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Abstract. We extend database technology to provide more meaningful
support for exploration of scientific data. We have developed a new data
model that incorporates spatial semantics with localized error and are
implementing a prototype database system based on the model. Our
data model and system focus on support for retrieval and visualization
of gridded scientific data at multiple resolutions. While these semantics
may not apply naturally to every scientific application, they are common
to many. This paper summarizes the data model and describes the key
functionality of our prototype system.

1 Introduction

Database support has not extended into scientific applications (broadly con-
strued to mean having a large quantitative component). Much scientific data
includes complex semantics in its structure that existing data models do not
represent effectively. Thus, scientific applications have to supply most of the se-
mantics while conventional database systems add overhead but relatively little
value compared to file systems. Our work focuses on representing spatial seman-
tics and using it to support multiresolution representations of the data.
Increasingly, scientific datasets are too large to be completely examined in de-
tail, even by automated filtering techniques. Multiresolution support enables sci-
entists to examine less detailed, more abstract summary views, then extract the
finer, more concrete details for the most interesting areas. These large datasets
can be more effectively explored for insights if they can be represented in multiple
resolutions with local error information available for the coarser representations.
We envision pre-computed data archives that represent scientific data with
generic spatial semantics. The base layer is the original data; the upper lay-
ers have increasingly more compact, coarser representations, each with localized
error information. A scientist downloads a coarse layer for initial examination,
typically the smallest layer containing acceptable error. The examination identi-
fies interesting areas for more detailed study. The scientist then downloads data
in these areas at the appropriate detail (i.e., meeting authenticity requirements)
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from the multiresolution hierarchy in the archive. For convenience, the scientist
might move portions of frequently accessed coarser layers to a local server.

Our model includes three principal components — lattices, data sources, and
multiresolution data hierarchies. The lattice presents the scientist with a view
of a gridded dataset at uniform or varying resolution. The structure may be a
regular rectilinear grid, a more general rectilinear grid, a curvilinear grid, or an
unstructured grid [13]. The data source maps lattice data onto an n-dimensional
array-shaped computational space and then to one or more 1-dimensional linear
data streams. A multiresolution hierarchy is a stack of lattices that view the
same data with different resolutions. We elaborate these concepts in sections 2
and 3, which summarize a previous paper [11].

The principal focus of this paper is to describe the design and implementation
of a Java-based system that supports the formal data model. We present the
key components of both the data source and lattice implementations. We also
present some examples of how a scientist might define and access a composite
multisource data set using a variety of common topologies and geometries.

2 Lattice Model

We consider that scientific data represents some phenomenon [4] that is a func-
tion over a domain [8]. The Cartesian product of the value ranges of the at-
tributes defines the value space of the function on the domain. Scientific data
has large size, complex entities and relationships, and volumetric semantics [10].

2.1 Dimensional and Spatial Data

Much scientific data can be meaningfully represented in an n-dimensional space
[1,5] where attribute values are defined on continuous value ranges. Such an
attribute is termed dimensional and a data set with at least some dimensional
attributes is a dimensional data set. The term spatial data applies to dimensional
data from domains that are actual physical spaces. However, much dimensional
but non-spatial data can still be treated as if it were spatial. This approach is
useful because people find this representation natural.

Spatial data is often represented as points and or cells defined on a regular
or irregular grid. The choice of grid impacts the nature of the representation
chosen for the data and the specification of algorithms for analyzing it.

2.2 Lattice

A domain can be thought of as a hyper-volume from which data are collected.
Our lattice model presents a view of a gridded dataset that represents data sam-
pled from a domain. The view may have uniform or varying resolution. The
terminology used in the literature to describe various grid systems is not stan-
dardized. We define a consistent framework for describing grids that encompasses
most reported grid structures [7,8].



2.3 Geometry, Topology, and Neighborhoods

The lattice separately represents the underlying space in which the grid is de-
fined, which we call the geometry, and the point and cell relationships implied
by the grid, which we call the topology. The geometry refers to the dimensional
domain and the locations of data within it; it describes the “shape” of the grid.
The topology defines how the points of the grid are connected. The topology is a
graph with data points or cells as nodes and edges defining adjacency and neigh-
borhood relationships. This approach enables database support for applications
to process data either geometrically or topologically.

We can represent all the conventional commonly used grids [13] including
regular rectilinear grids, more general rectilinear grids, unstructured grids, and
curvilinear grids. We also support lattices whose resolution varies over the do-
main. Such lattices include localized error information that encodes the accuracy
of the representation so users can make informed decisions about resolution.
Additionally, we combine our approaches to unstructured and structured grid
functionality in one representation to handle data that is structured in some
dimensions and unstructured in others similar to the notion of fiber bundles [3].

