
An integrated performance model of disk arrays
�

Elizabeth Varki
Department of Computer Science

University of New Hampshire
varki@cs.unh.edu

Arif Merchant
Hewlett Packard Laboratories

Palo Alto, CA
arif@hpl.hp.com

Jianzhang Xu
Department of Computer Science

University of New Hampshire
jx@cs.unh.edu

Xiaozhou Qiu
�

Falconstor Software
Melville, NY

Leo.Qiu@falconstor.com

Abstract

All enterprise storage systems depend on disk arrays to
satisfy their capacity, reliability, and availability require-
ments. Performance models of disk arrays are useful in
understanding the behavior of these storage systems and
predicting their performance. We extend prior disk ar-
ray modeling work by developing an analytical disk ar-
ray model that incorporates the effects of workload se-
quentiality, read-ahead caching, write-back caching, and
other complex optimizations incorporated into most disk ar-
rays. The model is computationally simple and scales eas-
ily, making it potentially useful to performance engineers.

1 Introduction

Enterprise storage systems represent a growing market.
In recent years there has been an explosion of applications
that use enormous amounts of data and have high Quality
of Service (QoS) requirements from their storage systems.
To satisfy the QoS requirements of these applications, en-
terprise storage systems typically contain large disk arrays,
commonly referred to as RAID (Redundant Array of Inde-
pendent Disks). Disk arrays increase storage system speed
by striping data across multiple disks and increase storage
system availability by using redundancy. In order to per-
form capacity planning and predict the performance of en-
terprise storage systems, it is necessary to develop perfor-
mance models of disk arrays. The architecture of current
disk arrays, however, is complex. The mid-range and large
disk arrays contain tens to hundreds of disks and have large

�
This work was supported in part by Hewlett Packard and by NSF under

Career Award CCR-0093111 and Information Technology Research grant
JIS-0082399.�

This work was done while Xiaozhou Qiu was a student in UNH.

caches for read-ahead and write-behind. In addition, disk
arrays have sophisticated array controllers that are capable
of performing optimizations such as adaptive prefetching
based on automatic detection of sequential I/O streams [?].
The disks also have caches that implement smart prefetch-
ing schemes to improve performance. A reasonably accu-
rate performance model of disk arrays must incorporate the
effects of all these features.

Several papers have analyzed the performance of disk
arrays using analytical and simulation models. These prior
papers can be classified into three groups. The first group
of papers analyze the multiple disks in the array but ignore
the array cache. Kim and Tantawi [?] present an analytic
method for approximating the disk service time of requests
striped across � disks. In this early work, redundancy and
queueing are not considered. Chen and Towsley [?, ?] in-
corporate both redundancy and queueing in their perfor-
mance model of RAID 5 disk arrays in normal mode. Mer-
chant and Yu [?, ?, ?] analyze RAID 5 disk arrays in both
normal and recovery modes. Thomasian and Menon [?, ?]
present performance models of RAID 5 in normal, degraded,
and rebuild modes. Further, their model uses sequential ac-
cess probability to capture workload spatial locality. Ku-
ratti and Sanders [?] also incorporate workload spatial lo-
cality by assuming that request size distributions are quasi-
geometric in their RAID 5 model for transaction process-
ing workloads. All the above models assume that the disk
array is servicing asynchronous I/O workloads. (Asyn-
chronous workloads are composed of I/O requests gener-
ated by jobs that can have more than one I/O request out-
standing at a time.) Lee and Katz [?] present an analytic
performance model of disk arrays under synchronous I/O
workloads. Their model assumes that disk service time is
known and their model does not incorporate the effects of
redundancy or CPU delay. DiskSim [?], RaidFrame [?],
and Pantheon [?] are some simulation models of disk ar-

rays. Only the disk components of these models have been
validated against real disk arrays.

The second group of prior papers analyze read-ahead or
write-behind by disk array caches. These papers typically
assume that disk service time is a known input parameter.
Menon and Mattson [?, ?] model explicit read-ahead and
write-back by the array cache of a RAID 5 disk array. They
assume that the cache write hit probability is 1 (i.e., the
write-back cache is never full). The remaining papers in
this group present new read-ahead and write-behind poli-
cies for disk array caches. Varma and Jacobson [?] present
a write-back caching algorithm that varies the rate of writes
to disks based on the utilization of the write cache. They
assume that writes which arrive when the cache is full are
written directly to disks. Mishra and Mohapatra [?] present
a write-back caching algorithm that stores both data and
parity in the write-cache. They assume that writes which
arrive when the cache is full have to wait until enough write
data are written to disks. All the above papers assume that
cache read hit rate is known. Wong and Wilkes [?] present
an array cache replacement policy that improves the array
cache read hit rate by ensuring that a data block is cached
at either a client or the disk array, but not both. None of the
papers on the array cache analyze the impact of caching on
disk service time.

