced gets blurry because of
the overlap in execution of tasks of different jobs. Accord-
ingly, it becomes important to be able to come up with a set
of definitions (for the wait time and service time of a job)
which avoids the confusion generated by the task overlaps
of different jobs in a parallel systems.

Accordingly, for simplicity in argument, we define the
following terms as they apply to parallel systems:

Definition 1. A job is at the head of a parallel system when there
are no jobs ahead of it in the parallel system or, equivalently,
when the last task of this job starts executing. (When a job
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reaches the head of the parallel system, there are no tasks of

earlier arrived jobs executing at any of the service centers or,

waiting at the join point.)

Here, the last task refers to the last task of a job to reach
the head of its queue and start executing from among the K
tasks of the job. (Note that the last task to start executing
does not necessarily finish last as its service time depends
on the pick from the distribution describing service times.)

Definition 2. The wait time of a job in a parallel system is the
time taken from arrival instant until the job reaches the head of
the parallel system or, equivalently, the time taken from arrival
instant until its last task starts executing.

Definition 3. The service time of a job in a parallel system is the
time taken from the instant the job gets to the head of the
parallel system until this job leaves the join point or,
equivalently, the time from when the last task begins executing
until this job leaves the join point.

A well-known result in probability theory is that when
there are K identical tasks executing on parallel servers, the
time taken to finish executing the K tasks is simply s * Ok,
the mean of the Kth order statistic of task execution times,
where s represents the mean execution time of a task and
Ok is a scaling factor that is dependent on the service time
distribution of a server. Since the service time of a job has
been defined to start only when its last task begins
executing, it is possible that when this job starts service,
some or all of its remaining K —1 tasks have finished
execution and are at the join point. Hence, the mean service
time of a job executing on parallel servers is at most s * O.

Similarly, the wait time of a job is the time elapsed
between its arrival instant until its last task begins
executing. When the last task begins executing, all its
sibling tasks must be either executing or waiting at the join
point. In other words, the wait time of a job is the maximum
of the K wait times of its individual tasks which is equal to
the mean of the Kth order statistic of task wait times. Since
this value is difficult to compute, we generate an optimistic
bound for the mean job wait time by using the mean task wait
time at the longest server queue. Let Ap, represent the mean
number of waiting tasks ahead of this job’s task at the
longest server queue. Then, on average, the task assigned to
this longest queue would begin executing only after a time
lapse of sx Ap,, where s is the average time taken to
execute a task. Thus, the mean wait time of a job must be at
least s * Ap,..

Now, the response time of a job in a parallel system is
equal to the sum of its service time and wait time. The mean
service time of a job has been to shown to be at most equal
to s * O, whereas the mean wait time has been shown to be
at least equal to s Ap,. Since one is an upper bound and
the other is a lower bound, a response time bound cannot
be defined. However, we can potentially derive an
approximation by considering the following. We know
that the service time is bounded between s and s * Og.
Since the distribution of service time of the job is unknown
between these two values, we can employ the average of
these two values as an approximation. This is equivalent to

assuming a uniform (and noninformed) distribution over
the range s and s * Og. Similarly, since the wait time for a
job is the maximum of the waiting times of the individual
tasks and we have considered the mean wait time of the
task at the longest queue, we would expect the actual job
wait time to be not far from the bound s * Ap,. Hence, it is
reasonable to state that an approximate value of the mean
response time Rp, of a parallel system can be written as:

Rp, == s[Ok + Ap,], (1)

where s is the mean task execution time, O is the Kth order-
statistic scaling factor, and Ap, is the maximum number of
tasks at a server queue seen by a job just prior to arrival at
Pg. Since every job within Px must have one task at this
longest queue, the term Ap, also represents the mean
number of jobs in Px seen upon arrival.

As of this point, we have not made any assumption
about the distribution of task service times and, hence, the
result above applies to any parallel system with an arbitrary
service time distribution. However, if we were to impose
the restriction of an exponential distribution, then the
scaling factor Ok is equal to the Kth harmonic number
Hg (= Ele,li). In the next section, we formally prove the
approximation in the instance of parallel systems with
exponential service time distributions. The approximation
is shown to be a strict equality in the case of stand-alone P,
in closed networks. In all other cases, which include parallel
subsystems (not necessarily stand-alone Px subsystems) in
both open and closed networks, the equation is shown to
be a bound.

2.2 Derivation of Response Time Approximation
Using Alternate Representations of Py

The response time expression is formally derived here for
parallel subsystems with exponential task service times by
employing alternate representations of Px and then
equating the parameters of the alternate, but equivalent
representations. Note that the result obtained here with
exponential service time distributions is a pessimistic
bound (and not just an approximation) for Pk-.

The three models or alternate representations of the basic
Py model are labeled by us as the serialjoin model, the
state-dependent model, and the hybrid model. Of these, the
first has been discussed in the literature (though not
explicitly referred to as a “serialjoin” model). Detailed
explanations of the alternate, but equivalent representations
follow.

