Analysis of Balanced Fork-Join Queueing Networks

Elizabeth Varki

Lawrence W. Dowdy

Department of Computer Science
Vanderbilt University
Nashville, TN 37235

email: [varki,dowdy]@vuse.vanderbilt.edu

Abstract

This paper presents an analysis of closed, balanced,
fork-join queueing networks with exponential service
time distributions. The fork-join queue is mapped onto
two non-parallel networks, namely, a serial-join model
and a state-dependent model. Using these models; it is
proven that the proportion of the number of jobs in the
different subsystems of the fork-join queueing network
remains constant, irrespective of the multiprogramming
level. This property of balanced fork-join networks is
used to compute quick, inexpensive bounds for arbitrary
fork-join networks.

1 Introduction

Multiprocessor systems greatly influence the design of
software processes. In uniprocessor systems, perfor-
mance is limited by the speed of the single processor.
This limitation is removed in multiprocessor systems by
dividing a job into a number of tasks which are exe-
cuted concurrently on the processing units. The par-
allel program has a simple fork-join structure. A job
arriving at the system forks into various independent

tasks. On completing execution, a task waits at the join

O Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a

fee.

SIGMETRICS 96-5/96 Philadelphia, PA, USA
©1996 ACM

point for its sibling tasks to complete execution. A job
leaves the system once all its tasks complete execution.
Although the job structure is simple, the synchroniza-
tion constraints introduced by the forking and joining of
tasks makes the modeling and analysis of multiprocessor

systems complicated.

Performance analysis of parallel programs is impor-
tant as is the development of tools for analyzing their
performance. Exact solutions for the steady state dis-
tribution have been provided only for simple cases ([1],
[3]). An exact response time analysis of a two server
fork-join queue is given in [8]. Due to the difficulty of an-
alyzing fork-join models exactly, many studies on fork-

join queues concentrate on approximation techniques.

This paper introduces a quick and inexpensive
bounding technique for obtaining performance measures
of fork-join systems. The bounding technique is referred
to as balanced job bounds for fork-join (BJB-FIJ) systems
and is analogous to balanced job bounds developed for
product form networks [9]. The analysis given here is
specific to 2-server fork-join systems but could be ex-
tended to more general fork-join networks. The main
contributions of this paper are: (1) an exact analysis of
the fork-join model using two non-parallel, equivalent
models of the fork-join network, (2) a proof that the
proportion of jobs in each of the subsystems of a bal-
anced fork-join model remains constant, irrespective of
the multiprogramming level, and (3) the introduction of

a balanced job bounds technique for fork-join systems.

The remainder of the paper is organized as follows.
Section 2 introduces the fork-join system under consid-
eration, states the assumptions, and gives the notation.
In Section 3, a detailed analysis of the fork-join model is
given. Section 4 explains the balanced job bounds tech-

Parallel Subsystem (PS)

(1)—

M

Serial Subsystem (SS)
Jobs m @

H Fork point

Tasks
Join point

®

u

Figure 1: Balanced Fork-Join Queueing Network Model

nique for fork-join systems. Further research problems
and extensions are discussed in Section 5.

2 The Balanced Fork-Join
Queueing Network Model

The fork-join queueing network model studied in this
paper is shown in Figure 1. A fixed number of identical
jobs (referred to as the multiprogramming level) circu-
late in the network. The network consists of two inter-
connected subsystems, where each subsystem consists
of one or more independent queueing systems. Each
queueing system consists of a single service center and
an infinite capacity queue. All servers have a first-come-
first-served (FCFS) queueing discipline and all demands
at the service centers have a negative exponential dis-

tribution with mean p~*.

There are two types of sub-
systems: 1) a serial subsystem consisting of a single
queueing system, and 2) a parallel subsystem consisting
of two identical queueing systems. Upon arrival at a
parallel subsystem, a job instantaneously forks into two
independent and identical tasks, where task k, £k = 1, 2,
is assigned to the kth queueing system. On complet-
ing execution at the kth service center, the task waits
at the join point for its sibling task to complete execu-
tion. A job leaves the subsystem as soon as all its tasks
complete execution (i.e., arrive at the join point). A
queueing network with serial and parallel subsystems is
referred to as a fork-join queueing network (FIQN). A
queueing network with only serial subsystems is referred
to as a serial network. A customer in the FJQN refers
to a job/task waiting for, or receiving, service at one of
the service centers. Therefore, a customer at a service
center in a serial subsystem refers to a job, while that at
a service center in a parallel subsystem refers to a task.

