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Abstract

A simple technique for computing mean performance
measures of closed single-class fork-join networks
with exponential service time distribution is given
here. This technique is similar to the mean value
analysis technique for closed product-form networks
and iterates on the number of customers in the net-
work. Mean performance measures like the mean
response times, queue lengths, and throughput of
closed fork-join networks can be computed recur-
sively without calculating the steady-state distribu-
tion of the network. The technique is based on the
mean value equation for fork-join networks which
relates the response time of a network to the mean
service times at the service centers and the mean
queue length of the system with one customer less.
Unlike product-form networks, the mean value equa-
tion for fork-join networks is an approximation and
the technique computes lower performance bound
values for the fork-join network. However, it is a
good approximation since the mean value equation
is derived from an equation that exactly relates the
response time of parallel systems to the degree of
parallelism and the mean arrival queue length. Us-
ing simulation, it is shown that the relative error
in the approximation is less than 5% in most cases.
The error does not increase with each iteration.

1 Introduction

A popular method of improving performance of com-
puter and storage systems is by distributing the
work across multiple systems in parallel. The par-
allel job has a simple fork-join structure. A parallel
job is divided (forked) into a number of tasks which
are processed concurrently on the different units of
the parallel system. On completing execution, a
task waits at the join point for its sibling tasks to
complete execution. A job leaves the system once
all its tasks complete execution (i.e., tasks of a job
are joined before departing the system). While the
concept is simple, the synchronization constraints
introduced by forking and joining and the resulting
complexity of the system design makes it difficult to
analyze these systems and answer questions about
their current and future capability to perform their
functions.

Several papers study fork-join queueing networks
and propose tools for analyzing their performance.
Due to the difficulty of analyzing fork-join mod-
els exactly, many studies on fork-join queues con-
centrate on approximation techniques [1, 2, 3, 4,
5, 6, 8,9, 10, 11, 12, 13, 16, 17, 18] The approxi-
mation techniques are largely complex and do not
scale well. Some of these techniques are proposed
without formal proofs. This paper gives a simple
approximation technique for computing mean per-
formance measures like the mean response times,
mean queue lengths, mean throughput, and utiliza-
tion of closed fork-join networks. The approxima-
tion technique is similar to the Mean Value Analysis
(MVA) for closed product-form networks developed



by Reiser and Lavenberg [14]. MVA is an itera-
tive technique which iterates on the number of cus-
tomers. The analysis is based on the arrival equa-
tion for product-form networks which maps the re-
lationship between the mean number of waiting cus-
tomers and the mean queue length of a system with
one customer less. This arrival equation and Little’s
Law are used to compute performance measures of
the network without having to compute its steady
state distribution. While the mean-value equation
for product-form networks is exact, it is shown to be
an approximation in the case of fork-join networks.
However, the simulation results indicate that the
error margins are small and do not grow with each
iteration. Another key contribution of this paper
is the insight it provides to the behavior of parallel
systems. While the mean-value equation is shown
to be an approximation, it is derived from an equa-
tion which relates the exact mean response time of
parallel systems to the degree of parallelism and the
mean arrival queue length.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the fork-join model. The
mean value technique for fork-join networks is given
in sections 3, 4, 5, and 6. Section 7 states the con-
clusions and suggests possible future work.

2  The Fork-Join Queueing Network Model

Closed fork-join queueing networks (FJQNs) of the
type shown in Figure 1 are studied in this paper. A
fixed number of identical jobs circulate in the net-
work. The network consists of one or more intercon-
nected subsystems, where each subsystem consists
of one or more independent queueing systems. Each
queueing system consists of a single service center
and an infinite capacity queue. All servers have
a first-come-first-served queueing discipline and all
demands at the service centers have a negative ex-
ponential distribution. The subsystems are broadly
classified into two types, namely, parallel and se-
rial subsystems. A parallel subsystem consists of
K > 1 identical queueing systems. Upon arrival
at a parallel subsystem, a job instantaneously forks
into K independent and identical tasks, where task
k, k=1,2,---, K, is assigned to the kth queueing
system. On completing execution at the kth service
center, the task waits at the join point for its sibling
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Figure 1: Fork-Join Queueing Network Model

tasks to complete execution. A job leaves the sub-
system as soon as all its tasks complete execution
and arrive at the join point. Such a subsystem is
also referred to as a K-sibling fork-join subsystem
(Px). The response time of a job in a parallel sub-
system is the time taken from arrival instant until
all tasks of the job complete execution and the job
departs the subsystem. A serial subsystem consists
of a single queueing station and jobs are not split
into tasks. A serial subsystem can be considered as
a special case of a parallel subsystem with K = 1
(Pr)-