2.2.1 Equivalent Models of Py

Serial-Join Model. In [22], the response time of a job in a
parallel subsystem is divided into two phases, namely, the
response time of a task at a server queue and the time spent
by a job at the join point. For purposes of exposition, we
refer to this representation as the serial-join model, where
the time spent in the two phases is represented as the time
spent at two nonparallel subsystems S and SJ. The mean
service time at .S, is equal to that of a service center within
Pg. The subsystem S; in turn models the average delay
encountered by a job at the join point of Px (Fig. 2).
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Fig. 2. Equivalent serial-join model of Py.

State-Dependent Model. This representation of Py is
derived from a Markov analysis of Pg. The state of P is
represented by the vector (ni,---,ng), each element of
which represents the number of tasks at each of the K servers
of Pk. Since all service centers are identical, the n;s are
ordered such that ny < ny < --- < ng. Thus, ng is equal to
the number of tasks at the longest server queue or,
equivalently, represents the total number of jobs in Pg
since each job is constrained to split into K tasks, one for
each server.

Example 1. Consider a 4-sibling fork-join subsystem, P;.

The state (3, 3, 3, 3) represents a state where there are
three jobs in P;. All four tasks of each job are at the
queues (since n; = 3 for all four servers) and there are no
tasks at the join point.

The state (0, 1, 2, 3) also represents a state with three
jobs in Py (since ng = 3). ny = 0 implies that the first task
of all three jobs has finished execution. ny = 1 implies
that jobs (the last job) has three active tasks while both
joby and job; have less than three active tasks. nz = 2
implies that jobs has two active tasks while job; has one
active task.
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Fig. 3. Markov diagram of P,.
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Fig. 3 shows the Markov diagram for P in a network,
whether closed or open. The diagram maps the states of Px
when there are zero, one, two, and three jobs in P. Each
column of the diagram represents states with n number of
jobs in the subsystem. Each row of the diagram represents
states with n tasks at the join point. The horizontal
transition arcs represent the arrival of jobs at P at rate .
The downward transition arcs, #1, represent the movement
of a task to the join point. The diagonal transition arcs, t,
represent the movement of the last task of a job to the join
point at which instant this job departs P,. The time spent by
ajob in P, can be factored into two phases, namely, phase,
and phase;, in order. In phases, two tasks of the job are
waiting for or receiving, service at the service centers of P,.
In phase;, only one task of the job is at the service center
while its sibling task waits at the join point.

Next, we analyze the Markov diagram of P; given in
Fig. 4. The horizontal transition arcs again represent the
movement of jobs into the parallel subsystem at rate .
The arcs f, (k=1,2,3) represent the movement of the
kth task of a job to the join point. Just as in the case of
P, the response time of a job in P; can be factored into three
phases. In general, the response time of a job in Px can be
factored into K phases, namely, phaseg,---,phase;, in
order, where phase;, represents the situation when k tasks
of the job are at the service centers. A phase;, ends with the
movement of one of the executing tasks to the join point, at
which point the corresponding job moves to phasey_; of its
response time.

2 jobs in P2
3 jobs in P2

3 tasks in join pt
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The time spent completing each phase of a job’s response
time in Px can be viewed as the time spent getting
service at K nonparallel subsystems SX SK ... SK (or,
Sk, Sk-1,---,51 for notational simplicity), in order. A job
at server Sy, is in phase;, of its response time. The parallel
subsystem Px can be mapped onto K nonparallel
subsystems Sk, Sk_1,---,51, as shown in Fig. 5. The mean
service rate at service center Sj varies according to the
number of customers at service centers Sy_1,---, S, and S
as analyzed from the Markov process for Px. (Refer to
Appendix A for details.)

Let ng, represent the number of jobs in S;. By
construction, ng, represents the number of jobs in Px with
k active tasks. A state, (ng,;ns, 3NS5+ ;M85 Mg, ), of the
state-dependent model is equivalent to the state

(nSI{7nSI\' LT R L i L ol (T PR
ng, +..+ns, +ng,,ng, +..+ns, + 77,51)

"o

of Py. For purposes of distinction, the separator “;
between the elements of the vector representing a state of

"o

the state-dependent model, whereas the separator “,” is

is used
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used between the elements of a vector representing a state
of Pk. The next example illustrates this mapping.

Example 2. State (3, 3, 3, 3) of P; represents the situation
when all tasks of the three jobs within P, are at the
servers. Thus, all three jobs are in the first phase (phases)
of their response time within P; which implies that all
three jobs are at Sy. This state is equal to the state (3; 0; 0;
0) of the state-dependent model.

State (0, 1, 2, 3) of P, represents the situation with job;
in phase; of its response time with one active task; job, in
phasey of its response time with two active tasks; jobs in
phases of its response time with three active tasks. Thus,
joby is at server Sy, jobs is at Sy, and jobs is at S3. This is
equivalent to state (0; 1; 1; 1) of the state-dependent
model.