The third group of papers analyze the effects of both
multiple disks and array caches on the performance of stor-
age systems. There is only one prior paper in this cate-
gory. Uysal, Alvarez, and Merchant [?] present a through-
put model of RAID 1/0 disk arrays under asynchronous
I/O workloads. They consider read-ahead and write-back
caching and its impact on disk disk service time.

In this paper, we integrate and extend the current body
of work on disk arrays by developing a throughput and re-
sponse time model of disk arrays under synchronous I/O
workloads. Synchronous workloads are composed of I/O
requests generated by jobs that have at most one outstand-
ing I/O request at a time. Such workloads make up a sig-
nificant portion of the total I/O workload on computer sys-
tems (as much as � � � ����� in one study [?]). Our model
incorporates almost all the realistic features of current disk
arrays such as the effects of intelligent destaging (i.e., flush-
ing of dirty cache blocks to the disks), coalescing of multi-
ple subrequests into a single disk access, redundancy layout
in the disk array, and prefetching. The effects of sequential-
ity, concurrency, and the synchronous nature of I/O work-
loads is also incorporated in the model. Since none of the
current disk array simulation models incorporate all these
features, we validate our model against measurements from
a real disk array using synthetic workloads.

The remaining part of the paper is organized as follows:
Section 2 presents the disk array model and the techniques
used to evaluate the performance of the model. Section 3

Parameter Description�
number of workload streams	�

� � ��� ���
mean time spent by a job at its CPU� � � � ����� ��� ���
mean request size� � !�" � #�
mean # of sequential requests per run $� �% � "'& !�" � ��
mean # of random requests between 2 runs

Table 1. Workload characterization
(

A run in a workload stream is a string of sequential requests to contiguous
bytes.

describes the architecture of the real disk array used in this
study. Section 4 presents the issues involved in computing
input parameter values to the disk array model. Section 5
presents the model validation results. The conclusions are
presented in Section 6.

2 Disk Array Performance Model

We use queueing network models to analyze a disk ar-
ray’s performance since components common to all disk
arrays can be explicitly modeled as service centers of the
queueing network, while the complexities and details of
specific (proprietary) disk array architectures can be cap-
tured in the model’s input values. For example the disks
can be explicitly modeled as queueing service centers, while
caching at the disks can be implicitly modeled by incorpo-
rating disk caching effects in the disk service time value.

This paper analyzes disk arrays under synchronous
I/O workloads. Jobs generating synchronous workload
streams typically cycle between the disk array and the
CPU/terminal. The workload parameters of significance to
our model are presented in Table 1.

Below, we present an analysis of how read and write
requests are treated by disk arrays. Based on this analy-
sis, we develop a queueing network model and then present
the technique to evaluate the model. Optimizing the mean
performance measures is sufficient for conventional appli-
cations [?], so our performance technique computes mean
performance measures such as the disk array’s throughput,
the rate at which I/O requests are serviced by the disk array,
response time, the mean time spent by a request at the disk
array, waiting for and receiving service, and queue length,
the mean number of I/O requests at the disk array. Table 2
presents our performance technique outputs for a disk array
model with

�
workload streams.

2.1 Read Requests

Read requests are first submitted to the disk array
cache. With probability

!��)!)*�� *�� � + � "',)�%,-�.� � �/� a read re-
quest’s data are found in the cache, and the disk array

Performance Measures Description� �/� ��� � ����+-" #� � � �.& � � ���
mean response time� �/� ��� � * � " � � * + � � � ��� mean throughput� �/� ��� � � � � � � ���
mean queue length

Table 2. Performance technique outputs

controller signals service completion. With probability!��)!)*�� & � � � + � "',)�%,-�.� � �/� a request is forwarded to the disks,
and the disk array controller signals service completion af-
ter all subrequests of the request complete service. From a
performance perspective, the key components of a disk ar-
ray are the array cache and the LUNdisks unit (i.e., the group
of disks in the array). The cache is modeled by a single
queueing server with mean service time

!��)!)*�� � � ��� � !�� � �.& �
.