Each service center in a parallel subsystem is visited
by exactly one task of every job arriving at the subsys-
tem. Thus, the visit ratio of a task to a service center
in a parallel subsystem is equal to the visit ratio of the
job to the subsystem. For the FJQN shown in Figure 1,
the visit ratios of a job to each of the two subsystems
are equal and, therefore, the loadings at all service cen-
ters are equal to !, the mean service time at a server.
A network, where the loadings at all service center are
equal, is called balanced.

Definition A balanced FJQN is one in which all jobs
exhibit balanced resource usage (i.e., networks in which

the loadings at all service centers are equal).

For the model shown in Figure 1, the serial subsys-
tem is referred to as S, and the parallel subsystem is

referred to as PS. The notation used in this paper is:
e ny: Number of tasks at the kth queueing station of
a subsystem.

e s, 5" = (n1,nq): Vector representing the state of the

parallel subsystem.

e ¢, 1" = (n1): Vector representing the state of the

serial subsystem.

e S, 8" = (t,s): Vector representing the state of the

network.

e J(s): Number of jobs in the parallel subsystem,
given subsystem state s. J((n1,n2)) = maximum
{77,1,77,2}.

e j(s): Number of jobs having a task waiting at the
join point, given subsystem state s. j((ni,ng)) =

|77,1 — 77,2|.

e p;(j): Probability that ajob arriving at subsystem &
sees j jobs in the subsystem just before arrival. The

arriving job does not see itself in the subsystem.

e RT;(m): Mean response time at subsystem i when

the multiprogramming level is m.

e ST;(m): Mean service time at subsystem i when

the multiprogramming level is m.

e Qi(m): Mean queue length at subsystem ¢ when

the multiprogramming level is m.

e U;(m): Average utilization of subsystem ¢ when the

multiprogramming level is m.

e TPUT(m): Mean system throughput when the
multiprogramming level is m.

e H;: The kth harmonic number defined as Ek 1

i=17"

Note that since the system is analyzed at steady state,
time is factored out of the notation. The set of states
of the underlying queueing model of the FJQN forms
an irreducible Markov process which is analyzed in the
next section.

3 Analysis of Balanced FJQNs

In this section, a simple analysis of a fork-join network
is presented. The fork-join network is mapped onto two
serial networks, namely, a serial-join model and a state-
dependent model. Each of the these models, taken sep-
arately, is difficult to solve. However, the three models
are equivalent and this equivalence is used to prove some
properties of the fork-join queue.

3.1 A Serial-Join Model of the FJQN

A job arriving at the parallel subsystem forks into two
tasks, one of which spends its entire time at the service
center it is assigned to; while its sibling task spends
only a certain percentage of time at its service center
and the rest of its time waiting at the join point. Since
both service centers are identical, either one could serve
the first task of the job completing execution (or equiv-
alently, the last task of the job completing execution)
with equal probability. Hence, the average job queue
length of a service center in the parallel subsystem is
equal to the average of the queue lengths of the service
centers serving the first task and the last task of the job
completing execution.

The parallel subsystem can be mapped onto two se-
rial subsystems, P, and F;, as shown in Figure 2. The
service center of P, is equivalent to a service center in
the parallel subsystem of the original fork-join model.
The performance measures at P, correspond to the av-
erage statistics of the two service centers of the original

@Hm i nt

Serial Subsystem

Parallel Subsystem

Figure 2: Equivalent Serial-Join Model of the FJQN

fork-join model. The service time at the second serial
subsystem, Fj, is equal to the average delay encoun-
tered by a job at the join point of the original fork-
join model. This equivalent model is referred to as the
serial-join model. In the serial-join domain, a job arriv-
ing at the equivalent parallel subsystem does not fork
into tasks. Instead, an arriving job spends some time in
subsystem F,, and then moves to the join point F;. The
queue length at P, is equal to the average queue length
at a service center of the original fork-join system, and
this center services jobs at rate u. The join point, F;, is
modeled as a delay server, and its service time varies ac-
cording to the multiprogramming level. The join point,
P;, is analyzed in the following sections.