2.4 Multiresolution Data

A multiresolution hierarchy (MR) is a stack of lattices viewing the same hyper-
volume at different resolutions. Typically, we think of these lattices as ordered
vertically from the most detailed on the bottom to the least detailed on top.
The spatial overlap of these lattices facilitates the correlation of coarse and fine
views of the same regions. We use these spatial semantics to map a sub-volume
vertically through the hierarchy using support and influence. Each neighboring
set of points or cells in a coarse view is based on a (larger) set of neighboring
points and/or cells in a finer view; this set forms the support for the items in
the coarser view. Each point or cell in the finer view participates in the support
for a set of items in the coarse view; this set in the coarse view is its influence.

2.5 Adaptive Resolution

An adaptive resolution (AR) representation allows resolution to vary within a
single lattice. The resolution near a point may depend on the behavior of the
sampling function, on the behavior of the error function, or on the nature of the
domain in the neighborhood of the point. An AR representation is a coarse view
with interesting regions replaced with data often taken from more detailed views
acquired by drilling down an MR hierarchy. The AR representation approximates
the functional accuracy of the finer view with the memory cost of the coarser
view.

It is possible to define a hierarchy of adaptive resolutions on the same data.
Typically, each coarser level of this hierarchy is created using successively relaxed
error tolerances. Because an AR hierarchy contains multiple resolutions within
each level, it has the potential to achieve a representation with the same accuracy



as MR using less storage. Alternatively, for a given amount of memory, it can
retain increased detail and accuracy in important regions of the domain.

3 Data Source Model

Each lattice maps its geometry and topology specifications onto an n-dimensional
array, which forms the computational space of the data set. A data source rep-
resents this array-structured view of the data set.

For some grids, especially regular grids, the topology and/or geometry do
not need an explicit representation because they derive easily from the indexes
of the array that stores the data points. Other more complex geometries and
topologies may have a separate representation from their computational spaces.
Typically, processing the data using this indexed computational space is much
more efficient than using the data in its lattice form. Moreover, our approach
introduces little overhead when the lattice grid structure maps directly to the
data source array organization.

A data source also maps the n-dimensional computation space to the data
as it appears in files (or URLs). We define several kinds of data sources.

— A physical data source corresponds to one file/URL and maps an array
shaped grid structure onto a one-dimensional data stream.

— An attribute-join data source integrates representations where different data
attributes are stored in separate parallel files of congruent shape.

— A blocked data source integrates representations where the domain is spa-
tially partitioned into contiguous non-overlapping components.

— A wvariable resolution data source supports views of data at different uniform
resolutions.

In our data source model each lattice has a root data source that defines an
indexable n-dimensional space. The root may be a physical data source when
the lattice view of the data matches the file storage organization. The root may
also be defined by composite data sources, recursively defining a hierarchy with
physical data sources at the leaves. Each interior level of the hierarchy knows
how to map between its index space and the index spaces of its components.

4 Data Source Implementation

In this section we provide insight into our data source implementation. We be-
gin with a summary of some overriding design criteria, which were developed
based on extensive performance evaluations of a preliminary implementation.
We then describe the primary components of our current implementation that
more effectively incorporates these guidelines. We focus on the principal classes,
DataSource, Datum, and DataBlock along with some of their children classes.



4.1 Design guidelines

Since DataSource objects are the principal interface to the actual scientific data,
it is particularly important that their implementation be as efficient as possible.
Our implementation design was driven by several key guidelines:

— avoid object creation since it is rather expensive;

— minimize the number of physical reads to a file;

— use lazy evaluation to reduce the space used for data at run-time;

— minimize the number of times data values are copied;

— make access to individual data values as efficient as possible for the applica-
tion analysis and graphics routines.

A key consequence of the guidelines is that the DataSource object does not
directly store the data values that it appears to contain. In other words, a Data-
Source object represents an extremely large data file, but the data values in the
file are not extracted until the application requests them. (As discussed in sec-
tion 4.4, pre-fetching and caching violate this principle in the interest of better
performance.) Application code can access individual data points (via datum
methods and Datum objects) or blocks of data (via subblock methods and Dat-
aBlock objects). Upon execution of a datum or subblock method call, appropriate
read requests are formed, the data is read from its file and stored in a Datum or
DataBlock object that is returned to the caller.

4.2 Datums and Attribute Access

An object of type Datum is located at each valid indexable position of a Data-
Source and stores the values of all the attributes of the DataSource at that
position. For example, assume that a DataSource, ds, is a 2D data source with
the attributes carbon, nitrogen, and hydrogen, defined as three float values.