The LUNdisks unit is modeled by a parallel queueing sys-
tem since a request submitted to the disks is divided into
subrequests assigned to some (or all) of the disks, and
the request completes service only after all its subrequests
complete. The parameter

� � �	� �)!�!���� � + � "',)�%,-�.� � �/� represents
the probability that a subrequest accesses a disk in the ar-
ray. The parameter

� � �	� � � �
� � !�� � �.& �
represents the mean

time a disk takes to service a subrequest. The parame-
ter

+)� � �%� � �-� " � � � *���� � represents the additional time (over� � ��� � � �
� � !�� � �.& �
) taken to execute all the subrequests of

a request.
Figure 1 presents the queueing network model of the

disk array system with read workloads. Since the focus of
this study is disk array performance modeling, for simpli-
fication, we assume that there is no queueing at the CPU
and model the CPU as a delay server with mean service
time

	
 � � �-� ���
. The MVA technique for parallel queue-

ing networks [?] is the standard technique used to evalu-
ate mean performance measures of closed parallel queueing
networks. Appendix A presents the parallel MVA technique
using the disk array input parameters presented above. An
explanation of the parallel MVA technique is beyond the
scope of this paper and an interested reader is referred to [?].

2.2 Write Requests

Write requests are first written to the disk array cache
and completion is signaled as soon as the write-to-cache
is completed. The “dirty” data in the cache are eventually
written to the disks. The write-back caching policy deter-
mines when dirty data are written from the array cache to
the disks. The write-back caching policy is typically de-
termined by two key parameters, namely, the

� "
� � �#��� �
and

& ��� � � � �/� . The parameter
� "
� � �#��� � determines the

maximum number of dirty blocks that can be held in the
cache without triggering disk writes. Therefore, in steady

.

.

.

.

.

.
Cache

M

1

M jobs

ca
ch

e_
hi

t_
pr

ob

di
sk

_a
cc

es
s_

pr
ob

disk_array

cache_service_time Disk n

Disk 1

disk_service_time

CPU_delay

CPU/Terminals

Figure 1. Queueing network model of disk ar-
rays with read workloads

state, there is zero probability that the cache has less than� "
� � �#��� � dirty blocks. The parameter
& ��� � � � �/� deter-

mines the maximum number of dirty data blocks that can
be held in the array cache. Write requests that arrive when
the cache is full must wait until enough dirty data are writ-
ten out to the disks. Thus, there is zero probability that the
cache has more than

& ��� � � � � � blocks. Let � represent the
number of dirty blocks in the cache. In steady state, the
cache can have

� "
� � �#��� � � � � & ��� � � � � � dirty blocks.

Let � � ��� represent the rate at which dirty blocks arrive
at the cache and let � [M] represent the rate at which dirty
blocks are written out to disks, when there are

�
workload

streams accessing the disk array. In steady state, the cache
can be modeled as a Markov birth-death

���'��� � ��� pro-
cess [?], where

����� & ��� � � � � � � � "
� � �#��� ��� ��� . The
corresponding Markov chain shown in Figure 2, has states � "
� � �#��� �"!$#�#
#�! & ��� � � � �/�$% . Appendix B presents the tech-
nique used to compute the performance of disk arrays under
writes.

Note that the
���'��� � ��� model assumes that the arrival

distribution of dirty blocks to the cache and the service dis-
tribution of dirty blocks written to disks are exponential.
The advantage of assuming exponential distribution is the
efficiency and simplicity of the corresponding performance
technique. The exponential assumption is not strictly satis-
fied, but the errors resulting from violation of this assump-
tion are, at worst, comparable to inaccuracies resulting from
other sources during modeling (e.g., errors in measurement
data).

The input parameters for the read model and write model
are summarized in Table 3. The values of the input parame-
ters depend on the characteristics of the particular disk array
being analyzed, so the next section presents the characteris-

Parameters Description

Read Model� � �	� � � �
� � !�� � �.& � � ���
mean disk service time+)� � �%� � ��� " � � � *���� � � ��� sibling subrequest overhead� � �	� �)!�!���� � + � " ,��%,��.� � � � � ��� prob. of accessing a disk!��)!)*�� � � �
� � !�� � �.& � � ���
mean array cache service time!��)!)*�� *�� � + � " ,��%,��.� � �/� � ��� array cache hit probability

Write Model
� � ��� cache’s data arrival rate
� � ��� data rate from cache to disks

Table 3. Input parameters of the disk array
model

λ[M] λ[M] λ[M]

µ[M] µ[M] µ[M]

Low Water Mark Low Water Mark + 1 Max_Dirty_block

Figure 2. Markov chain representation of disk
arrays with write workloads

tics of the disk array used in our study.

3 Disk Array Description

The Hewlett-Packard SureStore E FC-60 disk array [?]
is used in our validation study since this mid-size storage
system implements all of the features found in typical disk
arrays. Figure 3 shows a representation of the FC-60 disk
array. The FC-60 has 2 array controllers that are both con-
nected to a single backplane bus. Each controller has 256
MB of battery backed cache memory (NVRAM). The back-
plane bus has 6 ultra-wide SCSI buses each connected to a
SCSI controller. There can be up to 6 trays on the FC-60
and each tray has 2 SCSI controllers and up to 10 disks.
Since there are only 6 ports on the backplane bus, only 6
SCSI controllers can be used at a time, with each SCSI con-
troller handling 5 disks or 10 disks. Typically, the disks
of an array are partitioned into independent, disjoint units
called LUNs (logical units). In the FC-60, a LUN is formed
by combining disks from different SCSI controllers. A typ-
ical configuration for the FC-60 is a fully configured array
with 60 disks, 10 to each SCSI controller, for a total of ten
6-disk LUNs. Each array controller controls access to a dis-
joint set of LUNs. However, if one array controller fails then
the other array controller takes over the responsibilities of
the failed controller.