3.2 Markov Analysis

While the serial-join model allows one to view paral-
lel subsystems without the forking of jobs into tasks,
it doesn’t simplify the analysis, since the service time
at the join point is not known. Markov analysis is
used here to identify and understand the properties
of the fork-join network. First, consider the origi-
nal fork-join queueing model when the multiprogram-
ming level of the network is set to 1. The correspond-
ing Markov process of the network has state space
{10, 0)), (0, (1, 1)), (0,0, 1)), (0, (1, 0))}. Figure 3(a)
shows the state-space diagram of the Markov process.
States (0,(0,1)) and (0,(1,0)) represent the network
when there are no jobs at the serial subsystem, and
the job at the parallel subsystem has one task at a
service center while its sibling waits at the join point.
These states have identical steady state probabilities
and, hence, can be aggregated into a single state. The
corresponding state-space diagram of the Markov pro-

cess is given in Figure 3(b).

State S7 represents the network when there is one

Figure 3: Markov Diagram of the Fork-Join Model at
Multiprogramming Level 1

job in the serial subsystem. States Ss and Ss represent
the network when there is one job at the parallel sub-
system; S represents the state when there are no tasks
of the job waiting at the join point, and S3 represents
the state when one task of the job is at a service center
while its sibling is at the join point. Transition arc §
between states S; and Sa, represents the movement (at
rate p) of a job from the serial subsystem to the parallel
subsystem. The transition arc pj between states S and
Ss, represents the movement (at rate 2u) of the first
task of the job from a service center to the join point;
while the transition arc p5 between states S3 and S,
represents the movement (at rate p) of a job from the

parallel subsystem to the serial subsystem.

Now consider the fork-join network when the multi-
programming level is set to 2. Figure 4 shows the state-
space diagram of the underlying Markov process. Arcs
§ and p5 represent movement between the two subsys-
tems, while p] represents movement within the parallel
subsystem. States Si, Ss, S4, S5, and Sg represent the
network when there is at least one job in the parallel
subsystem. Amongst these, states So and S, represent
the network when there are no jobs with a task wait-
ing at the join point; states S3 and Ss represent the
network when there is one job with a task at the join
point; and state Sg represents the network when there
are two jobs which have a task waiting at the join point.
The rates along transition arcs § and p3 are equal to py,
as in the case when the multiprogramming level was set
to 1. These rates are state independent. However, the
transition arc p; between states Ss and Sg has rate p,
instead of 2u. Thus, the movement of tasks to the join
point slows down to rate p whenever there are one or
more jobs with tasks waiting at the join point.

st S2 Sy

K 2
N n
n
S
Sz
= H
R H
~
L\l n
pZ
S

Figure 4: Markov Diagram of the Fork-Join Model at
Multiprogramming Level 2

The time spent by a job in the parallel subsystem
can be factored into two phases. In phase 1, both tasks
of the job are waiting for, or receiving, service at the
service centers of the subsystem (i.e., there are 0 tasks
of the job at the join point). In phase 2, only one task
of the job is waiting for/receiving service at the service

center while its sibling task waits at the join point.

3.3 State-Dependent Model of FIJQNs

The properties of the parallel subsystem can be studied
by viewing the subsystem from the perspective of the
two phases of a job’s response time. During the first
phase, both tasks of the job are in the queues of the
service centers. This phase ends with the movement of
one of the tasks to the join point. In the remainder
of the response time (i.e., phase 2), only one task of
the job is at a service center, while its sibling waits at
the join point. Movement out of phase 1 is depicted
by downward transition arc pj, and movement out of
phase 2 is depicted by upward transition arc p5. The
time spent completing phase 1 and phase 2 of a job’s
response time in the parallel subsystem can be viewed as
the time spent getting service at two service centers (or,
serial subsystems), P; and P,. Service time at server P,
represents the time spent by a job in phase 2 of a job’s
response time. This server has a service time drawn
from a negative exponential distribution with mean p=*.
Service time at server P) represents the time spent by
a job in phase 1 of a job’s response time. The rate
at which P; services jobs is dependent on the number
of jobs in Ps. Service center P; services jobs at rate
20 when there are no jobs in the queue of server Ps.