Hybrid Model. The hybrid model is a combination of the
parallel subsystem and the state dependent model. This
model is based on the fact that, once the first task of a job
arriving at Px is executed, the behavior of the remaining
K — 1 tasks of this job can be modeled by a Px_; subsystem.
The response time of the first task of the job is modeled by
the state-dependent server Sk. Thus, the servers Sx and
Px_; of the hybrid system are equivalent to the
subsystem Pr (Fig. 6).

In general, once the first & tasks of a job are executed, the
behavior of the remaining tasks of the job can be
modeled by a Px_j subsystem. The response time of
the first k tasks can be modeled by state-dependent
servers Sk, Sk—1, --,Sk—k+1. Thus, the system containing
servers S, Sk-1,---,Sk-k41 and Pg_j are equivalent to
subsystem Pg. In general, state (ng,;ng, ;- -;ng,;ng ) of
the state-dependent model is equivalent to state

NS (77/5‘_71,
NS, + ..+ ns, =+ nSl))

(nSI(;nSK,l; ©

ng, , +Ng ,,-

of a hybrid model containing Sk, -- -, Sy and P;_;. The next
example illustrates this mapping.

Example 3. State (3, 3, 3, 3) of P, is equivalent to state (3; 0; 0;

0) of the state-dependent model as shown in Example 2.

This state is equal to state (3; (0, 0, 0)) of the hybrid

[ —TIC)
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model containing Sy, Ps. This state is also equal to state

(3; 0; (0, 0)) of the hybrid model containing Sy, S3, Ps.

State (0, 1, 2, 3) of P, is equivalent to state (0; 1; 1; 1) in
the state-dependent model as shown in Example 2. The
first task of all three jobs are at the join point, so there
are no jobs at Sy. Since all three jobs have less than four
active tasks, their state can be represented by states in Ps.
This state is equal to state (0; (1, 2, 3)) of the hybrid model
containing Sy, Ps.

Jobz has three executing tasks and is in phasez of its
response time. Thus, jobs is at server Ss;. Both joby and
job; have less than three active tasks and, therefore,
their state can be represented by states in /. This state
is equal to state (0;1;(1,2)) of the hybrid model
containing Sy, S3, Ps.

Equivalence of Models. The serial-join model has been
established to be equivalent to Pk in [21]. In this section,
two other alternate representations of Px are shown,
namely, the state-dependent model and the hybrid model.
Now, every state in Px can be mapped to a state in the state-
dependent model and a state in the hybrid model and vice-
versa. By construction, the rates along the transition arcs in
the Markov diagrams for Py, the state-dependent model,
and the hybrid model are all equal. Hence, the parallel
subsystem Pk, its state-dependent model, and its hybrid
model have identical Markov processes and are equivalent
models. The Markov diagrams of the state-dependent
model and the hybrid model are shown in the Appendix
in Fig. 12 and Fig. 13, respectively.

2.2.2 Formal Derivation

The response time expression is derived by equating Rp,,
the mean response time of Py, to response times of the
equivalent models as shown below.

1. Rp; = Rs, + Rg; of the serialjoin model.
2.

Rp, = Rg, + Rg, , + -+ Rg,

of the state-dependent model.
3. Rp, = Rg, + Rp,_, of the hybrid model.
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Next, the response time of servers S, and S; of the serial-
join model are equated to parameters in the state-dependent
model and the hybrid model as explained in Lemmas 2.1
and 2.2.

Lemma 2.1. Rg, = s[1 + Ag,], where

—1
+ —ASKSK—I +ee

As, = Asys, %

2 1
+ ?ASKSE + ?ASKSI .

Here, Ag, refers to the mean number of jobs in S, seen just
prior to arrival at S, and Ag, s, represents the mean number of
jobs in S, seen by a job just prior to arrival at Sk.

Proof. Given in Appendix B. O
Lemma 2.2. Rg, = %RS{\», when K =2

1
== [RPI +Rpx, oo+ Rpx + RS{\} VK > 2.
Proof. Given in Appendix C. O

Next, Rp, is written as the sum of Rg, and Ryg;. This leads
to Rp, being expressed in terms of Hx and the arrival
instant queue lengths at subsystems in the state-dependent
model as shown in Lemma 2.3.

Lemma 2.3. Rp, = s[Hx + AQK], where
AQE =

k
<A SL{\’ S}{\’ +

-1 1
—Ask(\'siil +- EAgf’g{()

1 k—2 1
% (Asg\;ls;gl + kas;g R ] ASA 51\)
1 k 1
1 k 4 1
T2 (ASA 353 k 3ASI‘ SE, Tt 3Asﬁ SB)

1
+ + (AS}'\ SI\ + Aslx SI\ ) + 5 (Asf\slh) 5

where Ag,s, represents the mean number of jobs in S; seen by a
job just prior to arrival at S;.

