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Abstract
Most caching and prefetching research does not take 

advantage of prior knowledge of access patterns, or does 
not adequately address the storage issues associated with 
multidimensional scientific data. Armed with an access 
pattern specified at run time as an iteration over a multi-
dimensional array stored as a disk file, we use prefetching 
to greatly reduce the number of disk accesses and mitigate 
the cost of read latency. We call this iteration aware pre-
fetching.

We assume the pattern of access is not known until 
runtime, in contrast to chunking methods that preprocess 
a file for a particular access pattern. Our approach results 
in dramatic performance improvements over file system 
caching. We also significantly outperform chunking with-
out having to reorganize the data, and can do even better 
by applying our approach on top of a chunked file. 

1 Introduction1 
Scientists often work with data represented in an n-

dimensional space in which data values are associated 
with a location in the space [Cigno97,  Hibbard95]. For 
example, satellite data is typically considered to be or-
ganized in a two dimensional space, while medical CT and 
MRI data usually exists in a three dimensional space. We 
consider these kinds of scientific data to be multidimen-
sional.  Multidimensional data presents special challenges 
when designing efficient access methods because elements 
that are nearby in the data space may not be nearby in the 
underlying data file. The caching and prefetching schemes 
present in most operating systems do not take into account 
the natural spatial relationships in the data, so they tend to 
cache, discard, or prefetch the wrong information. 

Over the last fifteen years there has been a thousand-
fold increase in processor speed, along with even larger 
gains in memory and disk capacity. During the same pe-
riod, the size of scientific data sets increased even into the 
terabyte range. However, the average seek time of hard 
disk drives has improved only modestly over the same 
period [Coughlin, Chang01]. The work described here is 
motivated by the need to minimize the now comparatively 

high latency or stalling costs associated with modern disk 
drive media. Using our system, a researcher can take ad-
vantage of improved I/O performance without spending 
time on the minutiae of efficient file access.

To implement this abstraction while still maintaining 
efficiency, the researcher must be able to define the appli-
cation’s data access pattern. We are developing a toolkit of 
iterators that succinctly describe the access pattern and 
also perform the iteration through the data space. Using 
knowledge of the access pattern, we can create a cache 
and a prefetching strategy that usually provides significant 
speedup for the application. 

A unique aspect of our approach is that we create and 
prefetch cache blocks with n-dimensional shape, as op-
posed to the 1 dimensional pages of file system caches and 
similar methods. N-dimensional cache blocks can be given 
a shape that is tuned to a particular iteration and to the 
storage organization of the data. We choose a shape that 
minimizes the total number of disk accesses while reading 
data that is sure to be visited in the near future by the it-
eration. We call this method spatial prefetching, an exam-
ple of iteration aware prefetching.

Unlike other methods for achieving efficient I/O per-
formance [Sarawagi94, More00], our approach does not 
require any reorganization of the data. That is, we work 
with the original data file, rather than making a copy with 
a different storage organization.  

The work described here is done in the context of the 
datasource component of the Granite Scientific Database 
System, which is in turn an implementation of our multi-
source multiresolution data model for scientific data 
[Rhodes01]. The datasource layer handles multidimen-
sional data in which sample points are arranged in a regu-
lar and rectilinear fashion throughout the domain. As with 
many other scientific databases, the design of the Granite 
system assumes that update operations are infrequent or 
entirely absent, so the work described here is aimed to-
ward a read-only data environment.

After a brief overview of related work, the next several 
sections describe the functionality and implementation of 
the datasource, iterator and cache classes, all of which 
contribute to the support of transparent and efficient out-

1  This work is supported by the National Science Foundation under grants IIS-0082577 and IIS-9871859



of-core access. We then present performance test results 
that demonstrate the significant advantages of this ap-
proach. Finally, we end with future work and conclusions.

2 Related Research
Providing efficient access to huge scientific datasets is 

a challenging problem, and has attracted a lot of attention 
from both the operating system and scientific data man-
agement communities. Work has focused on either pro-
viding comprehensive scientific data management sys-
tems, or optimizing file systems using techniques like 
prefetching, caching and parallel I/O.