@ﬂm T0)

M oor2u H
Serial Subsystem |

Parallel Subsystem

Figure 5: Equivalent State Dependent Model of the
FIQN

Figure 6: Markov Diagram of the Equivalent State De-
pendent Model at MPL of 1 and 2

However, the presence of one or more jobs at P, slows
the service rate of P; to p.

Viewing the parallel subsystem from the perspective
of the two service centers P; and P is similar to map-
ping the network to a different domain, one in which the
fork-join model consists of three serial subsystems. The
first serial subsystem in this domain is equivalent to the
serial subsystem, SS, of the original fork-join model.
The second and third serial subsystems are equivalent
to subsystems with service centers P; and Ps, respec-
tively, and they model the parallel subsystem. Since
service time at service center P; is dependent on the
number of jobs in service center Ps, the network is state-
dependent. In this model, as in the case of the serial-join
model, a job does not split into tasks in the parallel sub-
system. The state-dependent model shown in Figure 5
is equivalent to the fork-join queueing network. The
Markov diagram of the state-dependent model at mul-
tiprogramming levels of 1 and 2 is shown in Figure 6. A
state, (nf, (n1,n2)), of the fork-join model is equivalent
to the state (n}, J(s)—j(s),j(s)) of the state-dependent

model.

3.4 Comparison of the Models

This section summarizes properties of the subsystems of
the three equivalent models and shows the relationship
between them. All equations stated here are direct con-
sequences of the equivalence of the three models, and
they link the models.

All of the models contain the serial subsystem, SS.
This subsystem services jobs at rate p, and its utiliza-
tion Uss(m) equals TPUT(m) * u~!. The other sub-

systems of the three models are:

e State-Dependent Model (Figure 5):

Up,(m) = Uss(m), Vm (1)
Qr.(1) = Qss(1) (2)
Up (1) = 0.5%Uss(l) (3)
Up,(m) > 05%Ugg(m), Ym>1 (4)
Up,(m) < Uss(m), Vm (5)

e Original Fork-Join Model (Figure 1): The equa-
tions given below relate the original fork-join model
to the state-dependent model.

Uss(m) < Ups(m), ¥Ym (6)
Ups(l) = Up,(1)+Up,(1) (7)
Ups(m) < Up, (m) + Up, (m), Ym > 1 (8)
Qrs(m) = Qp(m)+Qp,(m), Ym (9)

e Serial-Join Model (Figure 2): The equations given
below relate the serial-join model to the state-
dependent model and the fork-join model. In par-
ticular, equations 12 and 13 link the three models
of the fork-join network.

Up,(m) = Uss(m), Vm (10)
Qr.(1) = Qss(1) (11)
Qr.(m) = 0.5(Qps(m)+ Qp,(m)),Vm(12)
Up,(m) = 0.5(Ups(m)+ Up,(m)),Vm (13)
Qrs(m) = Qp,(m)+Qp;(m), Ym (14
Qp;(m) = Qps(m)—Qp,(m), Ym

= 0.5%Qp,(m) (15)

3.5 Analysis of the Parallel Subsystem

In this section, the equivalent models are used to ana-
lyze the parallel subsystem of a FJQN. The service cen-
ters of the network are not necessarily balanced. How-
ever, all service centers of the parallel subsystem must
be homogeneous.

Lemma 3.1 The mean service time of subsystem Pp,
STp, (m), is non-decreasing as the multiprogramming
level, m, increases. In particular, STp, (1) < STp,(m)
for allm > 1.

Proof: The service center in subsystem P; services jobs
at rate 2 when there are no jobs in subsystem P,. The
presence of one or more jobs in subsystem Ps slows the
service rate of P; to p. Thus, the mean service time
at Py, STp, (m), is non-decreasing as the multiprogram-
ming level increases. In particular, STp, (1) < STp, (m)
for all m > 1. ad

Lemma 3.2 The mean service time of parallel sub-
system PS, STpg(m), is non-increasing for increasing
maultiprogramming level m. In particular, STps(1) >
STps(m) for allm > 1.