The subsystems in a FJQN are arbitrarily num-

bered from 1 to N. The notation used in this paper

e N: Number of subsystems in the FJQN.

e m, M PL: Multiprogramming level of the net-
work (i.e., number of jobs in the network).

e u;: Service rate of a service station in subsystem;.

e K;: Number of tasks a job is split into upon
arrival at subsystem;. (K; = 1 for a serial
subsystem.)

e V;: Average number of visits per job to subsystem,;.

e R;(m): Mean response time at subsystem; when
the multiprogramming level is m.



e X;(m): Mean throughput at subsystem; when
the multiprogramming level is m.

e A;(m): Mean number of jobs seen by a job ar-
riving at subsystem; when the multiprogram-
ming level is m.

e @Q;(m): Mean number of jobs in subsystem;
when the multiprogramming level is m.

o CTNnET,(m): Mean cycle time spent in a closed
network. This equals the time it takes to cycle
through the network and return to subsystem;.

e Hj,: The kth harmonic number defined as Ele -

3 Overview of the Mean Value Technique

The mean value (MVA) technique for FJQNs is
based on the mean value technique for product-form
networks developed by Reiser and Lavenberg [14].
A brief explanation of the mean value technique
for product-form networks is given here. The mean
value technique is based on the arrival theorem which
states that the number of jobs “seen” by a job upon
arrival at a subsystem is equal to the mean queue
length at the subsystem computed when the net-
work has one less job [7, 15]. The response time of
the arriving job is equal to the sum of the arriving
job’s service time plus the time required to service
the jobs seen ahead. From the arrival theorem, it
follows that

Ri(m) = iu +Qi(m — 1)] (1)

From Little’s Law, the subsystem throughput and
queue length are given by

Xz(m) Zle[Rn(m)Vn/Vz] = CTNET, (M)
Qi(m) = Xi;(m) x R;(m)

The MVA technique involves iteratively solving these
three equations for m = 1,2,---, M PL where the
initialization of the iteration is Q;(0) = 0 for all
subsystems.

The MVA technique is based on Equation 1 which
relates the mean response time of a subsystem to
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its mean service time and its mean queue length
computed when the network has one less customer.
The other two equations follow directly from Little’s
Law. Due to its significance to the MVA technique,
Equation 1 is referred to as the mean-value equa-
tion. The key to developing the MVA technique for
FJQNs is to find an equivalent mean-value equa-
tion that holds for these networks. However, finding
such an equation is complicated since fork-join net-
works do not have product-form properties and the
arrival theorem need not hold. In addition, unlike
serial subsystems, the mean service time of a job ar-
riving at a parallel subsystem depends on the state
seen at arrival instant. So, the mean service time of
the parallel subsystem varies as the multiprogram-
ming level of the network changes. (This can be
confirmed by solving small systems and using Lit-
tle’s Law to compute mean service times.) Thus,
the computation of both the mean service time of a
parallel subsystem and the mean number of waiting
jobs seen in the parallel subsystem by an arriving
job is non-trivial. The next section addresses this
issue.

4 Mean Response Time Analysis of Parallel Sub-
systems

This section summarizes the work in [19]. The re-
sponse time of a job in a parallel subsystem is the
time taken from arrival instant at the fork point
until all tasks of the job complete execution and
the job departs the join point. In order to compute
the mean response time of a closed network (with-
out using Little’s Law), it is necessary to know the
mean service time of a job arriving to a parallel sub-
system and the mean number of jobs seen ahead of
this arriving job. When there is just one job in the
closed network, the mean service time of this job
at a K-sibling parallel subsystem is equal to i—f,
the mean value of the K** order statistic of an ex-
ponential random variable. When there are m > 1
jobs in the network, the service time of a job arriv-
ing at the parallel subsystem is less than % since
the execution time of some of the K tasks of this
job will overlap with the execution time of tasks of
jobs ahead of it.

