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Abstract
Wavelet transforms include data decompositions and re-

constructions. This paper is concerned with the authentic-
ity issues of the data decomposition, particularly for data
visualization. A total of six datasets are used to clarify
the approximation characteristics of compactly supported
orthogonal wavelets. We present an error tracking mecha-
nism, which uses the available wavelet resources to measure
the quality of the wavelet approximations.

1 Introduction
Since the beginning of the 80’s, there has been an explo-

sion in research in the area of wavelet theory and its appli-
cations [3]. Major research achievements during the first
decade included the Morlet wavelet, the Meyer wavelet,
the Battle Lemarié wavelet, the Daubechies wavelet, and
Mallat’s multiresolution representation [10]. The last has
become the de facto algorithm for most, if not all, wavelet
applications in computer graphics and visualization for the
last several years. Some of these efforts include volume ren-
dering [12, 13], radiosity and textures [7, 5], volume mor-
phing [8], progressive transmission [16], spacetime con-
trol [9], painting [1], curves [4], and shape models [17].

We are interested in using wavelets to provide a pro-
gressive refinement environment for scientific data visual-
ization [19]. Such an environment should allow a scientist
to visualize massive amounts of data at a coarse resolution
to identify areas that warrant investigation at finer resolu-
tions. To be effective the coarse resolutions must provide
an accurate visual representation of the finer resolutions. In
particular we would like to ensure that important patterns
in the high resolution data are evident in the visualization
of the low resolution data. Unfortunately, the definition of
what is important is both application and task-dependent.
On the other hand, we can develop a common evaluation
and representation of the accuracy of a coarse resolution
based on the loss of information between the coarse reso-
lution and the fine resolution representations. We call this
the authenticity of the representation.

The goal of this paper is to investigate the authenticity
issues of the wavelet approximations. Common approaches
of error measures for lossy reconstructions are discussed.

We define the meaning of function pattern, which we use to
measure the quality of the approximations. Six test datasets,
each with different characteristics, are used to clarify facts
and pitfalls of orthogonal wavelets. An error tracking mech-
anism, which does not require any post-transformation com-
putation, is presented with real life examples.

2 Surfing the little waves
This section sketches basic wavelet theory as it relates

to our application. The reader is referred to [15, 3, 2] for
more details. For novices, we recommend [18].

2.1 Scaling functions and wavelets

A function
�������

is refinable if it can be represented by
integer translates of its dilation,

���
2
���

. For example, in
Figure 1, function � ����� is piecewise constant on the unit
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Figure 1: Function ��	�
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�
, which are piece-

wise constant on half unit intervals. Mathematically,
�������

can be represented by integer translates of its own dilations
such that ��������������� � ���

2
�������

(1)

where
� �

is constant and
� �"!

. In wavelet literature,
�

is known as the scaling function. The box function � in
Figure 1 is indeed the scaling function of the Haar wavelet.

Given
�������

, a linear space #%$'&)( 2 �+*,� can be obtained
by spanning the integer translates of its dilations. ( ( 2 �-*.�
denotes the Hilbert space of measurable, square-integrable
one-dimensional functions.) The linear space is formally
defined as

# $ �0/21�3
4������ 2$ �5����� �%6�7 �98 (2)

Since
�

is refinable, #%$:&;#�$=< 1 for > �)! < . These two
infinite spaces are related by an orthogonal projection. If,



for example, # $ is spanned by a finite basis with vectors
�

1

and
�

2, a projection of function � � # $=< 1 onto space # $ can
be depicted as shown in Figure 2. In an infinite dimension
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Figure 2: A projection of function �?	�
@��ACBEDGF 1 onto B%D .
space, the shaded region represents # $ of Equation (2). If
we define H,$ to be the orthogonal complement of #I$ with
respect to #�$=< 1 (i.e., #�$IJ5H,$ ,) then

#K$ML"H,$ � #�$=< 1
8

(3)

The space H,$ is spanned by the integer translates of the
dilations of a function N known as the wavelet. A function� � #�$=< 1 can be scaled to a coarse resolution of #I$ by
losing details, which are captured in HC$ . If Equation (3) is
applied iteratively, we get

#K$ � HO$%P 1 LQ#K$%P 1
�SRTR=R� H $%P 1 LQH $%P 2 L RTR=R LUH 0 L)# 0

8
(4)

Therefore we can represent function � � # $ by a set of
integer translates of the dilated wavelets, also known as a
wavelet basis. This iteration process is the foundation of
Mallat’s multiresolution wavelet analysis [10].