Proof: This result is proven in [8]. However, it can
also be proved as follows. Equation 13 states that
Up,(m) = 0.5% (Ups(m) + Up, (m)). This implies that
Ups(m) = 2% Upa — Upl(m).
STp, (m) is non-decreasing for increasing multiprogram-

Lemma 3.1 shows that

ming level m. The mean service time of P,, STp,, is
invariant of the multiprogramming level. The desired
result follows directly. a

The following lemma is a direct consequence of lem-
mas 3.1, 3.2, and the equivalence of the fork-join and

state-dependent model.

Lemma 3.3 Consider the FJQN at any multiprogram-
ming level m > 1. The increase in the service time of
subsystem Py is equal to the decrease in the service time
of parallel subsystem PS.

Proposition 3.1 If all service centers of a closed
queueing network (not necessarily a FIQN) have ser-
vice times drawn from a negative exponential distribu-
tion, then Uj(m) < U;(m) = Qi(m) < Q;(m); where

i and j are subsystems/service centers of the network,

and m is the multiprogrammaing level of the network.

Proof: Assume that the visit ratios to subsystems
and j are equal. Then, U;(m) < U;(m) = STi(m) <
STj(m). It is also given that service times for both

servers are drawn from the same distribution. The re-
sult follows. O

Note that if utilizations at two subsystems are equal,
nothing can be said about their queue lengths in com-
parison to each other.

Lemma 3.4 Qp,(m) < 2 Qp,(m), for all m.

Proof: The lemma is proved by first showing that
Qp,(m) < @Qp,(m), and then proving that @p,(m) <

Q*Qpl(m).

At multiprogramming level 1, @p,(1) = Qp,(1). For
higher multiprogramming levels, Equation § states that
Ups(m) < Up,(m) + Up,(m). This is equivalent to
Ups(m) < Up,(m) + Up,(m).
it follows that Qps(m) < Q@Qp,(m) + Qp,(m). But,
by Equation 9, Qps(m) = Qp,(m) + @p,(m). Thus,
Qp,(m) < Qp, (m).

From Proposition 3.1,

A

By Equation 12, @p,(m) = 0.5 % (Qps(m) + Qp,(m)).
It follows that Qp,(m) = Qp,(m) — 0.5 * Qp,(m) >
0.5 Qp,(m). The result follows.]

Theorem 3.1 Consider the fork-join queueing network
at multiprogramming level m > 1. The overall queue
length at parallel subsystem, PS, is unaffected by the
decrease in mean service time of PS (i.e., the increase

in mean service time of Py).

Proof: First, consider the network at multiprogram-
ming level 1. Since P; is twice as fast as Ps, therefore,

sz(l) = 2% Qpl(l).

Now, consider the network at m > 1. Lemma 3.4 shows
that @p,(m) < 2% Qp,(m). Lemma 3.3 proves that the
increase in mean service time of subsystem P; is pro-
portional to the decrease in the mean service time of
parallel subsystem PS. These two lemmas and Equa-

tion 9 (Qps(m) = Qp,(m) + @p,(m)), imply that the

percentage increase in the queue length of P; is propor-
tional to the percentage decrease in the queue length
of Py, for m > 1 (i.e., the increase in the percentage
queue length of P; is offset by a proportional decrease
in the percentage queue length of P;). Hence, the over-
all queue length at the parallel subsystem is unaffected
by the decrease in mean service time of P.S as the mul-
tiprogramming level increases beyond 1. ad

3.6 A Property of Balanced FJQNs

In balanced product-form networks, the utilizations at
all service centers are equal, implying that the queue
lengths at all service centers are equal, irrespective of
the multiprogramming level. However, in balanced fork-
join systems, the utilizations at parallel and serial sub-
systems are unequal. It follows that the queue lengths
at serial and parallel subsystems are unequal. However,
the utilizations at all the individual service centers of
the FIQN are equal at all multiprogramming levels (i.e.,
there are no bottleneck service centers). The absence
of bottleneck service centers in the balanced FJQN re-
sults in these networks satisfying the following interest-
ing property: In balanced fork-join systems, the propor-
tion of number of jobs in each of the subsystems of the
FJQN remains constant, and ts invariant of the multi-
programmang level. This property of FJQNs is proved

here using Theorem 3.1 and Lemma 3.5 given below.

Lemma 3.5 There are no bottleneck service centers in
the three equivalent models.