The user’s application can access the attribute values of a particular position
in ds with code such as the following;:

IndexSpaceld position = new IndexSpaceld( i, j );

Datum values = ds.getDatum( position );

float carbon = values.getFloat( "carbon" );
float nitrogen = values.getFloat( "nitrogen" );
float hydrogen = values.getFloat( "hydrogen" );

Accessing individual fields of a Datum object one at a time provides a flexible
implementation model, but it imposes significant overhead with very large data
sets. More efficient access can be achieved using block access.

4.3 DataBlocks

Rather than retrieving one Datum object at a time from the DataSource, ap-
plication code can request retrieval of arbitrarily sized blocks of data via sub-
block method calls. This technique provides significantly more efficient access



by extracting many data values at the same time. In addition, the extracted
data can be formatted in a way to provide more efficient access to the data by
application-level code. Data extracted from a DataSource via a subblock method
is encapsulated in a DataBlock object. DataBlock is an abstract class whose de-
rived classes are designed to provide efficient support for particular data formats
as described in the following.

Point vs. Attribute Ordering. Our conceptual data model for both lat-
tices and data sources treats a sample point as if it contains a Datum object
that encapsulates all the attribute values associated with the sample point. We
call this approach to organizing the data point order since the data values are
grouped by the sample points. For real data it is often convenient to organize the
data in attribute order, in which all of the values for a particular attribute are
grouped together. Given a data source with n sample points and k attributes,
a point-ordering of this data might consist of an n-element array of groups of
data values containing k attributes, whereas an attribute-ordering might consist
of k arrays of n elements where each array contains all the data values for a
particular attribute. Even though our data model is based on point ordering,
our underlying implementation allows the data to be stored either in point order
or attribute order. The application code can specify a desired data format for
the data in a DataBlock by instantiating appropriate children of the DataBlock
class. It is also possible to allow the system to create DataBlock objects that
match the organization of the data as it is stored on disk.

CompactBlock. A CompactBlock object stores all its data in a single Java
array whose type can be float, int, double, or byte. Given this constraint, a
CompactBlock object can store the following formats:

— point order data if all attributes are of the same type;

— attribute order data of all the same type where all the values for each at-
tribute are stored together in the array;

— point order data of different types but stored as a byte array — this option
requires conversion of each attribute from byte to its correct type every time
the data value is accessed;

— attribute order data of different types, stored by attribute in a byte array —
this requires the same conversion at every access to each data value.

In addition to the data array, a CompactBlock contains information for each
attribute including its data type, an offset into the data array indicating the
position of the first instance of the data attribute, and a stride field that defines
the number of entries to skip to get to the next value for the attribute. Fig. 1
shows the internal structure of a CompactBlock for a data block with 3 data
points and 3 float attributes called C, N, and H. Fig. 1(a) uses point order,
while Fig. 1(b) uses attribute order. In both formats, the i-th instance of any
attribute is located at dataArray[ offset + i*stride ].



— [ ™] CIN|H|C|N|H|C N H
C |float 03 C |float 01
N |float| 1 |3 N (float| 3 |1
H|float| 2 |3 C|ICICINININHH H Hifloat| 6 |1
Name type offset stride Name type offset stride
a. Point order b. Attribute order

Fig. 1. CompactBlock internal structure

This structure also provides a very efficient framework for storing data at-
tributes that apply to an entire block. For example, suppose that a data block
represents a series of data samples all of which have the same time value. The
time can be stored as the first data value in the data array and included in the
attribute table with an offset of 0 and a stride of 0. Thus, the time value is
stored only once, but it appears as if it is stored once for each data point.

CompositeBlock. Although CompactBlock provides efficient storage for sev-
eral useful data formats, its scope is somewhat limited. However, the combination
of two or more CompactBlocks can be used to represent a very large range of
data formats efficiently. The CompositeBlock class encapsulates multiple Com-
pactBlocks into a single conceptual data block. Particularly useful formats in-
clude attribute ordering where each attribute is in a separate array and mixed
type blocks where all the attributes of a specific type are grouped into one of
the CompactBlock components. There is a small amount of additional overhead
needed to pass requests through the CompositeBlock to its component Compact-
Blocks, but this overhead is usually more than offset by the added efficiency for
accessing the data arrays.