Proof. Given in Appendix D. O

The exact response time equation given in the above
lemma is complicated due to the term AQx which refers to
parameters in the state-dependent model. The next lemma
addresses this issue.

Lemma 2.4. AQx < Ap,.
Proof. Given in Appendix E. O

The main result of the paper follows directly from
Lemmas 2.3 and 2.4.

Theorem 2.1. For parallel subsystems with homogeneous,
exponential servers in open and closed networks,

Rp, < s[Hk + Ap,],

where Rp, is the mean response time of Pr, s is the mean
service time of a server within Px, Hg is the Kth harmonic

number, and Ap, is the mean number of jobs in P seen by an
arriving job.

Corollary 2.1. For a closed network containing a stand-alone P,
sz = S[HQ + Apz}.

Proof. Given in Appendix F. m|

3 EXTENSION OF THE FORK-JOIN MODEL

In the model considered so far, each job arriving at Px is
constrained to fork into K tasks, which are assigned to
the K service centers of Pg. This constraint is removed
here. A job arriving at Px could fork into an integral
number of tasks less than or equal to K and these tasks are
uniquely assigned to the K service centers (with at most one
task of the same job assigned to a server) based on some
known probability distribution. Thus, in this model, the
probability that a server within Px is assigned a task of an
arriving job is less than 1.0. The advantage of this model is
that it more accurately represents parallel systems like
RAID disks, where an incoming request can be distributed
across an arbitrary number of disks." The next example is
used to explain the model and the notation.

Example 4. Consider a network containing P.
Derivation of Task Visit Probability, v.. v. is the
probability that a service center within Pk is assigned a
task of a job arriving at Pk-.
Case 1. Suppose a job arriving at P, always forks into
two tasks that are assigned to the two servers within P;.
In this case, whenever P is visited by a job, each of the
service centers within P is visited by a task of the job
and v, = 1.0.
Case 2. Now, consider the case when a job arriving at P,
splits into one task (i.e., does not fork). Suppose this one
task could be assigned to either of the two service centers
within P with equal probability. In this case, whenever a
job visits P, there is only a 50 percent chance that its task
will visit a service center within P, and v, = 0.5.
Case 3. Finally, suppose a job arriving at P splits into
one or two tasks with equal probability. That is, there is a
50 percent chance that the job will split into two tasks
and v, = 1.0 in this case. There is also a 50 percent chance
that the job will split into one task and v, = 0.5 in this
case. The overall task visit probability of a center within
P; is given by

Ve =0.5*%1+0.5%0.5=0.75.

Derivation of Order-Statistic Scaling Factor, Ok, for the
Extended Model. Let the mean service time of a server
be s. Then, s* Ok represents the mean time taken to
execute all the tasks of a job arriving at Pg.

When a job always forks into two tasks, the time taken
to execute both tasks of the job is given by sH;. When
a job always splits into one task, the time taken to
execute this one task is given by s = sH;.

When a job splits into one or two tasks with equal
probability, the mean time to execute the tasks of thisjob is

1. We thank an anonymous reviewer for suggesting this extension to us.
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givenby s[0.5 * Hy + 0.5 x Hy] = s % 1.25. Here, Og = 1.25.

It can be proven that Rp, < s[Ok + Ap,] for the extended
model given here. (Note that the proof gets very “messy”
due to the notational complexity.) An argument, similar to
that provided in Section 2.1, for a much tighter response
time equation, is presented here. Let Ap, represent the
mean number of jobs seen in Px by an arriving job. Then,
v, * Ap, represents the mean number of tasks seen at the
longest queue from among the K server queues. If the wait
time of a job is defined to be the time taken for the last task
of this job to start executing, the wait time must be at least
equal to s* v, * Ap,. The mean service time of a job only
begins when its last task starts service. Consequently, the
job service time will be at most equal to s * O since some
tasks of the job may have finished execution and be at the
join point when the job starts its service. This argument
suggests that the response time expression (i.e., (1)) for the
extended model can be written as:

RPK ~= S[OK =+ v, * APK]-

A formal proof for this tighter approximation is required. In
[30], this approximation is used to develop a performance
model for RAID level 5 disk arrays.

4 APPLICATIONS OF RESPONSE TIME EXPRESSION
TO CLOSED NETWORKS

Equation (1) is simple and intuitive since it relates the
response time of a job in a parallel system to its service time
and wait time. However, there is one unknown argument in
the equation, namely, Ap,, the number of waiting jobs seen
upon arrival. In this section, exact and approximate values
for Ap, are provided for Pk in closed networks.

4.1 Closed Networks Containing Stand-Alone Py

The simplest case is a closed network containing just Px.
Let the number of jobs circulating in the closed network be
m. In this case, Ap, (m), the mean number of jobs seen by a
job just prior to arrival at Px when there are m jobs
circulating in the network, is equal to m — 1. The next
theorem follows immediately from Theorem 2.1 and
Corollary 2.1.