The RAID 1/0 configuration is a popular method of disk
striping, so we model the FC-60 with its LUNs configured

.
.
.

.

.

.

Disk 1Disk 1

Disk 10 Disk 10

ultra−wide SCSI

B
ac

kp
la

ne
 b

us

Fi
br

e
C

ha
nn

el
 (

to
/f

ro
m

 h
os

ts
) request queue

RAID Controller A

RAID Controller B

SCSI Controller SCSI Controller

T
ra

y
1

T
ar

y
6

SCSI Controller SCSI Controller

request queue

cache

cache

Figure 3. The HP FC-60 disk array

stripe 1
stripe 2
stripe 3
stripe 4
stripe 5
stripe 6

stripe n

D1 == D2 D3 == D4 D5 == D6

st
ri

pe
 u

ni
t 2

st
ri

pe
 u

ni
t 1

st
ri

pe
 u

ni
t 6

st
ri

pe
 u

ni
t 4

st
ri

pe
 u

ni
t 3

st
ri

pe
 u

ni
t 5

Figure 4. RAID 1/0 configuration

as RAID 1/0 arrays operating in failure-free mode. Each
disk in the LUN is logically partitioned into equal sized
blocks referred to as stripe units. The stripe unit size
(
� � � �.+-� � �� � ��� ���

), a multiple of the disk sector size, is set
at the time of LUN configuration. The set of stripe units at
the same physical location on each disk is referred to as a
stripe. Thus, a RAID 1/0 disk array is logically partitioned
into rows of stripes and columns of stripe units (Figure 4).
To protect against failure of any one disk, RAID 1/0 uses
mirrored redundancy with each disk having a mirrored pair.
All write data have to be written both to the disk and its
mirrored pair, and read data can be read from either disk.

All our experiments are run on one FC-60 LUN con-
taining 6 disks, one from each tray. Table 4 presents the
disk array configuration parameters of significance to the
model. These parameter values are obtained from the man-
ufacturer’s specifications [?] or directly measured.

Parameter Description Value/Units!��)!)*�� � � ���
size of the cache at each controller 256 MB!��)!)*�� � � �% #��� � � � �#��� mean cache transfer rate 62 MB/sec� �#� � �%*���� � ��� ���
mean number of additional bytes read from disk � � bytes��� � �.+-� � -� � ��� ���
size of a stripe unit 16 KB��� � �.+-� � � � � * number of stripe units in a stripe (logical row) 6� � ��� � �%+-�
type of disks in the FC-60 disk array Cheetah73� � ��� !��%+)�)!#� �/�
total formatted capacity of a disk 73.4 GB� � ��� � �#� � � ��� � � �.& �
mean disk read seek time 6.05 ms� � ��� � � � ��� � ��� � � �.& �
mean disk write seek time 6.55 ms� � ��� � � � " � � � � " #� revolutions per minute 10000 rpm� � ��� � � �% ���� � � � �#��� mean disk transfer rate 31 MB/sec

Table 4. Disk array characterization

4 Disk Array Specific Input Parameters

Section 2 presents the disk array input parameters of sig-
nificance to the performance techniques. Here, we present
the computation of each of the input parameters to the
performance techniques presented in Appendix A and Ap-
pendix B. For notational convenience, we drop

� ���
when

referring to a parameter.

4.1 Disk Service Time

The disk service time is the sum of disk positioning time
(= disk seek + rotate time) and disk transfer time. It is im-
portant to get accurate estimates of disk service time since
the disks are the most heavily utilized components of a disk
array. Hence, small errors in estimating disk service time
will affect the disk array model’s performance predictions
more than large errors in estimating other parameter val-
ues. However, it is difficult to get accurate estimates of
disk service time since the positioning time depends on sev-
eral disk features such as the disk specifications, the disk
caching policy, and the disk scheduling policy, and on sev-
eral workload features such as the CPU delay, the number
of workload streams, and the per-stream sequentiality. A
disk service time computation technique must incorporate
the effects of most (if not all) of these features in-order to
be reasonably accurate. [?, ?, ?] present disk service time
computation techniques that incorporate the effects of some
of these features.