2.2 Multiresolution analysis
In practice, we can only measure or record scientific data

in discrete values. A wavelet implementation on discrete
data is given by Mallat [10]. Given a one-dimensional
dataset with V items at resolution > , an application of an
orthogonalwavelet decomposition generates W 2 coefficients
of low frequency approximations, and W 2 coefficients of
high frequency details at resolution > � 1, as shown in
Figure 3. The coefficients correspond to the bases in # $�P 1

approximations

approximations

details

details
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Figure 3: Wavelet decomposition on a one-dimensional data.

and H $�P 1 discussed in Section 2.1. From Equation (4),
we know that this operation can be applied iteratively on
the approximations to get increasingly coarse data, for as
long as the size of the approximations X 2

1
, where

1
is the

number of vanishing moments of the wavelet. (We discuss
vanishing moment in more detail below.)

Wavelet transforms are invertible. If both the approxi-
mations and the details of any one resolution are available,

it is possible to have a lossless reconstruction of the approx-
imations of the next finer resolution.

3 General error measure
Applications of wavelets are developing rapidly in both

graphics and visualization research. Many of them rely on
the vanishing moment property of the wavelet transform,
in which a substantial amount of wavelet detail is ignored
because of its relatively insignificant values. The process
is usually followed by a reverse transform operation, which
produces a lossy reconstruction. This is by far the most
popular application of wavelets.

A common way to measure the effectiveness of a lossy
operation is by visual comparison based on feature classi-
fication by a human being on a small number of features
such as the peak value and fundamental frequency. This
subjective method assumes medium-sized data which can
be displayed in a single picture.

Traditionally, applications which require higher error ac-
curacy might use more objective (quantitative) measures
such as the root-mean-square error, given byYZZ[ 1V W� \+]

1

� � \ � �_^\ � 2 (5)

where � \ and � ^\ are the original and the reconstructed data
respectively. Unfortunately, however, this method requires
both functions to be the same size, which is not the case
when comparing a function with its coarse-resolution re-
constructions. Furthermore, it is not always the case that
objective measures are better than subjective ones.

In our application [19] we combine objective and subjec-
tive error measures in an interactive environment to explore
data. Orthogonal wavelets provide fine to coarse resolutions
to browse terabyte sized scientific data and search for infor-
mation. The wavelet approximations give an overview of
the very large data set at a lower resolution, and the details
of each resolution allow the reconstruction of the data in
higher resolutions once interesting targets are located. Ob-
viously, the zoomed data has a much smaller size than the
original, so conventional error measures such as the root-
mean-square method cannot be used. Instead of computing
an error measure based on comparing the approximation
coefficients to the input data, we compute one based on the
detail coefficients.

4 Authenticity analysis
We would like to have some mechanism for validat-

ing that a lower resolution representation of a signal is an
authentic approximation. Fortunately, by using a wavelet
representation, the energy loss due to space projection can
be obtained from the wavelet details of each resolution.
Once we define a measure of the energy loss, we can use



that measure for both analysis and visualization of the error.
Defining an error measure that is consistent throughout the
wavelet coefficient hierarchy is complicated by the change
in coefficient scale and the different numbers of coefficients
at each level of the hierarchy. For our initial experimenta-
tion, we have chosen an error metric in which the total error
due to projection from spaces # $=< 1 to # $ is given by`bac` 3
d+e'f�f a f $ �0� �hg i $ � g (6)

where
i $ � is the wavelet detail at resolution > . Even this

simple measure shows positive visual results as shown in
Section 5, but more research is needed to determine how it
compares to other potential measures.

It is known that some wavelets lose more energy than
others during decomposition. This brings us to the discus-
sion of vanishing moments.