The response time of a K-sibling parallel sub-
system can also be analyzed by viewing the sub-



system from the perspective of the K phases of a
job’s response time in the parallel subsystem as ex-
plained here. During phasey (k = K,---,1) of a
job’s response time, k tasks of the job are in the
queues of the service centers and K — k tasks are
waiting at the join point. A phase ends with the
movement of one of the executing tasks to the join
point. The time spent completing each phase of a
job’s response time in the parallel subsystem can
be viewed as the time spent getting service at K
serial subsystems Sg, Sx—1,---,S1. The mean ser-
vice rates at these K service stations can be directly
computed from the underlying Markov diagram of
the K-sibling parallel subsystem. The mean service
rate at service center Sy (k = K,---,2) varies ac-
cording to the number of customers at service cen-
ters S;, it = k— 1,k —2,---,1 as follows: if there
is at least one customer in service center Si_1, the
mean service rate at Sy equals y, else if there is
at least one customer in service center Si_o, the
mean service rate at Sy equals 2u, else if there is at
least one customer in service center Sy_3, the mean
service rate at Sy equals 3pu, ---, else if there is at
least one customer in service center Si, the mean
service rate at Sy equals (k — 1)y, else (if there are
no customers in Sg_1, Sk—2,---,S51) the mean ser-
vice rate at Sy equals ku. The service rate at server
51 is equal to p. Thus, service rates at all servers
Sk, k= K,---,2 are dependent on the states at the
service stations S; (i = k — 1,---,1). Only server
S is state independent. The response time of a job
in the state dependent model is equal to the sum of
the response times at the K service centers. By con-
struction, this state-dependent model is equivalent
to a K-sibling parallel subsystem and have identical
Markov diagrams. Thus, the response time of a job
in a parallel subsystem is equal to the response time
of the job in its equivalent state-dependent model.

The equivalence of the state-dependent model
to a parallel subsystem is used to prove that for a
K-sibling parallel subsystem, the response time is
given by:

Rpy (m) = Ml [Hi + AQx (m)]

where,
AQK = %(ASKSK + ASKSK—1 +oot ASK51)+
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Figure 2: Response Times (MVA and Exact) for
fixed MPL as K varies
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The notation Ag; s, represents the mean arrival queue
length at subsystem Sy seen by a job just prior to
arrival at subsystem S;. It is further shown that
AQk(m) < Ap, (m), where Ap, is the mean num-
ber of jobs seen at the parallel subsystem by a job
arriving to the parallel subsystem. This gives:

Rp, (m) < Ml [H + Ap, ()] ()

5 Mean Value Equation for FJIQNs with a Single
Parallel Subsystem

In case of fork-join networks that just consists of a
single subsystem, namely, a K-sibling parallel sub-
system, Equation 2 can be simplified. For such sys-
tems, Ap, (m), the mean number of jobs seen in the
parallel subsystem by a job arriving to the parallel
subsystem, is just equal to the multiprogramming
level of the network when there is one less job in the
network. Hence, the response time of the parallel
subsystem Py is given by:

R (m) < - [Hx + (m = 1)
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Figure 3: Relative Error in MVA Bound
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Figure 4: Percentage Relative Error in MVA Bound

n [19], a stronger result is shown. It is proved
that

Rog(m) = i [Hy + (m — 1)] when K = 2

< i[HK+(m—1)]when K >2.
While the formal proof is not given here, some of the
simulation runs that validate the result are given.
The response times are plotted for values of K rang-
ing from 2,---,45 and m ranging from 1,---,50.
The mean service time is set at 1.00 time unit. Fig-
ure 2 plots the upper and exact response times for
fixed values of m as K varies from 2 to 45. The up-
per bound and exact response time values are very
close and grow at the same rate. The response time
curves are quite flat showing that for a given m,
Rp, grows at a slower rate than Hg. The relative
and percentage error in the response time bounds
are plotted in Figures 3 and 4, respectively. The
relative error in the bound increases till m = 5 and
then becomes constant. The maximum percentage
error in the upper bound is around 9 percent and
occurs when K = 45 and m = 5. However, for the
majority of values, the percentage error is less than
3 percent. For fixed K, the percentage relative error
increases sharply till m ~ 5 and then decreases as
m increases. Figure 3 shows that the relative error
is a non-decreasing function of m. This implies that
for values of m at which percentage relative error
is at its greatest (m ~ 5), the distance between the
bound and the exact response time is lesser than
for values of m > 5 (when percentage error is less).
Thus, the bounds are tight even at points where the
percentage relative error is the greatest.