Direct Data Access. A particularly important advantage of the Compact-
Block | CompositeBlock implementation is that the actual data values can be
made accessible as simple Java double, float or int arrays. This allows applica-
tion analysis and/or graphics functions to access the raw data without going
through multiple levels of objects. The DataBlock class hierarchy also provides
methods that allow user code to convert between different DataBlock formats.
This is especially valuable when the application uses other analysis or graphics
packages that expect large sets of data values as simple arrays.

4.4 PhysicalDataSource

PhysicalDataSource objects provide the direct interface to a data file or a network
source for the data. A PhysicalDataSource object is instantiated with a reference



to a specific data file and is responsible for knowing the exact format of the data,
including dimensionality, bounds, attribute types and ordering, byte ordering,
etc. This information can be stored and retrieved from a relational database
interface that is part of the system, or it can be defined by an XML-based file
descriptor that can be read by a system utility class, FDLReader.

4.5 CacheDataSource

One of the principal mechanisms for reducing I/O is the CacheDataSource, a
child of the DataSource abstract class. An instance of CacheDataSource can
be associated with a DataSource of any type and supports both read-ahead
and a cache of recently read Datums for its associated DataSource. Any datum
read request to a CacheDataSource is transformed to a subblock request of the
associated DataSource. After the subblock is returned, the CacheDataSource
saves the subblock in its cache memory then extracts the requested data and
returns it in a Datum object containing the data. For subsequent datum method
invocations, the CacheDataSource first checks if the desired data already has
been read and is stored in its cache. If so, it returns the data from the cache; if
not, it reads a new subblock, caches it, and then returns the desired data values.

Performance analysis has shown that this approach can yield a significant
performance improvement when the application program performs a sequential
read through the data source, but it is not effective with random access [6]. In
general, the improvement is not very sensitive to typical parameters, such as
cache data size and the exact nature of the sequential access patterns.

4.6 AttributeJoinDataSource

The AttributeJoinDataSource (AJDS) allows a user to treat data from multiple
files each containing a single attribute as if the data were stored as a single
multi-attribute set of data. A simple attribute join takes multiple data sources
with compatible index spaces and creates a new data source that has all the
attributes of all the component data sources. Parameter options let the user
select attribute subsets and rename and reorder the attributes in the new data
source. From the application code perspective, the new data source appears the
same as if the multiple attributes are stored in a single file.

Performance analysis of the AJDS implementation [9] shows very little if any
additional overhead caused by the introduction of the composite data source.
Access to n separate data sources to get one attribute each is comparable in cost
to accessing a single n-attribute AttributeJoinDataSource with n components of
one attribute each.

4.7 BlockedDataSource

Multi-source data sets can also be created from individual files based on spatial
attributes. For example, there may be a set of data files that represent satellite



images covering a particular range of latitude and longitude. It might be conve-
nient for an application to create a data source that combines 2 or more such
files. A BlockedDataSource supports the creation of a data source composed of
other data sources that are placed into non-overlapping portions of the index
space of the composite. In its simplest form the components of a BlockedData-
Source are defined with their own index space ranges that do not overlap. For
example, the index ranges could be defined to coincide with the latitudes and
longitudes represented by the data. Options to the BlockedDataSource construc-
tor, however, can be used to map the index space ranges of the components to
arbitrary positions in the composite’s index space.

Performance analysis of the BlockedDataSource implementation [6] shows
that the introduction of the composite blocked data source adds little or no over-
head if the composite data source is blocked in a regular fashion. In this case,
access to n separate data sources to get a datum or a subblock is comparable
to computing the position of the datum or subblock from a set of separate data
sources and then accessing the data from the correct data source. A Blocked-
DataSource with blocks of irregular size and shape does introduce additional
overhead for the search for the correct block. In both cases the BlockedData-
Source is far more convenient for the application, since it does all the mapping
which otherwise would be required by user-level code.

4.8 DataSource Trees

Users can create data sources from multiple levels of attribute join and blocking
operations and combinations of attribute join and blocking operations.

Performance analysis on data sources defined by multiple levels of attribute
join operations indicate very little overhead caused by the nested definition [9].
Complex trees that combine multiple levels of attribute joins and blocking do
create additional mapping overhead, but similar functionality implemented di-
rectly in user code would require equivalent processing [6,9].

4.9 Variable Resolution Data Sources

Normally, data sources are defined with a fized resolution that is uniform through-
out the index space of the data source. A VariableResolutionDataSource (VRDS)
allows a data source to be accessed at different resolutions. A VRDS is a wrapper
class for another data source object, called the subject. The VRDS has a base
resolution that matches the resolution of the subject data source. Initially, the
resolution of the VRDS is the same as its base resolution, but user code can make
the resolution finer or coarser with a simple mode setting method invocation.
When the VRDS resolution is finer than its subject data source, the VRDS
extracts the coarse data from its subject and uses that data to generate a higher
resolution representation of it. The higher resolution representation can be cre-
ated by either replicating the existing points, or by interpolating within them.
When the VRDS resolution is coarser than its subject, the VRDS extracts
the higher resolution representation of its subject and converts it to a coarser



form. This can be achieved by either selection of a subset of the subject’s data,
or by (weighted) averaging of the finer resolution data.