For the greatest accuracy, we compute disk positioning
time by analyzing disk measurement data. This measure-
ment data incorporates the effects of all the disk and work-
load features mentioned above. For random and sequential
workloads, Figure 5 plots disk positioning time measure-
ment data as a function of disk queue length. For random
workloads the positioning time is given by

� � �	� +-" ��� � � " � �.& � � � � �� � � � � �	� � � � � � (1)

By minimizing the root-mean square errors between the
measured values and those given by the equation, it is de-
termined that for the Cheetah 73 disk, the constants are� �	� # � � ms and � �	
 #
 � ms. For sequential workloads,
the mean positioning time is given by

� � ��� +-"�� � � � "' � �.& � � � ��
 � � � � � � � � � ��� � � � � � � �� ��� � � � �	� � � � � � � � ��� � � � � � � �
For Cheetah 73, � � ��� # � � and � ��� # �
 .

For random workloads, the mean positioning time de-
creases as the disk queue length increases due to the ef-
fect of disk scheduling policies such as SCAN or CSCAN.
When there is a single stream of sequential requests at the
disk, the positioning time is close to zero, since the disk
head moves little and read-ahead to the disk cache mini-
mizes the effects of rotational latency [?]. As the number of
sequential streams increases, the positioning time increases
due to interference between streams. Disk measurements
indicate that the sequentiality of the workload has minimal
effect on disk service time for

� � ��� � � � � � � �
.

Thus, given a particular disk and its workload, the disk
service time is a function of the disk queue length. How-
ever, the disk queue length is an output of a disk array
(or disk) performance model. To address this circular re-
lationship between disk service time and disk queue length,
disk service time computation techniques typically assume
that the disk queue length is a known input parameter.
In our modeling study, disk queue length is a known in-
put parameter only when

	
 � � �-� ��� � � in which case� � ��� � � � � � � � � � � �	� �)!�!���� � + � "',)�%,��.� � � � . For workloads
with

	�

� � ��� ��� � � , a reasonably accurate approximate

Po
si

tio
n

T
im

e
(m

s)

Model position time

Actual position time

Root Mean Square Error = 0.502ms

Random Read

Root Mean Square Error = 0.17ms

Sequential Read

Po
si

tio
n

T
im

e
(m

s)

Disk Queue Disk Queue

4

5

6

7

8

9

10

11

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60

Figure 5. Disk mean read positioning time for
random and sequential workloads

value of disk queue length must be computed and validated.
Our computation of the approximate disk queue length is
presented below.

Assume that
!��)!-*#� & � � � + � " ,��%,��.� � �/� � � . A job in

the system is either at a disk or at a terminal/cache. If
there are

�
jobs, then in the worst case, all the jobs

are at the disks. Since the probability of a job being at
any particular disk in the array is

� � �	� �)!�!���� � + � "',)�%,��.� � � � ,� � ��� � � � � � � � � � � ��� �)!�!���� � + � "',)�%,-�.� � �/� . Hence,� � ��� +-"���� � � " � �.& �
(and subsequently

� � ��� � � ��� � !�� � �.& �
) for

this disk queue length can be computed using one of
the two

� � ��� +-"�� � � � "' � �.& �
equations given above. Then

the disk response time for this worst case is given by� � � �	� � � ��� � !�� � �.& � � � � � � �	� �)!�!���� � + � "',)�%,-�.� � �/� � . A job
spends

	�

� � ��� ���
at the CPU and in the worst case

spends
� � � !��)!)*�� � � ��� � !�� � �.& � � at the cache. Us-

ing Little’s Law, the throughput of the disk array is
given by

� �$� 	�
 � � ��� ��� � � � � !��)!-*#� � � �
� � !�� � �.& � � �� � � �	� � � ��� � !�� � �.& � � � � � � �	� �)!�!���� � + � "',)�%,-�.� � �/� � � . Using
Little’s Law again, the approximate queue length at a disk
is given by
� � ��� � � � � � � � � � � � � �	� � � �
� � !�� � �.& � � � �
� � ��� �)!�!���� � + � " ,��%,��.� � � � � � �$� 	
 � � �-� ��� � � � �
!��)!)*�� � � �
� � !�� � �.& � � � � � � �	� � � �
� � !�� � �.& � � � �
� � ��� �)!�!���� � + � " ,��%,��.� � � � � �

4.2 Parallelism Overhead

Parallelism overhead refers to the additional time (over
disk service time) taken to execute all the subrequests
of a request. Since all sibling subrequests are the same
size, the transfer time of each subrequest is the same
(
� � �	� � � �% #��� � � � �.& � � � � , � � � � ��� � � � ��� � � � ��� � � �% ���� � � � �#���),

but the positioning time of each subrequest may
be different. Let

& ��� +-"�� � � � "' � �.& �
represent the

mean of the maximum positioning time from among � & � � , � � � � ������� +-� � � � � � ��� � subrequests.