Theorem 4.1. For K =2, Rp/(m) = s[Hy + (m —1)]. For
K >2, sz(m) < RPK(T)’L) < S[HK —+ (m — 1)}

The tightness of the optimistic (lower) and pessimistic
(upper) bounds are studied by comparing them with
response time values obtained using simulation. The
response times are plotted for values of K ranging from
2,---,10,15,20,25,30,35,40,45 and m ranging from
1,---,10, 15,20, 25,30, 35,40, 45,50. The mean service time
is set at 1.00 time unit. The simulated mean response time
estimate is accurate within 0.5 time units at 95 percent
confidence. Fig. 7 plots the upper, lower, and simulated
mean response times for fixed values of K as m varies. The
graphs show that for a given K, the pessimistic and
optimistic bounds grow at the same rate as Rp, and the
relative error (i.e., difference between the simulated and
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model values) remains approximately constant. This is
further verified by graphs (c) and (d) of Fig. 8 which plot the
relative error in response times for the pessimistic and
optimistic bounds for fixed K as m varies. The relative error
between the bounds and the simulated response time
increases till m =~ 5 and then becomes constant. Graphs (a)
and (b) of Fig. 8 plot the percentage error (where percentage
error = medd=simulaied percent) in the response time bounds.
The maximum percentage error in the pessimistic and
optimistic bound is around 9 and 30 percent, respectively,
and occurs when K =45 and m = 5. However, for the
majority of values, the percentage error is less than 3 and
10 percent for the pessimistic and optimistic bounds,
respectively. For fixed K, the percentage error increases
sharply till m ~ 5 and then decreases as m increases. Fig. 9a
plots the pessimistic and simulated response times for fixed
values of m as K varies from 2 to 45.

Fig. 9b plots the model and simulated mean response
times for a system based on the extended model given in
Section 3. The graph given here is based on a system where
a job arriving at Px can fork into an arbitrary number of
tasks with equal probability and these tasks can be assigned
to any of the adjoining centers with equal probability. For
the system analyzed, the response time values generated by
the model are always an optimistic bound and the values
are very close. This model will be potentially relevant in
studying striping policies for RAID disk systems.

4.2 Closed Networks Modeling Several Devices
Computer systems contain a variety of devices (e.g., CPUs,
memory, cache) connected together and all of these
components must be represented in order to accurately
model the system. These devices need not all be parallel.
The service time distribution of centers in the nonparallel
devices have the same restrictions imposed on them as do
product-form networks [5]. The service time distributions of
centers in the parallel devices are drawn from an
exponential distribution (this restriction can be dropped
as shown in the next subsection). Let R; and Q; represent
the mean response time and the mean queue length of
device 7 in the network. For such a network, it is observed
that

Ai(m) == Q;(m —1).

That is, the mean arrival queue length of a subsystem
within the network (whether parallel or nonparallel) is
approximately equal to the mean queue length of the
system when the multiprogramming level of the network is
one less. This relationship has only been verified by solving
small systems exactly and by running simulations [28].
Suppose there are N subsystems in the closed network.
From the above equation, it follows that for such a network,
the cycle time (i.e,, sum of response times of all the
subsystems) of the network is given by:

R;(m) == Zsi[HK, + Qi(m —1)].

(2

(2

(Note that for nonparallel devices, K; =1 and Hg, =1.)
This equation can be used as the basis for the Mean Value
Technique for computing approximate mean perfor-

N N
=1 =1
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Fig. 7. Response times (upper, simulated, and lower) at varying MPL for Py.

mance measures of a fork-join parallel network. The
MVA technique for fork-join networks is given in [28] and
graphs from that work are reproduced in Fig. 10. The
technique is similar to the MVA technique for product-form
networks [22] which is a computationally efficient techni-
que that allows for easier parameterization of the devices
being modeled [14].

Two quick bounding techniques based on (1) for fork-
join parallel networks are given in [29]. These techniques
are computationally simple and can be calculated by hand,
even for large networks modeling several devices and jobs.
Explaining these techniques is beyond the scope of this
paper and an interested reader is referred to [29].

4.3 Px with Nonexponential Service Times

While the main thrust of this paper has been to develop
bounds/approximations for the specific functional form of
exponential service time distribution, the intuitive argument
given in Section 2.1 is independent of the functional form of
the service type distribution. Here, this approximation is
validated by simulations employing nonexponential service
time distributions.

Fig. 11 plots the mean response times for the Erlang and
Hyper-Exponential distributions (which have the property
of coefficient of variation (CV)? lower and greater than one,
respectively). The simulation results indicate that the
bounds work very well for such distributions within the
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Fig. 8. Error bounds on response time at varying MPL for Py.

range of CV’s simulated (0.5 and 1.5). The simulated mean
response time is accurate within 0.5 time units at 90 percent
confidence.