Proof: This lemma holds trivially. The utilizations
of the service centers in the serial and parallel subsys-
tem of the FJQN are equal. Hence, there are no bot-
tleneck service centers in the original fork-join model.
The serial-join model and the state-dependent model
are equivalent to the FJQN. It follows that there are no
bottleneck servers in either of these models. ad

Note that a bottleneck service center is one in which
the queue length grows at a faster rate than at any of
the other centers. The presence of a bottleneck service
center implies that as the multiprogramming level in-
creases, the majority of customers will be found at this
bottleneck center. The absence of bottleneck centers in
product-form networks implies that the queue length at

all service centers are equal. However, this need not be

the case for non product-form systems.

Theorem 3.2 For balanced fork-join queueing net-
works, Q;(m) = m * Q;(1), for all multiprogramming

levels m, and for all subsystems 1.

Proof: Consider the network when multiprogramming
level is set to m > 1.

Theorem 3.1 shows that the increase in the percentage
queue length of P is offset by a proportional decrease in
the queue length of P5. Alternatively, the overall queue
length at the parallel subsystem PS is not affected by
the decrease in its mean service time as the multipro-
gramming level increases.

Also, Lemma 3.5 proves that there are no bottleneck
service centers in the fork-join queueing network.

Theorem 3.1 and Lemma 3.5 imply that the mean queue
length of serial subsystem, S5, and the parallel subsys-
tem, PS, remains constant, regardless of the multipro-
gramming level m. ad

3.7 A Conjecture about the Arrival In-
stant Distribution

For closed FJQNs, it has been observed that the aver-
age number of jobs seen by a job arriving at a serial
subsystem is less than the average queue length at the
serial subsystem when the multiprogramming level of
the network is one less.

Conjecture 3.1 For a fork-join queueing network at
maultiprogramming level m, Qgss(m — 1) > Z;nz_ol k *
pss(k), where pss(k) is the probability that an arriving

customer sees k jobs ahead of it in the serial subsystem.

Equivalently, Qps(m — 1) < E;nz_ol kxpps(k), for the
parallel subsystem PS.

The observations shown in Table 1 refer to the balanced
FJIQN shown in Figure 1. The figures were obtained by
solving the Markov diagram for the FJQN at various
multiprogramming levels. The maximum difference be-
tween the arrival instant queue length and the queue
length at multiprogramming level one less, is observed

m | Qss(m—1) EZ:Ol k * pss(k) | Difference %
2 0.4 0.3846 4.00
3 0.8 0.7785 2.76
4 1.2 1.1769 1.96
5 1.6 1.5778 1.41
6 2.0 1.9969 0.16
7 2.4 ~ 2.4 ~ 0.0

Table 1: Observations backing the Conjecture in case of

the balanced FIQN

at multiprogramming level 2. This difference decreases
with increasing multiprogramming levels, and, in the

limit, the difference between the two values approaches
zero.

An intuitive argument for the validity of the con-
jecture is as follows. Suri, in [7], analyzes performance
measures when the homogeneous service time assump-
tion of product-form networks is violated. It is proven

that an increase in the mean service time of a service
center results in an increase in the proportion of cus-

tomers at this center, and the steady state distribution

of the network reflects this increase. Sevcik and Mi-
trani, in [6], show the relationship between an arriving

customer’s distribution and the steady state distribu-
tion of a closed arbitrary network. Thus, it seems to
imply that an increase in the steady state probability

would also result in an increase in the arrival instant
distribution.

We have also observed that Conjecture 3.1 is valid
for general K-sibling FJQNs (K > 2), not just for
balanced, 2-sibling FJQNs. For networks with more
than one serial and parallel subsystems, @;(m — 1) >

Zl:_ol k*p;(k), for all serial subsystems 7. This implies
that there exists at least one parallel subsystem j, such
that Q;(m — 1) < Z;nz_ol k x pss(k). We are currently

working on a formal proof of Conjecture 3.1.