Performance evaluation of the VRDS implementation was generally very
good [6]. The cost of both datum and subblock access depends primarily on the
amount of data requested from the VRDS. Thus, accessing a 4096x4096 data
source through a VRDS as if it were 256x256 is only a bit more expensive than
accessing a 256x256 conventional data source.

4.10 Adaptive Resolution Data at the Data Source Level

The VRDS class provides a mechanism for varying the resolution of a data
source, but the entire data source still has the same uniform resolution at any
given time. This can be extremely convenient, but it does not take advantage of
situations where we don’t need the same resolution throughout a data source.
Although most of our adaptive resolution functionality is intended to be asso-
ciated with lattices, we have implemented some basic functionality at the data
source level by means of the BlockedDataSource and ARBlock classes.

Using spatial joins, a user can eagsily create a composite BlockedDataSource
whose components do not have the same resolutions. User code can then access
the data in this composite as if it were of uniform resolution just as is done with
a VRDS. The user also has the option, however, of extracting uniform resolution
subblocks one at a time from the composite. The subblocks are of type ARBlock
which provides access to the original components at their original resolution.
User code must know about the different resolution levels and how to combine
neighboring results to achieve a complete solution.

5 Lattice Implementation

Our prototype implementation of the lattice model is capable of handling both
regular data and some kinds of unstructured data. The Lattice class has three
important data members: Geometry, Topology, and DataSource. The Geometry
and Topology classes have children that are specialized for handling different
kinds of data grids. By choosing the appropriate Geometry and Topology, the
Lattice is able to handle different data types in much the same way. The Lattice
also contains a root data source that serves as a portal to the underlying file(s).

The remainder of this section describes the principal lattice functionality,
followed by a discussion of geometry and topology implementation issues and
concludes with several lattice examples using different varieties of scientific data.

5.1 Lattice Functionality

The lattice must support several different methods for accessing the data. Per-
haps the most obvious is to return a datum corresponding to a geometric point,
p in the lattice domain. In this case, the geometry and topology must work to-
gether to efficiently map a geometric location to an index suitable for use with
the root data source.



The data source contains only sample points, but the lattice must also be
able to approximate values for any domain location. Cells can be very useful for
deciding which sample points to use in the approximation. A cell is a collection
of sample points connected by edges forming a perimeter. All the sample points
in a cell lie on this perimeter. We consider only non-overlapping cell structures
that completely cover the lattice domain. When the lattice is asked to compute
an approximate value for some point p in the domain, it first finds the cell
which encloses p, and then uses the sample points of this cell to compute an
approximate value.

We can also ask the lattice to return a set of datums which lie within either
a topological or geometric neighborhood. Legitimate queries include “retrieve
all sample points within radius r of the point p”, and “retrieve the k sample
points nearest the point p”. The first query requires knowledge of the geometry,
while the second may or may not. For some geometries, e.g. regular rectilinear
geometry, the second query requires geometry only to map p onto the index space
of the data source. The nearest k points can then be determined directly from
the index space without knowing their geometric positions. Another query can
ask, “retrieve a ¢ by ¢ block of datums spanning the rectangle R”. This query
usually requires approximation unless ¢ sample points happen to align exactly
with the region R.

Iteration is another important means of interacting with data. Instead of
asking for a single datum or subblock, iteration specifies a sequence of data to
be returned. To use iteration, we must first specify the range of the iteration
and the nature of the items returned. Examples include “return the k nearest
neighbors of a point p one after the other”, “iterate over points or cells in a
geometric region R”, and “return sets of points corresponding to subregions of
R”. This latter example is particularly useful with computations like convolution,
in which an operation is applied to whole blocks of data at a time.

Although iteration over geometric space is convenient and intuitive, it is
more common for efficiency reasons to iterate over a computational space. This
can be accomplished by mapping a geometric region to the corresponding (or a
containing) computational space. This is particularly useful when the computa-
tional space is much simpler than the inherent geometric space of the data, or
when the researcher does not need data values at non-sample points. Topological
iteration can also provide more advanced functionality, as when the user wishes
to retrieve topological neighbors of p in a breadth-first ordering, so that sample
points within &k edges of p are returned as a single set.