6 Mean Value Technique for FJQNs

The MVA technique for fork-join networks is based
on Equation 2, namely, Rp, (m) < [Hx + Ap, (m)],

and Rp, (m) = % [H1 + Ap,(m)]. This gives
1 V;
CTrsqn, (m Z — [Hg, + Ai(m)] o (3)

i Vi



where 1 < k < N. In product-form networks, the
mean number of jobs seen upon arrival to a sub-
system is equal to the mean queue length when the
number of jobs in the network is one less. For fork-
join networks, the relationship between the arrival
instant distribution and the steady state distribu-
tion of the network with one less customer is not
known. However, equations 2 and 3 imply that

Ri(m) ~ Mi [Hx, + Qi(m — 1] (4)

Equation 4 is referred to as the mean value equa-
tion for FJQNs. Therefore, the complete MVA tech-
nique involves iteratively solving the equations

N
CTrign,(m) = Z[Rn(m)Vn/Vi]
Xi(m) = CTrign;

Qi(m) = X;(m) x R;(m)

for m = 1,2,---, M PL where the initialization of
the iteration is @Q;(0) = 0 for all subsystems. Note
that the performance measures computed by the
MVA technique are approximations since they are
based on Equation 4 which is an approximation.
The closeness of the MVA generated response
time values to the exact response time values is in-
vestigated by running simulations. The cycle times
are plotted for values of M PL ranging from 1 to
50. Figures 5 and 6 plot the cycle times obtained
via simulation and the MVA technique for four dif-
ferent FJQNs. (In all these cases, the visit counts
to all subsystems within a network are set to be
equal.) Graph (a) of Figure 5 compares the cycle
times for a 2-subsystem FJQN where subsystem,
is serial and subsystems is a 2-sibling parallel sub-
system. Graph (b) of Figure 5 compares the cycle
times for a 2-subsystem FJQN where subsystem; is
serial and subsystems is a 20-sibling parallel sub-
system. Graph (c) of Figure 6 compares the cycle
times for a 3-subsystem FJQN where subsystem; is
serial, subsystems is a 2-sibling parallel subsystem,
and subsystems is a 3-sibling parallel subsystem.
Graph (d) of Figure 6 compares the cycle times for a
2-subsystem FJQN where subsystem; is a 2-sibling
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Figure 5: Cycle Times (Exact and MVA)



3 Subsystem FJQN whereK = 1, K > 2, and K3—-3

160 T T T T T T T T
L o /]
140 0{9\}%0 g
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- ot ,0?’\% 1 -3 L=2 1=
€ 100 N4 4 w1 w2 us3
% P MPL || Exact | MVA | %Error
S eor ¥ 1 1 783 | 783 | 0.00
i | 2 9.95 9.98 0.30
3 12.19 12.25 0.49
4 14.54 14.63 0.62
5 17.01 17.11 0.59
6 19.57 19.67 0.51
5 10 15 20 25 30 3B 40 45 50 7 2222 2232 045
5 MVACT 8 || 2493 | 25.03 | 0.40
— ExactCT 9

27.71 | 27.79 0.29
2 Subsystem FIQN where K;= 2 and Kz=30 10 30.54 30.61 0.23
T T ‘_. 15 45.12 | 45.15 0.07
' 20 60.03 | 60.03 0.00
25 75.01 | 75.01 0.00

100

% 30 | 90.01 | 90.01 | 0.00
2 35 | 105.02 | 105.02 | 0.00
5 40 | 120.02 | 120.02 | 0.00
S, 45 || 135.02 | 135.02 | 0.00

50 150.02 | 150.02 | 0.00

20

Table 1: Cycle Times for a 3 Subsystem FJQN
where K1 =1, K, =2,and K3 =3
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Figure 6: Cycle Times (Exact and MVA)