Summarizing, applications of (1) pertaining to different
types of closed networks are given here. We are yet to find a
good approximate value for the parameter Ap, (i.e., the
longest arrival queue length at a server) in the case of open
networks.

5 PRIOR WORK

Several papers study fork-join queueing networks and
propose tools for analyzing their performance. Exact
solutions for the steady state distribution have been
provided only for 2-sibling cases ([2], [8], [9]) in open
networks. Due to the difficulty of analyzing fork-join models
exactly, many studies on fork-join queues concentrate on
approximation techniques. Heidelberger and Trivedi [10]
consider a closed queueing network in which jobs divide
into two or more asynchronous tasks. The join point is not
modeled. The service centers are of a type described in the

2. CV = standard deviation/mean.
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BCMP theorem [5]. They develop an iterative method for
solving a sequence of product-form models. In [11], the
model is expanded to include a join node. Nelson and
Tantawi [21] consider a scaling approximation technique to
analyze the mean response time of an open homogeneous
fork-join queue with exponential service time distributions.
They assume that the mean response time increases at the
same rate as the number of sibling tasks. Closed-form
approximation expressions for the mean response time are
developed. An extension of this approximation to heavy
traffic limit relying on a light traffic interpolation technique
is developed by Makowski and Varma [20]. Kim and
Agrawala [12] analyze waiting times for 2-sibling open,
homogeneous fork-join systems with exponential and 2-
stage Erlangian service time distributions. In [18], [19], Lui
et al. present a bounding technique for an open, homo-
geneous fork-join network with a k-stage Erlang distribu-
tion. Liu and Perros [16], [17] propose an approximation
procedure based on decomposition and aggregation for
analyzing a closed queueing system with K-sibling fork-join
queues. Their method provides an upper bound for mean
response time. Response time bounds are obtained for
acyclic fork-join queueing networks by Baccelli et al. [3]
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Fig. 10. Cycle times (simulated and MVA) for fork-join networks modeling several devices.

using stochastic ordering principles and association of
random variables. Baccelli and Liu [4] propose a new class
of queueing models for evaluating the performance of
parallel systems. Using the concept of associated random
variables, Kumar and Shorey [13] obtain response time
bounds for an open fork-join model in which a job forks into
a random number of tasks. Service times are drawn from a
general distribution. Almeida and Dowdy [1] propose an
iterative technique for obtaining lower performance bounds
of closed fork-join networks with exponential service times.
No proofs for the technique are presented. Varki and
Dowdy [27] prove that the proportion of the number of jobs
in the different subsystems of a closed, exponential,
balanced fork-join network remains constant irrespective
of the multiprogramming level. This property of balanced
fork-join networks is used to bound the performance of
arbitrary fork-join networks. The proof is limited to 2-server
fork-join systems. In [28], Varki develops an approximate
mean-value analysis technique for fork-join parallel net-
works. Balsamo et al. [6] propose a matrix-geometric

algorithmic approach for computing performance bounds
of open heterogeneous fork-join systems. The fork-join
structure is studied with relation to parallel storage systems
(RAID) in [15], [23], [24], [25].

6 CONCLUSION

The focus of this paper has been to derive a simple
approximation for mean response time of a parallel system.
This response time approximation is shown to be appro-
priate both when jobs arriving at a parallel system split into
an arbitrary number of tasks and when several devices are
contained in the network. While the paper formally derives
the response time approximation only for the case of
exponential service time distributions, simulation results
indicate that the approximation is also valid for other
distributions such as the Erlang and Hyper-Exponential
distributions.

Though the response time expression derived here
applies to both closed and open networks, one of the
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Fig. 12. Markov diagram of the state-dependent model.

arguments Ap,, the longest arrival queue length at the
K servers, is unknown in the case of open-networks and,
hence, no performance techniques for open networks have
been provided in this paper. Future research that
addresses this limitation of the paper is needed. Still,
there are several applications of this work that could be of
value to performance engineers. For example, in storage
systems, the performance of disk arrays under synchro-
nous 1/O workloads (represented by closed networks) can
be analyzed using the approximation. Further, the
performance of parallel programs on multiprocessor sys-
tems with fixed multiprogramming levels can be analyzed
using the response time approximation derived here.

State-Dependent Model Equivalent to P3

S OSSN S AU

3u

0;1;0)

APPENDIX A

Mean service rate at a service center Sj, in the state-dependent
model can be found by analyzing the Markov diagram of Pk-.