In summary, the lattice must support several different kinds of data access:

Datum retrieval from sample points

Datum retrieval from arbitrary domain locations
— Cell retrieval

Topological neighborhood operations

Geometric neighborhood operations

Tteration over topology

— Iteration over geometry



5.2 Geometry Implementation

The Geometry object contains information necessary to map between a sample
point location and its index in the underlying data source. For regular rectilinear
grids, the geometry is largely implicit. In this case the step sizes within the grid
are constant in each direction. Hence, there is a very simple mapping between
points and their indexes, based only on the position of the origin of the grid and
the step sizes in each dimension (section 5.5). A more general rectilinear grid
(the perimeter grid) needs additional grid spacing information. In this case, there
is an array of step sizes needed in each dimension (section 5.6). For curvilinear
and unstructured grids, the geometry is usually represented by storing explicit
position coordinates for each sample point (sections 5.7 and 5.9).

An important responsibility of the Geometry class is its ability to partition
itself into regular rectilinear non-overlapping regions. The number and sizes of
the partitions can be explicitly specified by the user, or can be determined by
the system. Unless forbidden by the user, the partitioning can be dynamically
altered by the system to adjust to changing conditions. This partitioning is not
particularly useful for topologies that are already regular and rectilinear, but it
is a key feature for providing efficient processing of curvilinear, semi-structured
and unstructured grids as described below.

5.3 Topology and Cell Implementation

The primary responsibility of Topology is to represent the neighborhood relations
between sample points. That is, for a sample point s, there are a set of points that
are considered neighbors of s. In general, this information forms a graph structure
with points at the vertices and edges connecting immediate neighbors. As with
geometry, the topology implementation is simple for regular data because the
straightforward mapping between geometry and the data source index space
means that the topology needs no explicit representation; it is implicit in the grid.
For example, a sample point in a rectilinear grid commonly has four neighbors
in 2-D (north, south, east, west) and additional front and back neighbors in 3-D.
For a request for the north neighbor for a point p with data source index i,j, the
topology knows to return the value at index i,j+1. For unstructured data, the
neighborhood relationship graph must be represented explicitly.

When the topology can be used as a basis for partitioning the domain into
covering non-overlap regions, we say that the data set has a cell structure. The
cell structure can improve search efficiency and provide a basis for approximating
data values at arbitrary points in the domain.

For example, 2-D (3-D) unstructured data is often represented using a mesh
of triangular (tetrahedral) cells. The vertices are stored in a vertex array and
cells are defined as a set of vertex indexes stored in a cell array. For unstructured
data, there is no simple mapping between the geometric region of a cell and its
index, just as is the case with the sample points. For such data, it is difficult to
locate a cell that corresponds to a geometric location. As the size of the data
grows, exhaustive search quickly becomes impractical. By using the geometry’s



partitioning, we can dramatically reduce the set of cells that must be examined.
As in spatial partitioning for ray-tracing [2], each cell is distributed to its appro-
priate partition(s). We can then map a geometric query point p to the geometric
partition it occupies and search only those cells that overlap that partition.

5.4 Rectilinear Grids

In this section, we discuss data for which the topology is a rectilinear grid, but
with various geometries. For all these different data types, we need a mapping
between the geometric and topological spaces. For some data, this mapping is
very straightforward, while for others it is much more complicated. In any case,
the key to working with such data efficiently is to take advantage of the rectilinear
nature of the topology.

5.5 Regular Geometry

Fig. 2 shows data that has a rectilinear topology and a regular geometry. The
geometry extends from (0.0, 0.0) to (40.0, 24.0) and the topology from (0,0)
o (8,8). Suppose the lattice is asked for the data values corresponding to a
geometric location p, as with the following code:

Datum d = lattice.datum( p );

In this example, there are two possibilities. If p does not correspond to the
location of a sample point, then the lattice must compute an approximate value.
To do so, it must first find the cell that surrounds p. This situation can be seen
in the upper right of Fig. 2. For rectilinear data, we don’t need to store cells
explicitly, but can instead retrieve the cell vertices with the help of the mapping
between geometry and topology. Since the cells are all identical with regular
data, our mapping is simply:

= &= 1) 2

where i and j are the topological coordinates of the lower left corner of a cell,
and Az and Ay are the geometric size of a cell in the z and y dimensions (5.0
and 3.0). To get the indices of the other vertices in the cell, we simply increment
1 and j appropriately. Once all four indices are found, they can be given to the
root data source, which returns the corresponding sample points. The lattice can
now compute an approximate value for p from these sample points.