3.8 Implications of the Mapping to Se-
rial Systems

From the viewpoint of the underlying stochastic pro-
cess of a queueing system, the main difference between
serial networks and fork-join networks is the size of

the step function of the state process. In serial net-
works, the number of customers in any of its subsys-
tems can increase/decrease by at most one during an
arrival/departure instant. In fork-join networks, the
number of customers in a parallel subsystem increases
by more than one at a job arrival instant. An important
theorem in queueing theory states that: in any “sys-
tem” (the actual nature of which is unimportant), and
provided that the number of “customers” it contains
varies by at most one at a time, the probability distri-
bution of the number of customers in the system is the
same just prior to an arrival and just after a departure.
This theorem was proved by P.J. Burke in 1968 (un-
published), and can also be found in [2]. Burke’s proof
shows the generality of the result, which is not limited
to queueing systems, but holds for any stochastic pro-
cess in which realizations are step functions with only
unit jumps. By mapping the fork-join network to serial
networks, the theorem becomes valid for fork-join net-
works. (Alternatively, Burke’s proof can be extended to
directly show the equality of the arrival and departure

instant distributions.)

4 Balanced Job Bounds for
FJQNs

Balanced job bounds for product-form networks were
developed by Zahorjan et. al. [9] as a technique for
obtaining performance bounds efficiently, requiring few
arithmetic operations. A brief explanation of the BJB
solution technique is given here. A balanced product
form network is one in which all jobs exhibit balanced
resource usage. Because the service centers are all (ef-
fectively) identical, they have the same queue lengths,
regardless of the multiprogramming level. If the multi-
programming level of the system is m, and if there are
K service centers, then the queue length at each service
center is equal to m/K. By applying the Arrival Theo-
rem [5] and Little’s Result, the throughput of a balanced

network can be calculated as: TPUT(m) = m,

where D is the demand at each service center. This
property of easily computing the performance of bal-
anced networks is used for obtaining quick bounds for
arbitrary product-form networks. The throughput of
any given product-form network is bounded by the

throughput of two systems: (1) lower bounds are ob-
tained when the loadings at all service centers are raised
to the maximum loading at any service center in the net-
work, and (2) upper bounds are obtained when the load-
ings at all service centers are reduced to the minimum
loading at any service center in the network. Tighter
upper bounds are obtained using the average loading

instead of the minimum loading.

The two properties of balanced product-form net-
works that are used to obtain performance bounds are:
(1) the queue lengths at all service centers are equal at
all multiprogramming levels, and (2) the average num-
ber of jobs seen by a job arriving at a service center is
equal to the average queue length at the service cen-
ter when the multiprogramming level of the network
is one less [6], [4].

as the Arrival Theorem.) The corresponding proper-

(This property is also referred to

ties of balanced fork-join queueing networks that can
be used to obtain performance bounds are: (1) the per-
centage of the number of jobs (queue lengths) at each
of the subsystems remains constant, irrespective of the
multiprogramming level, and (2) the average number
of jobs seen by a job arriving at a serial subsystem is
less than the average queue length at the subsystem
when the multiprogramming level is one less. The dif-
ference between the arrival instant and the steady state
queue lengths decreases with increasing multiprogram-
ming levels, and approaches zero in the limit (improving
the accuracy of the bounds). These two properties of
balanced fork-join queueing networks are used to com-
pute performance measures of the balanced FJQN, at a

given multiprogramming level m, in the following man-
ner:

1. The mean queue length at each of the subsystems,
at multiprogramming level 1, can be calculated ex-
actly as follows:

For serial subsystem SS, RTss(l) = % For the

parallel subsystem PS, response time is equal to
the time taken to execute both tasks, which is equal
to the second order statistic of the service time ran-

dom variables. Thus, RTps(1) = %

The throughput and queue lengths can then be cal-
culated as:

1
TPUTQ) = RTss(1) + RTps(1)
Qss(1) = TPUT(1) x RTss(1)
Qrs(l) = TPUT(1)x RTps(1)

2. The mean queue length at a multiprogramming
level m is given by:

Qss(m) =m x Qss(1)
Qprs(m) =m x Qps(1)

3. Close approximate values for throughput and re-
sponse time at multiprogramming level m can be
calculated using the exact queue length measure-
ments computed at multiprogramming level (m —
1). As shown in the previous section, it is observed
that the Arrival theorem [5] is a close approxima-

tion for the response time of serial subsystems.