2.1 File Access
 Reorganizing datasets on disk to speed access has 

been explored by a number of researchers. Sarawagi and 
Stonebraker [Sarawagi94] describe chunking, which uses 
the expected access pattern to group spatially adjacent 
data elements into n-dimensional chunks which are then 
used as a basic I/O unit, making access to multidimen-
sional data an order of magnitude faster. They also arrange 
the storage order of these chunks to minimize seek dis-
tance during access. Following this work, many other 
reorganization methods have been developed. More and 
Choudary [More00] reorganize their data according to the 
expected query type, and the likelihood that data values 
will be accessed together. The Active Data Repository 
(ADR) uses chunking to reduce overall access costs and to 
achieve balanced parallel I/O [CChang00, CChangADR].  

2.2 Prefetching and Caching
Software prefetching has been used by many research-

ers to hide or minimize the cost of I/O stalling. In the file 
systems arena, approaches to this problem can be distin-
guished by whether or not prefetching is guided by ex-
plicit information about the access pattern. Albers et al. 
[Albers98] describe an algorithm that produces an optimal 
schedule for prefetching and discarding cache blocks 
when the entire access pattern is given in advance. Other 
researchers have explored the case where the access pat-
tern is disclosed less completely in the form of hints. Pat-
terson et al. [Patterson95] developed a framework for 
informed caching and prefetching based on a cost-benefit 
model. This model has been extended to account for stor-
age devices with very different performance characteris-
tics [Forney02]. Cao et al.  demonstrate success by letting 
applications have control of data cache replacement strat-
egy in their share of cache blocks [Cao96]. Brown et al. 
[Brown01]  describe a hint based method that effectively 
accelerates paged virtual memory performance using an 
operating system that takes advantage of compiler gener-

ated hints and multiple disks. Kotz [Kotz97] describes 
disk directed I/O, a method for aggregating and prefetch-
ing data requests in a parallel environment. Mowry [Mow-
ry94] presents software controlled prefetching for hiding 
or reducing the latency experienced by a processor ac-
cessing memory.

When no explicit information about access pattern is 
available, the history of prior accesses can be used to pre-
dict future accesses. Amer et al. group files together based 
on historical file access patterns [Amer02]. Other re-
searchers have used probability trees or graphs to repre-
sent the likelihood of future block accesses given past and 
current block accesses [Vellanki99, Highley03, Griffio-
en94]. Madhyastha et al.  use a hidden Markov model to 
automatically predict file access patterns over time; the file 
system adaptively selects appropriate caching and pre-
fetching policies according to the detected pattern [Madh-
yastha96, Madhyastha97].

At the application level, Chang [Chang01] adds a sepa-
rate thread to the user program that performs prefetching 
by mimicking the I/O behavior of the main thread and 
preloading data. Doshi [Doshi03]  describes a system that 
adaptively selects a prefetching strategy based on user 
behavior. The VisTools [Nadeau] system is most similar to 
our approach. It provides an application level data pre-
fetching and caching service for huge multidimensional 
datasets, using the Paged-Array schema.  It reads format-
ted pages of elements from the underlying files when the 
first element in the page is requested. The formatted pages 
are then stored in a page cache for fast future re-access. 
When the cache size limit is reached, the paged-arrays are 
deleted or written to a swap file. Like our own work, 
paged-arrays also support intelligent prefetching guided 
by the iterators that have an n-dimensional view of the 
dataset. However, the one dimensional nature of pages 
fails to take into account the proximity of elements in n-
dimensional space. By using pages as its unit of cache 
storage, VisTools and other page based methods may 
make poor decisions about what data to retain or discard. 
The following section examines this issue in greater detail.

 2.3 Advantages of the Granite Approach
Reorganizing data into chunks is a very effective and 

general technique, but the required reorganization (and 
implied duplication) of the dataset can be  inconvenient,  
especially when working with large datasets. Also, per-
formance may suffer if the data is accessed in a different 
way than was expected when the reorganization was per-
formed. The approach adopted by the Granite system 
works with the original data, and requires no such reor-
ganization.



Systems that access the data in pages suffer from not 
taking into account the multidimensional nature of the 
data. In particular, elements that are nearby in n-
dimensional space may be far apart in the one dimensional 
file space. Since paging is essentially a one dimensional 
method, it may be inefficient for an n-dimensional access 
pattern.