The other possibility is that the query point p is equal to (or within some
epsilon of) the location of a sample point. We see this situation in the lower
left of Fig. 2. Here, no approximation is necessary, so we can retrieve the datum
from the data source directly.

If a topological neighborhood such as the one shown at the center of Fig. 2 is
desired, we can either use our simple mapping to map a geometric region to the
topological index space, or access the topology directly. In either case, we issue
a subblock() query to the root data source. The code looks something like:
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Fig. 2. Regular rectilinear data with geometric and topological coordinates

rootDS lattice.getRootDS();

topology = lattice.getTopology();

geomBounds = new GBounds( new Point(15.0, 9.0),
new Point(25.0, 15.0) );

topoBounds = topology.map( geomBounds );

theBlock = rootDS.subblock( topoBounds );

Notice that the first couple of lines of code get the root data source and topology
from the lattice. Although the lattice provides a very convenient geometric view
of the data, it may be desirable to manipulate the sample points directly through
the topology. In this code example, we use the topology to map a geometric
region to a topological region, and then give this region to the root data source,
which will return a block of sample points.

Topological iteration is similarly straightforward. We give the topoBounds
computed above to an ISIterator object that iterates over the sample points.
Note that the ISTterator class is a child of the IndexSpaceld class which is the
type required by the datum method.

ISIterator iter=new ISIterator(topoBounds);
for( iter.init(); iter.valid(); iter.next()){
System.out.println( rootDS.datum( iter ));

}

5.6 Perimeter Grids

Fig. 3 shows a perimeter grid, also known as a perimeter lattice [12]. In this case,
we must store an array of values for each axis called perimeter arrays (also shown
in the figure). The i-th value in a perimeter array gives the geometric location
of the i-th row or column of elements along an axis. Using this information, we
can produce a mapping between geometry and topology. For example, consider
the point at (20.0, 13.5) in Fig. 3. For the z axis, we use the array A[] along
the top of the figure, and note the index i at which the z value of 20.0 is less
than or equal to A[i + 1]. We perform a similar operation for the y axis using
B[] to discover an index j for which the y value of 13.5 is less than or equal
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Fig. 3. A Perimeter Grid and its attendant perimeter arrays

to B[j + 1]. It’s easy to see that values i = 3,j = 4 satisfy our requirements
and give us the topological coordinates of the containing cell’s lower left corner.
As with the regular case, we can now easily compute the topological indices of
the remaining three corners of the cell and retrieve four data values from the
root data source, using them to compute an approximate value for our sample
point. In fact, assuming that the topology has been given the necessary mapping
information, the sample code shown in the last section can be used unchanged.

5.7 Curvilinear Grids

A curvilinear grid has rectilinear topology, but a geometry that is curved in
a space and can even have higher dimensionality than the topology dimension.
Often such grids are viewed as a regular rectilinear computational space that has
been warped in a geometric space, like the surface of an airplane wing, as shown
in the upper left of Fig. 4. If this warping transformation is simple enough, it may
be possible to analytically construct the mappings between the geometric and
topological spaces. The implementation would then be similar to the examples
we have already seen.

ﬁ

)

Fig. 4. Some more difficult varieties of rectilinear data.



Of course, such analytical mappings are not always possible. For such data,
it is necessary to explicitly store the geometric location of each sample point.
The root data source must therefore be consulted whenever we wish to map
from one space to another. Still, from the above examples, we know that once
the mapping from geometry to topology has been performed for one point, it is
easy to navigate the topology as required to find geometric or topological point
and cell neighbors. Regardless of the geometric distribution of the points, we are
able to take advantage of the rectilinear nature of the topology.

5.8 Adaptive Resolution with Rectilinear Data

We can support adaptive resolution (AR) data using two different approaches.
If the adaptive resolution is based on the topology of the lattice, we can use the
adaptive resolution features of the data source implementation as described in
sections 4.9 and 4.10. If the adaptive resolution is based on geometric regions,
the rectilinear structure of the topology cannot be maintained, so this case must
be handled as unstructured data (see section 5.10).

5.9 Non-Rectilinear Grids

Unstructured and semi-structured grids add another level of complexity over
and above even the most unruly rectilinear grids since the vertices belonging to
a cell can no longer be computed from the topology alone. Not only must we
store the geometric position of each point explicitly in the data source, we must
also store a list of cell definitions that specifies the vertices comprising each cell.

