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Abstract

We present a new multiresolution visualization design which allows
a user to control the physical data resolution as well as the logical
display resolution of multivariate data. A system prototype is de-
scribed which uses the HyperSlice representation. The notion of
space projection in multivariate data is introduced. This process is
coupled with wavelets to form a powerful tool for very large data
visualization.

1 Introduction

HyperSlice [3] is designed for visualization of multidimensional
scalar functions. The main strength of the HyperSlice representa-
tion is its interactive environment in which only part of the data is
displayed while the rest can be accessedvia direct manipulation. We
present an enhanced HyperSlice with a progressive refinement en-
vironment for data visualization. This environment allows a user to
visualize massive amounts of data at a coarse resolution to identify
areas that warrant investigation at finer resolutions. The coarse res-
olutions provide an accurate visual representation of the finer resol-
utions.

2 HyperSlice

Figure 1: A HyperSlice plot.

HyperSlice is an extension of the
scatterplot matrix which displays
multivariate data as a set of bivari-
ate plots. It defines a point of in-
terest ���������	��

����� which
is the center of display, and ranges
of display � � ������� ��������� ��
 ��!� which are the lower and upper
limits of each dimension. Func-
tion values which fall out of the
range ��� �����"��� can be reached it-
eratively by panning across each
display tile. A function of two
spheres in the HyperSlice representation is depicted in Figure 1. We
define the lower left tile of the HyperSlice as the origin which has
the matrix coordinates of ��# � # � . So the tile above it has coordinates
of �%$ � # � , and the blank one to the right has ��# � $ � . The cross hair
lines shown in the three upper left tiles indicate the locations of the
cross-section displays in the diagonal tiles (i.e., �&�(' � ' � �)'*�+��� ).

3 Dual Multiresolution Exploration

Two approaches are applied in our design to reduce the size of the
data and create a fine to coarse data hierarchy — space projection
and wavelet transform. Our system combines these two processes
and provides a dual multiresolution visualization environment to
improve the browsing capability as well as the data navigation of
the original HyperSlice.

3.1 Display Resolution Through Space Projection

Space projections are based on �-,+.�/0,	12�43657'8� . Our defin-
ition of projection is stronger and more powerful than the similar
term which simply describes the view point projections of different
dimensions in the scatterplot matrix and prosection matrix [2] tech-
niques. In our design, data from higher rank spaces are projected
by different norms into data of lower rank spaces. By applying the
projection to the data repeatedly, we generate a data hierarchy with
multiple display resolutions.

3.2 Data Resolution Through Wavelets

Wavelets are based on translation �(9:�(; � /�9:�(;=<>$ �%� and dila-
tion �(9:�(; � /�9:�(?@; �%� . We use orthogonal wavelets because they
provide non-redundant information. The ideal choice of wavelets is
data and application dependent [1].

Without loss of generality, we describe a wavelet as a filter mat-
rix that accepts a data stream with ' items, and generates 'BA@? items
of approximations and '8AC? items of details. The approximation is
a coarse summary of the original data, and the details contain the
data loss during the decomposition. A hierarchy of coarse approx-
imations is generated when this process is applied iteratively to the
approximations to obtain increasingly coarse data.

3.3 Display Resolution versus Data Resolution

A major drawback of orthogonal wavelets is that the reduction rate
is fixed at D #&E in each dimension. Conventional aggregate func-
tions, however, can generate more flexible resolutions. Data ex-
ploration using wavelet approximations count (both objectively and
subjectively) on the shapes and the trends of the coarse approxim-
ations being preserved. For data mining, conventional aggregate
functions are more natural and easier to understand and manipulate.
We do not change the physical contents of the data during space pro-
jections, only the visualization. Wavelets, on the other hand, phys-
ically replace the data with smoother values.

Space Projection

W
avelet D

eco
m

p
o

sitio
n

Figure 2: Two hierarchies generated
by space projections and wavelets.

Our system puts these
two mechanisms into one
powerful data visualization
tool. As depicted in Fig-
ure 2, a data hierarchy with
multiple data resolutions is
first generated by wavelet
decompositions. For data
mining, space projections
are applied to the data of
the selected data resolution
and data with multiple dis-
play resolutions are gener-
ated. Wavelet approxima-
tions provide a coarse view of a large dataset, which may not oth-
erwise be able to be displayed on screen. Once the interesting pat-
terns are located from this resolution of the data, the user can go to a
higher data resolution to do the data mining using space projections.



4 Visualization of Data and Error

Nearly all matrix-based visualization representations, including Hy-
perSlice, duplicate mirror images (and/or movements) of the upper
left half to the lower right half of the matrix. We, however, believe
that this precious space (almost one half of the display area) can be
used to provide another dimension of information. In additional to
all the standard features to define a HyperSlice representation, our
system also provides the error information generated by the wavelet
decompositions. The approach of using wavelet details as a mean of
data authenticity analysis is discussed in [4].

We present an application using a publicly accessible dataset F
containing information about faculty at U.S. universities. We have
selected six variates from this dataset – the number of faculty at each
faculty rank and the average salaries at each rank. The data is dis-
played in Figure 3 and Color Plate 1a with 1024 (32 G ) pixel blocks

Figure 3: A fine projection of a coarse approximation.

used in each display tile. The display data, which is the second ap-
proximation generated from the wavelet transforms, represents well
over 36K data values. The points of interest and the ranges of the
display of the tiles are indicated in the corresponding diagonal tiles.

We notice that the overall pixel intensity (see also Color Plate 1c)
of the ��# � $ � , ��# � ? � , and �%$ � ? � tiles generated by the average norm
in Figure 3 are much lower than the rest of the tiles in the lower right
half of the matrix. This indicates that the approximations depicted in
the �%$ � # � , �(? � # � , and �(? � $ � tiles (which are the pairwise scatterplots
of the salary figures of full, associate, and assistant professors) are
more accurate representations than the rest of the approximations in
the upper left half of the matrix. Suppose we want to see the distri-
bution of the error in order to show that all (i.e., not just some of) the
error values in the mentioned tiles are small. We decrease the dis-
play resolution and apply the maximum norm space projection. As
we can see, the pixel intensity of the ��# � $ � , ��# � ? � , and �%$ � ? � tiles
stays almost the same in Figure 4 and Color Plate 1b. This shows
that all the error data values of the three tiles are indeed very low.

F http://lib.stat.cmu.edu/datasets/colleges/aaup.data

Figure 4: A coarse projection of a coarse approximation.

5 Conclusion

We present a system prototype of an enhanced HyperSlice which
supports multivariate data visualization. The concept of display res-
olution supported by space projection is introduced. This notion is
coupled with the concept of data resolution provided by wavelets to
form a powerful multiresolution visualization system. This paper is
part of our on-going efforts on very large data visualization using
wavelets [4, 5].
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