Figure 1 shows a conceptual view of a portion of the 
39GB Visible Woman dataset, provided by the National 
Institutes of Health. This dataset consists of 
5186x2048x1216 elements of 3 bytes apiece [Rhodes05]. 
Each block in the figure represents a single element. The 
number in parentheses at the bottom of each block repre-
sents the byte offset of that element from the beginning of 
the file and the number at the top of each block represents 
the order in which that block will be visited by an iterator. 
The light gray blocks show the initial path of the iteration, 
beginning with the white corner element. When this initial 
element is accessed, the file system will load a page of 
data, typically 4K in size, indicated by the series of me-
dium gray elements. Unfortunately, the next element to be 
visited (the light gray block at offset 7471104) is not con-
tained in this page, so the disk must be read again. In fact, 
separate reads must be made for each element in the light 
gray series, since they are all separated by over 7MB in 
the one dimensional file. When, at step 5186, the iteration 
returns from the far end of the data set to begin a new 
“row”, a new page will still have to be read, since this 
element is not contained in any of the pages that have 
been read so far. In fact, the next medium gray element 
would be used at step 2490368 of the iteration, but this 
first page will certainly have been discarded at this point, 
unless the file system is able to retain 10GB of disk pages 
in memory. This is clearly beyond the capacity of today’s 
commonly available systems.

File systems also commonly prefetch pages following 
an explicitly accessed page in the hope that the prefetched 
pages will be accessed next, and reads to disk will be 
reduced. This helps slightly in this example, because ele-
ments that are vertically adjacent are only 6K apart. So, if 
the file system prefetches at least one additional page for 
each read to disk, the elements immediately beneath the 
light gray elements will be read from pages loaded during 
the traversal of the light gray elements. Although this is an 
improvement, it still means that only two elements will be 
read out of each 4K page before it is discarded, only to be 
reread later in the iteration. For datasets with even larger 
dimensions, the distance between vertically adjacent ele-
ments may be too large for pages to ever be used more 
than once before being discarded. In this case, prefetching 
just makes the situation worse by increasing the number of 
inappropriate pages loaded into memory. Because the file 
system has no information about the dimensionality of the 
data or the path of the iteration, it is grossly unsuited for 
the job.  

We address these issues by creating cache blocks that 
are n-dimensional, and shaped according to the iteration. 
Elements that are contiguous in the file are loaded in a 
single read() call. This method has several beneficial ef-
fects. First, it uses more data from each file system page 
that is read, thereby reducing the number of redundant 
reads made to disk. Second, it reduces the number of 
read() calls made to the operating system. Third, since the 
cache block can be filled in any order, we choose to fill it 
in a way that most closely matches the ordering of the data 
in the file. This allows us to sometimes take advantage of 
the file system prefetching that is otherwise a liability.

We utilize nearly complete information about the ac-
cess pattern given by our iterators. We don’t have to guess 
which data to prefetch, and we don’t discard needed data 
before it is used. Because of this, the various caches we 
have developed require at most two cache blocks to be 
maintained in memory at a time, which can extend the 
reach of an application to much larger datasets than would 
otherwise be possible. 

Figure 1. The elements fetched by the file system 
(medium gray, on the right) are not the elements 
needed by the iteration (light gray, on the left). 

The top number in each block indicates iteration 
order, while the numbers in parentheses indicate 

the offset in the file.
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access pattern expressed as an iteration, and 

the data as it lies on disk.



3 The Multidimensional Data Model
Figure 2 is a conceptual diagram of the pipeline relat-

ing a user access pattern to the file. The datasource is the 
representation seen by a Granite user, and uses a storage 
model to help translate the n-dimensional data space to the 
one dimensional file space. The storage model may be 
able to work with more than one file format. For example, 
the rod storage model discussed later in this section repre-
sents both chunked data files and files that have been left 
in their native plane-row-column order.   

3.1 Datasources
We model the data to be processed as a datasource, 

which is conceptually an n-dimensional array containing a 
set of sample points.  We call the space defined by the 
array indices an index space. Each location in the index 
space has a collection of  associated data values, which we 
call a datum. Although our datasource model allows data-
sources to be built on top of other datasources or to be 
associated with a network stream, we limit our discussion 
in this paper to datasources that are associated directly 
with a file on disk. 