+�� � �%� � �-� " � � � *#�#� � � & ��� +-" ��� � � "' � �.& � � � � �	� +-" ��� � � "' � �.& �

In order to compute
& ��� +-" ��� � � "' � �.& �

, the distribution
of positioning time must be known. One could use the stan-
dard positioning time distribution [?] or bounded distribu-
tions such as the beta distribution [?] to model the distribu-
tion of positioning time. In [?], we compute parallel over-
head by assuming that the positioning time distribution is
modeled by the beta distribution.

4.3 Disk Access Probability

The
� � ��� �)!�!���� � + � " ,��%,��.� � � � represents the probability

that a request accesses data from a disk in the array. If it
is assumed that requests access data uniformly from all the
disks, then� � ��� �)!�!���� � + � " ,��%,��.� � �/� � !��)!-*#� & � � � + � "',)�%,��.� � � � �
 � & � � , � � � � ������� +-� � � � � � ��� � � � � � �.+-� � � � � *
The value of

 � & � � , � � � � ��� ��� +-� � � � � � ����� is typically
computed as a function of the stripe unit size and stripe
width. For example,

 � & � � , � � � � ������� +-� � � � � � ��� � � � if
the request size is smaller than the stripe unit size. How-
ever, the value of

 � & � � , � � � � ������� +-� � � � � � ��� � depends
on two other factors, namely, (a) the redundancy based
load distribution policy that determines whether subrequest
data are partly read from a disk and partly from its mir-
ror or whether data are read entirely off one disk and not
from its mirror, and (b) the access coalescing policy that
determines whether large requests that straddle multiple
stripe units on a disk are coalesced into a single subrequest.
For example, consider large request sizes � � � � �.+-� � � � � * �
��� � �.+-� � -� � � � ���

. Assume that access coalescing occurs for
such large requests. Then, depending on the load distribu-
tion policy,

 � & � � , � � � � ������� +-� � � � � � ��� � � ��� � �.+-� � � � � *
if request data are distributed between a disk and its mir-
ror, else

 � & � � , � � � � ������� +-� � � � � � ��� � � � � � �.+-� � � � � * � � .
Thus, in order to compute

 � & � � , � � � � ��� ��� +-� � � � � � ����� ,
the access coalescing policy and the load distribution policy
for the disk array must be known in addition to the stripe
unit size and the stripe width. The details of the FC-60 load
distribution and access coalescing policy are outlined in [?].

4.4 Cache Parameters

A cache hit on a read request occurs if (a) this request is
part of a sequential stream of requests submitted to the disk
array and was read into the cache as part of read-ahead data,
or (b) this request had been referenced in the past and the
request’s data are still in the cache. The random variables
representing read-ahead and re-reference hits are indepen-
dent since the probability that a request’s data results in a
read-ahead hit is not related to whether this request’s data

results in a re-reference hit. The cache hit probability is
then given by
!��)!)*�� *�� � + � "',)�%,-�.� � �/� � � � � � �#� � �%*���� � & � � � + � "',)�%,��.� � � � �
� � � � � � � �-)!�� & � � � + � "',)�%,��.� � � � �

Techniques for computing the re-reference probability
are presented in several papers [?, ?, ?]. The read-ahead
probability must incorporate the effect of explicit read-
ahead (i.e., every read access from the disks results in an
additional system-defined number of bytes being read into
the cache) and also the effect of adaptive prefetching based
on detection of I/O sequentiality. A technique for comput-
ing the explicit read-ahead hit rate is given in [?]. Here, we
do not incorporate the effects of adaptive prefetching.

The cache service time is the rate at which requests are
transferred from the array cache to the main system and is
equal to � � � � ����� � � ��� � !��)!)*�� � � �% #��� � � � �#��� .

4.5 Write Model Input Parameters

The parameter � represents the rate at which dirty blocks
are written out to the disks from the array cache. Since all
data written to a disk must also be written to the disk’s copy,

� � stripe width� � � � �	� � � ��� � !�� � �.& �

We now outline our computation of � , the rate at which
dirty blocks arrive at the disk array. The disk array un-
der write workloads is modeled by a

� ��� � � �$� queue.
An implication of this model is that requests that arrive
when the cache is full (i.e., � � & ��� � � � � �) are “lost.”
In reality, however, requests that arrive when a cache is
full are not “lost” since these requests block until enough
dirty data blocks are written to the disks. This behavior of
disk arrays is implicitly captured in our model by setting
� � & ��� � � � ��� � * � " � � * + � � , where

& ��� � �/� ��� � * � " � �'*%+ � �
is the maximum rate at which dirty blocks can be written
to the disk array system for a given I/O workload. The
maximum throughput of the disk array can be reached if
all write blocks are written to the cache immediately, that
is, if

& ��� � � � �/��� �
. In this case, the disk array is mod-

eled by the cache alone and the the MVA technique can be
used to compute

& ��� � �/� ��� � * � " � �'*%+ � � .