RTSS(m) <=~ %(I—FQSS(’)’T&— 1))

TPUT(m) = 7375555((:3)
_ Qps(m)
RTPS (m) = WT(TR)

The performance measures of the balanced FJQN
obtained using the Arrival theorem approximation are
quite close to the actual performance values. Table 2
shows that the error between the approximate and the
actual values is within 1.2%. This small error margin is
not surprising, since the arrival instant queue length is
very close to the queue length for the network at multi-

programming level one less (Refer to Table 1).

Performance measures for balanced fork-join net-
works can be easily computed at any given multipro-
gramming level using the method shown above. As in
the case of product-form networks, performance bounds
for an arbitrary fork-join queueing network, Q@ N, can be
obtained by constructing balanced FJQNs that bound
the performance of QN, and solving these balanced net-

works [9]. In particular, the throughput (response time)

MPL Actual Approximate | %Error
Throughput | Throughput
2 0.5778 0.5714 1.10
3 0.6747 0.6667 1.19
4 0.7359 0.7273 1.16
5 0.7776 0.7692 1.08
6 0.8080 0.8000 0.99
7 0.8250 0.8235 0.18

Table 2: Actual and Approximate Throughput Values
for the Balanced FJQN

Subsystem 2

@mx

Ho1 Hoa

Fork point Join point

Subsystem 1

Jobs By

Jobs [

Figure 7: A General Fork-Join Queueing Network

Model

of any given network, N, is bounded by the through-
put (response time) of two related systems, one in which
the loadings at all service centers is raised to the maxi-
mum loading at any service center in N, and another
in which the loadings at all service centers is reduced to

the minimum loading at any service center in QN .

5 Conclusions and Future Work

This paper gives an exact analysis of a closed, balanced
FJQN. Two equivalent serial models of the FJQN are
used in conjunction with the original fork-join model
to analyze the parallel subsystem of the FJQN. It is
shown that the probability distribution of the number
of jobs in the system is the same just prior to an ar-
rival and just after a departure. One contribution of
this paper is the proof of the following property: the
proportion of the number of jobs in each of the subsys-
tems of a balanced FJQN remains constant, regardless
of the multiprogramming level. In addition, it is ob-
served that the average number of jobs seen by a job

arriving at the serial subsystem is less than the average
queue length at the subsystem when the multiprogram-
ming level is decreased by one. These two properties of
balanced FJQNs are used to compute quick bounds for
arbitrary fork-join networks. The bounds are referred
to as balanced job bounds for fork-join (BJB-FJ) net-
works since the bounding technique is similar to that of
balanced job bounds for product-form networks.

While the analysis given here is specific to the model
shown in Figure 1, it can be generalized to more general
FJQNs of the type shown in Figure 7. A formal proof of
the conjecture regarding the arrival instant distribution
at subsystems of a FJQN is also required.

References

[1] Baccelli, F. “Two parallel queues created by ar-
rivals with two demands: The M/G/2 symmetrical
case”, Report INRIA, 426, July 1985.

[2] Cooper, R. B. Introduction to Queueing Theory,
Mercury Press/Fairchild Publications - a Capital
Cities/ABC, Inc. company, MD, 3rd edition, 1990.

[3] Flatto, L., Hahn, S. “Two parallel queues created
by arrivals with two demands I”, STAM J. Appl.
Math., 44, Oct. 1984, pp. 1041 — 1053.

[4] Lavenberg, S.S., Reiser, M. “Stationary state prob-
abilities at arrival instants for closed queueing net-

works with multiple types of customers”, Journal

of Appl. Prob., 17, Dec 1980, pp. 1048 — 1061.

[5] Reiser, M., Lavenberg, S.S. “Mean-value analysis

of closed multichain queueing networks”, Journal

of the ACM, 27, 2, April 1980, pp. 313 — 322.

[6] Sevcik, K. C., Mitrani, I. “The distribution of
queueing network states at input and output in-

stants”, JACM, 28, 2, April 1981, pp. 358 — 371.

[7] Suri, R. “Robustness of queueing network formu-

las”, JACM, 30, 3, July 1983, pp. 564 — 594.

[8] Varki, E., Dowdy, L.W. “Response time analysis of
two server fork-join systems”, MASCOTS, 1996.

[9] Zahorjan, J., Sevcik, K.C., Eager, D.L., Galler,
B. “Balanced job bound analysis of queueing net-

works”, Comm. of ACM, 25, 2, 1982, pp. 134 —141.