I 1. L -1 L =1 I 1 L —9 1 —
151 7 po ? ps 1 ? w2 ? p3
MPL || Exact | MVA | %Error MPL || Exact | MVA | %Error
1 4.33 | 4.33 0.00 1 9.50 9.50 0.00
2 5.29 | 5.33 0.76 2 11.84 | 11.97 1.10
3 6.23 | 6.33 1.61 3 14.22 | 14.53 2.18
4 7.18 | 7.33 2.09 4 16.71 | 17.14 2.57
5 8.12 | 8.33 2.59 5 19.30 | 19.81 2.64
6 9.07 | 9.33 2.87 6 21.98 | 22.53 2.50
7 10.03 | 10.33 2.99 7 24.73 | 25.30 2.30
8 10.99 | 11.33 3.09 8 27.54 | 28.09 2.00
9 11.96 | 12.33 3.09 9 30.40 | 30.92 1.71
10 12.94 | 13.33 3.01 10 33.28 | 33.77 1.47
15 17.86 | 18.33 2.63 15 47.96 | 48.29 0.69
20 22.84 | 23.33 2.15 20 62.83 | 63.06 0.37
25 27.82 | 28.33 1.83 25 7774 | 77.93 0.24
30 32.82 | 33.33 1.55 30 92.68 | 92.85 0.18
35 37.81 | 38.33 1.38 35 107.66 | 107.79 0.12
40 42.81 | 43.33 1.21 40 122.66 | 122.76 0.08
45 47.81 | 48.33 1.09 45 137.64 | 137.73 0.07
50 52.81 | 53.33 0.98 50 152.62 | 152.71 0.06

Table 2: Cycle Times for a 3 Subsystem FJQN Table 3: Cycle Times for a 3 Subsystem FJQN
where K1 =1, K, =2,and K3 =3 where K1 =1, K, =2,and K3 =3



parallel subsystem and subsystems is a 30-sibling
parallel subsystem. Each graph plots three sets of
cycle time values for the same network by varying
the service time values for the subsystems. Thus,
in each graph, there are a total of six cycle time
curves, two (exact and MVA) for each set. However,
it appears that there are only 3 cycle time curves in
each graph since the actual and MVA generated cy-
cle time values are so close that they overlap closely
and it is difficult to distinguish them.

Tables 1, 2, and 3 compare the cycle times ob-
tained via simulation and the MVA technique for
the network in graph (c) of Figure 6. The tables
plot three sets of cycle time values for the same
network by varying the service time values for the
subsystems. The tables also show that the MVA
bounds are very close to the cycle time values gener-
ated by simulation. The percentage error increases
from MPL = 2 till MPL ~ 5 and then decreases.
The key point to note is that the percentage error
does not increase with each iteration. The error in-
creases with increasing values of K and networks
where the service rate at the parallel subsystem is
less than the serial subsystem. The maximum per-
centage error is 7% and occurs at MPL = 5 for
the 2 subsystem FJQN where subsystem; is a 2-
sibling parallel subsystem with service rate pu; = 1
and subsystems is a 30-sibling parallel subsystem
with service rate pu, = 0.5 (Graph (d)). For the
networks analyzed with M PL ranging from 1 to
50, 95% of the relative error in the approximation
is less than 5%. In general, the percentage error
increases as the value of K; increases and decreases
as M PL increases.

The simulation results indicate that the MVA
technique gives a lower performance bound for fork-
join networks. Thus,

1 Vi
T — [Hk, i(m—1)] =
CTrign, (m ;u K; + Qi(m —1)] T (5)
and
MPIL
X;(MPL
( )2 CTrson, (MPL)

The validity of Equation 5 is formally proved for
fork-join networks with just a single parallel subsys-

tem and for balanced fork-join networks [19]. For
more general fork-join networks a formal proof is
unavailable.

7 Conclusions and Future Work

The MVA technique for FJQNs is an iterative tech-
nique that iterates on the number of customers in
the network. It is based on the mean-value equation
which relates the mean response time of a subsys-
tem in a FJQN to the mean service time at a server
in the subsystem and the queue length of the sub-
system with one less job in the network. The mean
value equation is an approximation in the case of
fork-join networks. The simulation results indicate
that the performance measures computed using the
MVA technique are a lower performance bound for
the network. A formal proof showing that this tech-
nique computes a lower performance bound is only
available for specific classes of the FJQN [19]. The
MVA technique is a good approximation and the
relative error in the approximation for a given net-
work is less than 5% for the majority of the cases
considered. For multiprogramming levels approx-
imately greater than 5, the percentage error de-
creases with each iteration.

Another contribution of this paper is the insight
it provides to the behavior of parallel systems. The
mean-value equation shows how the response time
of a parallel system varies as the number of cus-
tomers and the degree of parallelism varies. For a
given multiprogramming level, the response time of
a parallel subsystem Pk grows at a slower rate than
Hp, as K varies.

The work here only considers single-class FJQNs,
the exponential service time distribution, and the
first-come-first-served scheduling discipline. The work
can be extended to multi-class networks with other
service time distributions and scheduling disciplines.
Also, networks with more general parallel subsys-
tems can be considered.
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