5 Empirical Validation

A HP 9000-N4000 server with eight 440 MHz PA-RISC
8500 processors and 16 GB of main memory, running the
HP-UX 11.00 operating system, is used to generated the
workloads and access the FC-60 array. The workloads are
generated using a synthetic load generator. The inputs to
the load generator are:

� request size: 4K, 8K, 16K, 32K, 48K, 64K, 128K,
256K,

� request type: read-only, write-only,

� run count: 1 for random requests, 64 for sequential
requests,

� random count: 0 (i.e., a workload stream consists of
runs of length � � !�" � ��

),

� CPU delay: exponentially distributed with mean 0 ms
(no delay), 10 ms, 30 ms, 100 ms,

� multiprogramming level: 1 to 12.

A trace of all I/O activity at the device driver level is col-
lected. We ran each experiment until the 95% confidence
interval for each metric was less than � � of the point value.

Figures 6 and 7 plot the model’s mean response times
and the actual response times for read and write workloads
for varying request sizes and multiprogramming levels, and
CPU delay of 0 ms and 10 ms. The model’s performance
predictions are a good match for the experimental perfor-
mance measures. The model is better for random I/Os than
for sequential I/Os, and better for reads than for writes. The
average errors range from

�
ms (for random I/Os) to � ms

(sequential I/Os).
We now analyze the effect of I/O workload sequential-

ity on the performance of disk arrays under read workloads.
Our graphs indicate that the sequentiality of workloads has
little impact on performance as the disk queue lengths and
the request sizes increase. In fact, the performance un-
der sequential workloads is better than the performance un-
der random workloads only when

� � ��� � � � � � � �
. Also,

for sequential workloads, when comparing the actual sys-
tem’s performance against the model’s predictions, the per-
formance of the actual system is better than the model only
when

� � ��� � � � � � � � . Since our model does not capture the
effects of adaptive prefetching, this similarity between the
actual system’s performance and the model’s predictions in-
dicates that for the workloads tested, the adaptive prefetch-
ing policies of FC-60 are effective only at small disk queue
lengths. When considering the disk array under write work-
loads, the performance of the disk array under sequential
and random writes is quite similar This indicates that the
sequentiality of the write workloads has little impact on per-
formance as disk queue lengths and request sizes increase.

6 Conclusions

The paper presents and validates a disk array perfor-
mance model that incorporates the effects of array caching,
multiple disks, and sophisticated array controllers. The
model is validated against a specific disk array (the FC-60

0 50 100 150 200 250 300

0 50 100 150 200 250 300 0 50 100 150 200 250 300

0 50 100 150 200 250 300

Actual Model
MPL=1
MPL=3
MPL=6
MPL=12

Request Size (KBytes)

Request Size (KBytes) Request Size (KBytes)

Request Size (KBytes)

Random Reads Sequential Reads

Random Writes Sequential Writes

0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

160

R
es

po
ns

e
T

im
e

(m
s)

R
es

po
ns

e
T

im
e

(m
s)

R
es

po
ns

e
T

im
e

(m
s)

R
es

po
ns

e
T

im
e

(m
s)

Figure 6. Model versus actual response times for
	
 � � �-� ��� � � ms

Actual Model
MPL=1
MPL=3
MPL=6
MPL=12

Request Size (KBytes)

Request Size (KBytes) Request Size (KBytes)

Request Size (KBytes)

R
es

po
ns

e
T

im
e

(m
s)

R
es

po
ns

e
T

im
e

(m
s)

R
es

po
ns

e
T

im
e

(m
s)

R
es

po
ns

e
T

im
e

(m
s)

Random Writes

Sequential ReadsRandom Reads

Sequential Writes

0 50 100 150 200 250 3000

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300

Figure 7. Model versus actual response times for
	�
 � � �-� ��� � � � ms

array). However, the model can be used to compute per-
formance measures of other disk arrays since the modeling
approach is general in that features common to all disk ar-
rays are explicitly modeled while the specifics of a partic-
ular proprietary system are implicitly modeled by incorpo-
rating their effects in the input parameter values. For exam-
ple, multiple disks (common to all disk arrays) are explicitly
modeled as service centers while the effect of caching at the
disks, which varies depending on the caching policy of the
specific disk array, is implicitly captured by reducing the
disk service times appropriately.