The mean service rate at service center S) varies
according to the number of customers at service centers
S;,i=k—1,k—2,---,1 as follows: If there is at least one
customer in service center S;_;, the mean service rate at S,
equals y, else, if there is at least one customer in service
center Sj_», the mean service rate at S equals 24, else, if
there is at least one customer in service center Sj_3, the
mean service rate at Sy equals 3, - - -, else, if there is at least
one customer in service center S;, the mean service rate at
Sy equals (k—1)u, else (if there are no customers in
Sk—1,Sk=2,---,51), the mean service rate at S; equals kp.
The service rate at server S; is equal to p. Thus, service rates
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TABLE 1
The Notation
Py The K-sibling parallel system
pls Mean service time per visit to a center in Py
Apy, Mean number of jobs seen upon arrival at Px. Also equal to the number
L of tasks seen at the longest queue from amongst the K server queues.
Description . .
of Py 7 Number of ta.SI.{S at service center z .
(n1,-++,nK) State of Pg. Since all centers arce identical, the n;’s arc ordered
such that n; <ny <. <ng.
tasky k task of a job to complete execution and move to the join point.
Pkk A k-sibling parallel subsystem in a hybrid network equivalent to Px
Description || S;, SX A non-parallel subsystem ¢ in an equivalent model of Py
of Equivalent || ng, Number of jobs at state-dependent server S.
Models (ngy;---;ms,)  State of state-dependent model Sk, Sx—1,--- S1.
AQ ,5 The sum of mean arrival queue lengths at PkK during the various

phases of a parallel job’s response time

Performance || @;
Measures A;

R; Mean response time of subsystem ¢

Mean queue length of subsystem ¢

Mean queue length of system ¢ seen by a job just prior to arrival at ¢
Aij Mean queue length of system j seen by a job just prior to arrival at 2

General m
Parameters Hy,

Multiprogramming level of a closed network
The kth harmonic number defined as Y%, %

at all servers Sy, k = K, - - -, 2 are dependent on the states at
the service centers S; (i =k—1,---,1). Only server S; is
state independent.

APPENDIX B
PROOF FOR LEMMA 2.1

Proof. Since S, is a nonparallel subsystem with mean
service time s, its response time is given by Rg, =
s[1 + Ag,] where Ag, represents the mean number of jobs
in S, seen by a job just prior to arrival at S,,.

Let task; represent the kth task of a job to
complete execution and move to the join point. The
average performance measure of S, is equal to the
average performance measures of the service centers

serving taski,tasks,---,taskgx. Thus, Ag, equals the
mean arrival queue lengths at service -centers
serving taski,tasks,---,taskx seen by a job just prior

to arrival at Pg.

In the state-dependent model, server Sj services
phase;, of a parallel job’s response time. Recall that
during phase;, of a parallel job’s response time, k tasks of
the job are at the service center queues while the
remaining (K — k) tasks wait at the join point. Therefore,
task, will execute only at service centers
Sk Sk—1, -+, Sk—k+1- Let Apqen, represent the mean
arrival queue length at the service center serving task;
and let Ag, s, represent the mean number of jobs in S;
seen by a job just prior to arrival at Sk. Then, Ap, s, is
equal to the sum Ag,s, + Asisi, + - + Asisi .- (For
example, the average arrival queue lengths at the service
centers that service the first and last task to complete
execution are equal to Ag, s, and

APK = ASKSK + ASKSK—I +ot ASI{SN

respectively.) Thus,

1
AS,, - ? [APKtaskl + APKtask'g + -+ APKtaskK}

1
- [(ASI\'SK) + (ASKSK + ASI\'SK—I)

K
+ e+ (ASKSK + e+ ASKSI)]
K—-1 2 1
=Ag.s + a AgeSp, + -+ ?As,{sz tx% Asyes, -

0

APPENDIX C
PROOF FOR LEMMA 2.2

The average time spent by a job in the join point is equal to
the sum of the average times spent by each of its tasks in the
join point. This gives:

1

RSj - K [(RtaskK - Rtaskl) + (RtaskK - Rtaskg)

+---+ (Rtask'}; - Rt(LskK)]a

where Ry, represents the mean response time of the kth
task of a job to complete execution.
By construction, Ry, = Rs, + Rs,, + -+ R,

Thus,
1 2 K-2 K-1
RSJZ?RSA'1+?RSI\'2+"'+ K Rg, + K Rs,,
VK > 2
1
:? [(RSK’I +ot RSI) + (RSK—2 + -+ RSl)
+ -+ (Rs, + Rs,) + Ry,
1

=g\ Rep, + Reg+e+ Reg o+ Reg ]
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Hybrid Model S3,P2 equivalent to P3
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Fig. 13. Markov diagram of the hybrid model.
1 1
APPENDIX D Rs, =~ |14 Agror +5 Agror |

PROOF FOR LEMMA 2.3
Proof.

Rp, =Rg, + Rg,
=s[1+ Ag,] +% [RPIILI + Rpx |

from Lemmas 2.1 and 2.2.

Induction on Py is used to prove the lemma.
Induction Basis PX (VK > 2).
In this case, Rs; =3 Rox = 3; [1 + Agx S{;} and

where Ags, represents the mean number of jobs in S

seen by a job just prior to arrival at S;. It follows that

1 1 1
Rpgf = p {1 + ASA'SI\' + —ASKSK] + ﬂ [1 + AS{"S{‘}

1
— HQ +'u |:<ASI SI —|— ASI Sl) +§ASII\’SII\'1|

= M+ AQ¥).