4.1 Vanishing moments

Our discussion is restricted to compactly supported or-
thogonal wavelets. Others such as the Morlet wavelet and
the Meyer wavelet have infinite support on the whole real
line because they use sinusoids as the building blocks. They
are j�k .

The accuracy of piecewise wavelet approximation can
be characterized by the number of vanishing moments p
of the wavelet. Strang [15] describes this as how well
the polynomials 1 l � l � 2 l R=RTR l �Em P 1 are reproduced by the
approximation. For a wavelet N with p vanishing moments,n N �����o��prq@�,� 0 (7)

where s � 0 l R=RTR l 1.� 1. In wavelet literature, the value
of 2
1

is usually used as a subscript to identify a wavelet.
This comes from the fact that the number of coefficients of
a wavelet filter with

1
vanishing moments is equal to 2

1
.

Figure 4 shows t 2 (Haar wavelet with
1O�

1), u 4, u 12, and

H2 D4

D12 D20

Figure 4: Top: v 2 w2x 4. Bottom: x 12 wGx 20.u 20 (Daubechies wavelets with
1,�

2 l 6, and 10.) It is also
true that a compactly supported wavelet with

1
vanishing

moments is p times continuously differentiable, i.e., j m .

4.2 Function pattern

In this paper, the pattern of a function is loosely defined
by its shape or look rather than its mathematical definition.
Since most graphic displays are normalized in our applica-
tion [19], the number of a function’s extreme values (i.e.,
local maximum and minimum) and their relative locations
are far more important than the absolute values. Following
the same philosophy, we pay more attention to the frequency
or the period of a periodic function than its amplitude.

4.3 Approximation characteristics

In this section, compactly supportedorthogonalwavelets
with
1C�

1 to 10 are applied to sinusoid-based test data with
different patterns. Due to limited space, we only plot the
results generated by wavelets t 2 and u 20, which represent
the lowest and the highest number of vanishing moments
in our discussion. These examples are used to clarify the
approximation characteristics of orthogonal wavelets.

4.3.1 Effect of vanishing moment on merging of data

A higher number of vanishing moments implies more
coefficients in a wavelet filter matrix, which means that the
implementation requires that more numbers be multiplied
and added (merged) together during decomposition. How-
ever, the features in the data are not necessarily merged
any faster. This is illustrated by a sinusoid with 29 � 512
discrete samples shown in Figure 5. Figure 6 depicts the

Dataset #1

Figure 5: Dataset y 1 with 512 items.

D20
H2

Figure 6: Wavelet coefficients of dataset y 1 with 512 items.

first resolution of the decomposition. The left half is the
approximation and the right is the detail. The tiny wavelet
detail indicates good approximation for both wavelets.

Figure 7 shows the same signal represented with 28 �
256 wavelet coefficients. Both wavelets show strong ap-
proximations and weak details, with u 20 having smaller
details.

After two more resolutions, the size of the wavelet co-
efficients is down to 26 � 64, as shown in Figure 8. t 2
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Figure 7: Wavelet coefficients of dataset y 1 with 256 items.
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Figure 8: Wavelet coefficients of dataset y 1 with 64 items.

continues to lose more energy that u 20. Both wavelets,
however, manage to maintain the basic pattern (four peaks)
of the original function.

Although more numbers are multiplied with higher
1

values during decomposition, the merging process is dom-
inated by the offset of the data during each multiplication,
which shifts two positionsat a time for orthogonalwavelets.

4.3.2 Energy loss versus resolution

Each wavelet decomposition introduces energy loss (er-
ror) into the approximation. By examining Figures 6–8,
we see that t 2 has significantly larger energy loss at each
resolution. However, the amount of energy loss depends
not only on the wavelet itself, but also on the

/ s a�ac`bz 4|{T/T/
of the data, which may change during each resolution. This
is discussed in the following section.

4.3.3 Energy loss versus data smoothness

The rate of decay of wavelet decomposition is governed
by the number of vanishing moments of the wavelet. In
general, as illustrated in our previous example, smooth
functions like u 20 approximate functions better than t 2.
However, this is not always true.