An advantage of our integrated disk array performance
model is that it is possible to evaluate the combined effects
of array caching and multiple disks on the overall perfor-
mance of the disk array. The model also helps identify fea-
tures of a disk array that could be improved. For example,
our study indicates that the array caching policies could be
improved since the sequentiality of workload streams has
little impact on the performance of FC-60. Our analytical
model is suitable for use in capacity planning and in stor-
age management systems, where it is necessary to estimate
whether a given array can meet the performance require-
ments of a given set of workloads. Such systems typically
use optimization techniques which require repeated evalua-
tions of different storage configurations [?, ?], and therefore
require fast, yet reasonably accurate, performance predic-
tions.

Acknowledgments

We thank John Wilkes, Eitan Bachmat, Mustafa Uysal,
Manish Madhukar, Sajeev Varki, and several anonymous re-
viewers for their helpful comments.

A Appendix: Performance Technique for
Reads

We show how the parallel MVA technique is used to
compute the mean response time, throughput, and queue
length of a disk array under read workloads. For multipro-
gramming level � varying from 1 to

�
, iteratively compute

1.
� �/� ��� � ����+-" #� � � �.& � � � � � !��)!)*�� � ����+-" #� � � �.& � � � � �� ��� � ����+-" #� � � �.& � � � �
where

!��)!-*#� � ����+-"' �� � � �.& � � � � � !��)!)*�� � � �
� � !�� � �.& � � ��� �� � � !��)!-*#� � � � � � � � � � � �� ��� � ����+-" #� � � �.& � � � � �

!��)!-*#� & � � � + � "',)�%,��.� � � � � ��� �
� +)� � �%� � �-� " � � � *���� � � ��� � � � ��� � � ��� � !�� � �.& � � ��� � �

� � � �	� �)!�!���� � + � "',)�%,��.� � � � � ��� � � � �	� � � �
� � !�� � �.& � � ��� �� ��� � � � � � � � � � � �
The parameter

!��)!)*�� � � � � �
represents the mean queue

length at the array cache. The parameter
� ��� � � � � �

represents the mean queue length at the LUNdisks. For� � � , !��)!)*�� � � � � � � � � � � � !��)!-*#� � � � � � � � � �� and
� ��� � � � � � � � � � � ��� ��� � � � � � � � � � � .

For � � � , the computation of
!��)!)*�� � � � � �

and� ��� � � � � �
is presented in Step 3 of this algorithm.

2.
� �/� ��� � * � " � � * + � � � � � � � ��� 	�

� � ��� ��� �
� � � ��� � ����+-"' �� � � �.& � � � � �

3. The queue lengths at the LUNdisks and the cache are
computed using Little’s Law,� ��� � � � � � � � � � � ��� � ����+-" #� � � �.& � � � � �
� � � ��� � * � " � � * + � � � � �!��)!-*#� � � � � � � � � � !��)!)*�� � ����+-"' �� � � �.& � � � � �
� � � ��� � * � " � � * + � � � � �
The disk array queue length represents the total num-
ber of outstanding requests at the array cache and
LUNdisks.� � � ��� � � � � � � � � ��� ��� � � � � � � � � � !��)!)*�� � � � � � � � �

B Appendix: Performance Technique for
Writes

The disk array under write workloads is modeled us-
ing the M/M/1/K queue, and here we show how the disk
array’s mean performance measures are computed. Let� � � � ��� � � � ��� represent the utilization of the M/M/1/K
queue. Then, the steady state probability distribution of
dirty blocks in the cache is [?]

�
	 � �
�
$ � ��������������� ��� �! �" #%$ &�

$ � �('*),+-� for
� "
� � �#��� � � � � & ��� � � � �/�

� otherwise

Each job submits write requests that are equivalent to one
or more dirty blocks. Let

 � & ,-� � " � � � � �/� , � "�! ���
represent

the number of dirty blocks per I/O request.

 � & ,-� � " � � � � �/� ,%� "�! ��� �/. � � � � ����� � � ���
� � � �.+-� � �� � ��� ���10

The mean throughput (i.e., requests serviced per unit time)
of the disk array is computed from the

� ��� � � �$� queueing
model

� � � ��� � * � " � � * + � � � ��� � � � ��� � � � � �3254�6 7�8 9 :�; � � & ,-� � " � � � � � � ,%� " ! ���

The mean response time is computed using Little’s Law on
the entire system.

� �/� ��� � ����+-" #� � � �.& � � ��� � �
� � � ��� � * � " � �'*%+ � � � ��� � 	�
 � � �-� ���

The disk array queue length is computed using Little’s Law
on the disk array.

� �/� ��� � � � � � � ��� � � � � ��� � * � " � �'*%+ � � � ��� � � �/� ��� � ����+-" #� � � �.& � � ���

References