Induction Hypothesis. Assume that the theorem holds

for all PX k=3, K — 1.
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Induction Step. To show that the theorem holds for Pk,
by hypothesis,

1
Rs, =4 [Rpg, + Ry +--+ Rpg + Ry

1
~ K [(HIH +AQK )

o (o AQE) + (1+ Agysp) .
This gives
L
Ku
ot (H+ AQY) + (1 + As{‘s{\')]

1
Rp, =—[1+4 Ag,] + [(HKA + AQiﬁ,l)

Tl= 4+ =

[(1+%(HK71+---+H—2+1))

+ (45, + % (AQE_, +++++ AQE + Agrgr) )|

To show that Hx =1+ % (Hxk_1 + Hx_o+ -+ + Hy + 1)
and AQ? = ASﬁ"Sﬁ" =+ %(AQ§71 4+ -4 AQ? =+ AS{"S{")-
Now,

K—-1
Hg =1+ Hg_q — x
O AU A A S,
N K 2 K K-1 K
1
:1+E(HK,1—|—HK,2+---+H2+1).

By a rearrangement of the elements of the series AQ¥, it
can be show that

1
AQ? = ASE + ? (AQg_l + -+ AQ§ + AS{"S{"'

Thus, Rp, =+ [Hx + AQF]. O

APPENDIX E
PROOF FOR LEMMA 2.4

Proof. Rearranging of the terms of AQx gives:
AQk =
%(ASKSK + Agiesp + o+ Asges,)
+ % (Asgsg + Asg s + Asg_i55 T+ Asgys,)
+ot % (Asgsi + Asisio T Agysy + Agys, + Asysy)
+ % (Asgsy + Asg 15+ + Ass, + Agis,)-

By construction, Ap, = 28 Ag s where Asys; repre-
sents the mean number of jobs in S; seen by a job just
prior to arrival at Sk. Thus, if it is shown for k> 2,
Sl Ags, > S8 Ag, s, the lemma is proven. This
relationship becomes intuitively obvious when one
observes that at any point in time the total number of
arrivals to the service station Sy, is always greater than or
equal to the total number of arrivals to any of the service

centers to its right (refer to Fig. 5). The formal proof given
here is an adaptation of a corresponding result by P.]J.
Burke [7] (Chapter 5).

Let T, (o) be the time instants at which the ath arrival
occurs at Sy after some time ¢ = 0. Let Ny, () be the
total number of jobs at service stations S;,S;_1,---5;
(where j < k) just prior to the ath arrival instant at Sj. It
is shown that

,}1_{20 P{NSkSk 1(77’) = x} 2 ,}1—>Holc P{NSI.- 15k 1(”) = .1‘},
where P{z} represents the probability of being in state x.
Suppose Ng.s,(n) =y and Ngg, ,(n) =z. This implies
that the number of jobs at S equals y — x just prior to the
nth arrival instant and there are n+ 2 —y—1 of the
TSI;—I (a) preceding TSk (n) Thus, NSk*lSk—l (TL +x— y) <z
since some of the x jobs may have departed the set
of service stations, Si_i,---S51, by time instant
Ts, ,(n+ 2 —y). Hence, for any y >z,

lim P{NSIcSl\-—I(n) = :U} > lim P{NSL-—ISI;—I (TL+ T — y) = CE};
n—od n—oc

that is,

lim P{NSI;SI;—I (n) = Q?} > lim P{NS}.-—lsk—l (n) = ‘T}
n—0o0 n—oo

and the proof is complete. O

APPENDIX F

PROOF FOR COROLLARY 2.1
Proof. From Lemma 2.3, Rp, = s[Hy + AQs], where

1
AQo = Ag,s, + 3 [As,s, + Ag,s,]

and Ag,s; represents the mean number of jobs in S; seen
by a job just prior to arrival at S;. There is a very general
theorem in queuing theory (by P.J. Burke, 1968)> which
states that: In any ““system’” (the actual nature of which is
unimportant), provided that the number of “’customers”
it contains varies by at most one at a time, the probability
distribution of the number of customers in the system is
the same just prior to an arrival and just after a departure
[7] (Chapter 5).

From this theorem, it follows that for a closed network
containing stand-alone Px, Ags, = Ag.s, (.e., the
arrival queue length at S} (Ag, s, ) is equal to the departure
queue length at S;(Ag,s,)). For a network containing just
Py, Ag s, = Ag,s,, which gives

AQo = Ag,s, + Agys, -
By construction,
Ap, = Ag,s, + As,s, -
Hence, Rp, = s|Ha + Ap)]. O

3. The theorem employed here is not Burke’s Theorem which refers to the
property that Poisson arrivals implies Poisson departures for a class of feed-
forward product-form networks.
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