Datum Queries. In sections 5.2 and 5.3 we noted that exhaustive search
of the cell list is out of the question for data of even moderate size, and that
partitioning the geometry can be very helpful in limiting the search to a small
number of cells. In conjunction with Fig. 5, a simplified implementation of a
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Fig. 5. An Unstructured Grid with partitions.



datum query of the form lattice.datum(p) illustrates how partitioning is used
to accelerate data access and as a bridge between the topology and geometry:

Datum datum( Point p ){
IndexSpacelD partitionId = geometry.mapToPartition( p );
Cell c = topology.findEnclosingCell( partitionId, p );
return c.approximate( p );

}

Fig. 5 shows four partitions dividing the space into four equal quadrants. The
first line of the example code asks the geometry to map the point p to one of these
partitions. This can be done in a manner essentially similar to the mappings for
regular data described in section 5.5. It should be apparent that the result of
the mapping selects the upper left partition. Next, we ask the topology to find
the cell that contains the query point. The result corresponds to the darkened
triangle in the figure. Notice that the topology is able to use partitionId to
access the partition that was previously identified by the geometry. Finally, the
cell computes an approximated Datum for p and the result is returned.

Topological Iteration. As with rectilinear data, geometric iteration can be
performed through repeated datum() queries on the lattice. However, topologi-
cal iteration is sometimes more desirable because of efficiency, and because the
researcher wants to deal with actual sample points only. Nevertheless, it is still
possible to give a geometric specification of the extent of a topological iteration.
For example, Fig. 6 shows the retrieval of all sample points within a radius r
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Fig. 6. A Topological Iteration with Geometric Extent

of the geometric location p. The same methods outlined above can find the cell
surrounding p. The cell’s list of neighbors identifies nearby cells to visit using
a standard breadth first or depth first search. Any cell vertex meeting the ge-
ometric constraint is included in the iteration. The iteration terminates when



the set of visited cells covers the geometric extent. Of course, an iteration could
be specified using only topology, such as “access all the topological neighbors of
this point or cell”. In either example, it is important to note that topological
navigation need not consider the geometric partitions.

5.10 Further Applications for Partitions

The link between the topology’s cells and the geometry’s partitions also plays
an important role in our multiresolution and adaptive resolution data represen-
tations. In this section we present ideas for wider employment of partitioning
throughout our lattice implementation.

Semi-Structured Grids. Consider a dataset with a periodic topology, as
shown in Fig. 7. Since the topology has the same local pattern repeated over the
domain, we can extend the partitioning method used for unstructured data to
help represent periodic topologies efficiently. We can represent one copy of the
pattern in a data structure called a supercell [11]. Conceptually, the supercell is

Fig. 7. A Periodic Topology

repeated over the domain, forming the complete geometry and topology without
incurring the storage costs of a large number of cells. Each supercell has a position
index (2D in this example) and each point has a point inder indicating its
position inside the supercell. Datum access is slightly more complicated, since
we no longer have cell vertices that correspond to a single datum. However,
we can easily form a data source index for a sample point from the supercell’s
position index and the point’s point index. Looking at Fig. 8 we see that the
position index (1,1) for the circled point is combined with the point index (4) to
form a data source index (1,1,4), with which we can retrieve a datum.
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Fig. 8. Using supercells to represent periodic topologies.

Adaptive Resolution with Unstructured Data. The adaptive resolution
features of data sources is not sufficient to handle unstructured data, so we must
provide lattice level support for this case. As described in section 5.9, we can
use the geometry partitions to locate the topological cells. Now, however, the
partitions hold cell meshes of different resolutions. Typically these meshes will
have been harvested from different levels of an MR hierarchy.

Multiresolution Hierarchies. Multiresolution data can be implemented as
a hierarchy of lattices. Partitions are helpful here because they provide a conve-
nient specification of regions for support and influence. Each level of the hierarchy
(lattice) has its own geometric partitioning which gets increasingly coarse along
with the coarseness of the lattice. The geometry and topology used in MR hier-
archies can refer to partitions above and below them in the hierarchy to denote
the set of points that they support or influence. Since partitions can be specified
with a simple index, this is a compact way of specifying a region in the domain.

6 Conclusions and Future Research

We have developed a comprehensive data model for multiresolution multisource
scientific data and have implemented a prototype system that provides database
support for the model. This paper describes the principal features of the data
model and the principal components of the implementation. The implemented
features of the data model provide application code with a clean natural straight-
forward view of user data even if it is constructed from many disparate compo-
nents. Preliminary evaluation of our implementation indicates that the features
provided by the model can be provided with little or no additional overhead.



Our current implementation only provides limited support for adaptive res-
olution data and does not yet handle multiresolution hierarchies in a compre-
hensive way. Although the data model includes features desirable for distributed
data and computation, these features are also not yet implemented.
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