We use a second sinusoid with a higher frequency to
demonstrate. The discrete function size is 29 � 512. There
are a total of 21 peaks as depicted in Figure 9.

Dataset #2

Figure 9: Dataset y 2 with 512 items.

Figure 10 shows the wavelet coefficients after two reso-
lutions with 256 discrete items. Because of the smoothness
of the data, the very small energy loss of u 20 hardly shows
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Figure 10: Wavelet coefficients of dataset y 2 with 256 items.

up in the figure. Both t 2 and u 20 retain all 21 peaks even
though t 2 shows larger details.

The next resolution is depicted in Figure 11. It has 128

D20
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Figure 11: Wavelet coefficients of dataset y 2 with 128 items.

discrete wavelet coefficients: 64 approximations and 64
details. All 21 spikes stay in the approximation, which is
rather non-smooth by now.

Disaster hits when the size of the function reaches 26 �
64. The Nyquist limit (the lower bound to retain all the
spikes) is past. As a result, features merge and large details
are created. For the first time in our examples, u 20 has
larger details than t 2 as shown in Figure 12.
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Figure 12: Wavelet coefficients of dataset y 2 with 64 items.t 2 does not approximate functions accurately because it
only has one vanishing moment. However, it does not tend
rapidly to zero at finer levels, and the accuracy also depends
on the smoothness of the function. When the function is
smooth, more vanishing moments lead to smaller wavelet
details. On the other hand, more vanishing moments also
lead to more large wavelet details when the function is non-
smooth, so u 20 is not always a better choice over t 2.

The phenomenon shown in Figures 10–12 is repeated
for the rest of the resolutions. The first three resolutions
of this example are marked by their inactivity or repose.
Most of the major features of the approximations stay the
same, i.e., the details are very small. That creates a state of
quiescence. It also, however, establishes a horizon beyond
which disaster lurks. In Figure 12, half of the spikes in the
approximation are gone, and the details (the energy loss)
are actually much larger than the approximations.



Definition In a progressive refinement environ-
ment, a quiescence is defined as a state of inac-
tivity in which most of the distinctiveness of the
refining target stays.

One of the major issues of our application [19] is the
detection of quiescence. Only the lowest resolution repre-
sentation needs to be maintained from a set of resolutions
that are part of a single quiescent state.

4.3.4 Energy loss versus data value
Energy loss of a wavelet decomposition depends on the

data values. Higher data values imply more energy loss,
and vice versa. This is illustrated by a sinusoid whose
amplitude decreases continuously as depicted in Figure 13.

Dataset #3

Figure 13: Dataset y 3 with 512 items.

After two resolutions, the wavelet coefficients (with 256
discrete values) of dataset } 3 is shown in Figure 14. The

D20
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Figure 14: Wavelet coefficients of y 3 with 256 items.

values of the details increase as the data values increase.

4.3.5 Energy loss versus data frequency
Energy loss of a wavelet decomposition depends on the

data frequency. Higher data frequency implies more energy
loss, and vice versa. This occurs because the data gets less
smooth as frequency increases. A chirp, whose frequency
increases continuously, illustrates our statement as shown
in Figure 15.

Dataset #4

Figure 15: Dataset y 4 with 1 w 024 items.

Figure 16 shows the wavelet coefficients after one res-
olution of wavelet decomposition. Both wavelets indicate

D20
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Figure 16: Wavelet coefficients of dataset y 4 with 1024 items.

that the higher the frequency, the larger the energy loss. At
the same time, they also keep the patterns intact.

4.3.6 Pitfall

From Equation (4), we would expect that the wavelet
decomposition (with floating point computations) will con-
tinue until the size of the approximation reaches 2

1
. How-

ever, certain patterns, even with high energy content, can
vanish suddenly and prematurely.

The sinusoid in Figure 17 is created with an integer

Dataset #5

Figure 17: Dataset y 5 with 512 items.

value of cycles within the 512 discrete values. After three
resolutions of decomposition, both t 2 and u 20 shown in
Figure 18 have perfect zigzag patterns. In fact, the pattern

D20
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Figure 18: Wavelet coefficients of dataset y 5 with 64 items.

interleaves high-low discrete values with the same amount
of energy but reversed directions. Then the energy vanishes
suddenly as shown in Figure 19 when a high energy spike

H2
D20

Figure 19: Wavelet coefficients of dataset y 5 with 32 items.

zeros out its neighbor, a low energy data item with exactly
the same absolute value.



4.4 Error tracking and results

We do not claim that our sinusoid-based examples above
simulate real life scientific data. Thy are presented because
they show the special characteristics of orthogonal wavelets.
Now we present results of non-sinusoid functions. Since
wavelet transforms are well adapted to respond locally to
rapid changes in function values [3], orthogonal wavelets
are often used as edge detectors [10, 11]. Energy loss
during wavelet decomposition usually implies edge (i.e.,
pattern) changes of the approximations. Small changes
produce little wavelet details, which can largely be ignored.
Large changes such as aliasing, however, produce signifi-
cant wavelet details. These details are good indicators of
the quality of the wavelet approximation of each resolution.

A function with 512 discrete values is created to demon-
strate the idea of using wavelet details to measure the au-
thenticity of wavelet approximations, as described at the
beginning of section 4. The function has seven special fea-
tures including: 1) two discrete steps, 2) a portion of a
sinusoid, 3) two steep slopes ( � �����~�0� 3 and its mirror im-
age), 4) a sharp spike, 5) some fluctuating signals, 6) a large
flat block, and 7) a small block. Each of them is identified
with its feature number as depicted in Figure 20.

Dataset #6
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Figure 20: Dataset y 6 with 512 items.

When u 4 is applied to this function, it produces 256 dis-
crete approximations followed by 256 details, as shown in
Figure 21. In the graph, the wavelet details corresponding
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Figure 21: Wavelet coefficients of dataset y 6 with 512 items.

to the original features are marked with the same numbers.
Starting from the left of the details, we see two sharp spikes
which indicate the two sudden slope changes of feature 1.
The energy loss is due to the fact that these two sharp
edges are smoothed out. The details of feature 2 are almost
invisible, reflecting the high approximation power of u 4

on sinusoids. The two steep slopes of feature 3 create only
small spikes, which also indicate good approximations. The
isolated spike of feature 4 is preserved with some loss. The
fluctuating signals of feature 5 produce the largest amount of

loss, indicating major pattern changes. Each of the follow-
ing two blocks (features 6 and 7) produce two consecutive
spikes, indicating the two sharp edges of the blocks. The
next two resolutions are shown in Figures 22 and 23.

D4

Figure 22: Wavelet coefficients of dataset y 6 with 256 items.

D4

Figure 23: Wavelet coefficients of dataset y 6 with 128 items.

The maxima and the totals of the absolute values of
wavelet details of the first four resolutions are listed in
Figure 24. The summation of wavelet details shows the

N ����
�� ����� ��� �~���
256 0.9124 6.2810
128 1.5074 10.7591
64 1.1257 9.1903
32 1.2708 8.8527

Figure 24: A summary of x 4 on dataset y 6.

overall approximationquality, while the maximum indicates
the worst error. We notice from the graphs that u 4 keeps
the function pattern intact. This is largely reflected by the
correlated numbers in the table.

These numbers, however, fail to show the energy loss of
a particular feature such as the fluctuating signals, which
produce the largest details. Figure 25 is a summary of

�0�9�������9����� � � �
N 1 2 3 4 5 6 7

256 0.708 0.014 0.477 0.177 3.763 0.966 0.177
128 1.557 0.081 0.754 0.225 6.177 1.641 0.325
64 � 2.560 1.432 0.099 3.790 0.813 0.498
32 � 7.177 � 1.676

Figure 25: A summary (by feature) of x 4 on dataset y 6.

wavelet details based on the different features. In general,
the fluctuating signals (feature 5) have the biggest pattern
changes, which explain why they have the largest details.
Feature 1 has one of the larger losses. The two steps are
totally smoothed out after the second resolution.



Figure 26 lists the results of u 20 applied to dataset } 2
N �5��
�� � � � � � � � �

256 0.3718 0.9792
128 0.4690 1.3124

64 1.2059 13.2433
32 3.8953 72.6761
16 2.1756 8.5699
8 0.7576 1.6806

Figure 26: A summary of x 20 on dataset y 4.

as presented in Section 4.3. The resolution printed in bold
shows the occurrence of aliasing as well as the end of the
first quiescence covering the previous three resolutions. A
second quiescence starts right after this resolution.

5 Visualization of error
We briefly describe a wavelet-based multiresolution vi-

sualization system [19], and use it to display approximations
of scientific data and its corresponding error. The system,
as depicted in Figure 27, supports progressive refinement

Figure 27: A wavelet-based visualization tool.

data analysis with resolution as fine as one data item per
pixel. Ten orthogonal wavelets with vanishing moments
from

1��
1 to 10 are provided. The system keeps track

of the accumulated data loss as well as data loss from in-
dividual resolutions during wavelet transforms. This error
can be displayed alongside the compressed data. Input data
can be in CDF [14] or system-defined binary formats. A
variety of colormaps are available.

Figures 27 and 28 show a 1D data set extracted from
the CD-ROM USA NASA DDF ISTP KP 0003 recorded
from the spacecraft GEOTAIL of the ISTP [6] project. The
data set contains electron average energy data recorded ev-
ery 64 seconds around the earth for the first three months
of 1994. It has a total of 217 � 131 l 072 integers.u 4 is used to generate a total of 7 resolutions, from the
0 ��� resolution with 210 � 1 l 024 to the 6 ��� resolution with
216 � 65 l 536 items. The display is a one-dimensional line
plot with colors indicating the accumulated data loss (error)

of each item. A rainbow colormap shown in Figure 28a is
used for the display.

We start from the coarsest (0 ��� ) resolution with 1 l 024
items, an approximation of the original 131 l 072 items.
From Section 4.3, we know that the energy loss of a wavelet
transform depends on a number of factors including the data
values and the smoothness of the data. Six features are cho-
sen from the data, as indicated in Figure 28b, to illustrate
these ideas as well as the importance of the approximation
error display.

Feature 1 contains highly fluctuating data with some of
the highest data values. Both of them contribute to the very
high energy loss of the approximation. This is reflected
by the darker colors (green/blue) of the error display in
Figures 28b and 28c.

In terms of data values, features 4, 5 and 6 are more or
less close to each other. However, when we look at the
smoothness of the data, we notice that feature 6 is smoother
than the other two. It implies that feature 6 has the lowest
energy loss. This is accurately reflected by the color of the
error displayed in Figures 28b. Both features 4 and 5 have
green spikes while feature 6 is light orange.

The value of the error representation is particularly ev-
ident when looking at features 2 and 3. They have very
similar values, spreads, and shapes. Feature 3, however,
has more green (higher value) spikes than feature 2. These
two features (marked by the dotted rectangles) are zoomed
to a finer (4 ��� ) resolution, as shown in Figures 28d and
28e. This finer resolution reveals that feature 2 is indeed
very smooth data, while feature 3 is relatively non-smooth.
Figure 28e shows that feature 3 has multiple spikes spread
across the area. These narrow spikes fade away during the
downsampling process because the Nyquist limit (to hold
all the spikes) is reached. Their errors are clearly reflected
in our display. By using the color to represent accumulated
error, we are able to identify areas of the coarsest resolution
representation that warrant investigation at finer resolutions.

6 Conclusions and future work
We illustrate the approximation characteristics of com-

pactly supported orthogonal wavelets. The idea of using
wavelet details to measure the authenticity of wavelet ap-
proximation is presented and results from test data and real
scientific data are discussed.

Our immediate goal is to extend this work to functions
of higher dimensions. This paper is part of our on-going
efforts on very large data visualization using wavelets [19].
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Figure 28: a) Rainbow colormap. b) The coarsest approximation of the ISTP average energy data is displayed at the 0
���

resolution. Inter-
esting features are identified with numbers. Dotted rectangles are zooming windows. The color indicates the accumulated approximation
error. c) Feature 1 at the 3

���
resolution. d) Feature 2 at the 4

���
resolution. e) Feature 3 at the 4

���
resolution.
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