Datasources must handle two basic kinds of queries. A 
datum query specifies a single location in the index space, 
and is satisfied by the return of a single datum. A subblock 
query specifies an n-dimensional rectangular region of the 
index space, and is satisfied by the return of a data block, 
which is conceptually an array of datums, with a dimen-
sionality matching the datasource.

3.2 The Rod Storage Model 
While the file is a one dimensional entity, a datasource  

has an index space that is n-dimensional. The datasource 
is responsible for satisfying queries expressed in its index 
space by reading data from the file. It must therefore map 
its index space to file offsets. It does this with the help of 
an axis ordering, which is simply a ranking of axes from 
outermost to innermost. “Innermost” and “outermost” 
suggest position in a set of nested for loops used to access 
the file in its storage order on disk. The innermost axis 
changes most frequently and is called the rod axis when 
referring to the storage ordering of a datasource. Each 
axis is labeled with an integer that identifies the position 
of coordinates of that axis in a tuple used to specify loca-
tions in the index space. Consequently, an axis ordering is 
just a list of integers that defines an ordering of axis coor-
dinates from least to most frequently varying. For exam-
ple, an axis ordering of {0,2,1} indicates that coordinates 
of axis 0 change least frequently, followed by axis 2, and 
then by axis 1, which changes most frequently.

The number of separate read requests made to the stor-
age device strongly impacts I/O performance, so it is im-
portant to minimize the number of reads when satisfying a 
subblock query. Toward this end, the rod storage model 
views the datasource as being conceptually composed of 
rods. A rod is a one dimensional sequence of elements that 
are contiguous in both the n-dimensional index space and 
the 1-dimensional file space. Consequently, rods are al-
ways aligned with the rod axis. Because it is contiguous in 
the file space, a rod can be accessed in one read. Note that 
rods are composed of datums when the native file format 
is used, or whole chunks of datums with the chunked file 
format. When a subblock query is processed, the requested 
region of index space is decomposed into a collection of 
rod segments contained in the region. We then retrieve the 
subblock data from disk in rod-by-rod fashion where each 
rod segment corresponds to a separate read. To maximize 
locality, we read this set of rods according to the storage 
ordering. In the case where a set of rods is itself contigu-
ous (or nearly so) in the file, we issue only one read and 
retrieve the entire set of rods in one disk operation. 

Like the order line model described in [Wu03], the rod 
storage model does not take into account the physical 
layout of the file on the disk, but only the logical layout 
presented by the file system. However we have found that 
this approximation serves as an effective foundation for 
our iteration aware prefetching, which shows significant 
performance improvements over other techniques. In ad-
dition, applying the rod model to chunked data and other 
formats extends the reach of iteration aware prefetching to 
a wider range of data representations.

4 Iterators
Since our system aims to improve I/O performance for 

particular access patterns, we use iterators to represent 
access patterns as well as to perform the actual iteration 
through the datasource index space. Iterators have a value 
that changes with each call to the iterator’s next() method. 
This value might denote a single location in the index 
space, or perhaps a rectilinear region. In either case, the 
iterator value can be used directly in datum and subblock 
queries.

The pattern of iteration is determined when the iterator 
is constructed. An axis ordering is used to help represent 
the behavior of iterators that proceed through the index 
space in rectilinear fashion. In this context, the innermost 
axis of the iteration is called the run axis. While the data-
source is conceptually composed of rods, the space being 
traversed by a rectilinear iterator is conceptually com-
posed of runs. 

The iteration space is the space traversed by the itera-
tor. It may be the entire index space of a datasource, or 



some subset of that space. We also represent the starting 
point and the stride through the iteration space in cases 
where the iterator skips over some locations. The iteration 
space, starting point, stride and axis ordering all contribute 
to the creation of a prefetching cache that is tuned to the 
iteration.

5 Iteration Aware Prefetching
As noted in section 2, much of the literature in caching 

and prefetching concerns when to load new blocks from 
disk, and choosing blocks to be discarded. Because we 
have nearly complete information about the access pattern 
from the iterator, these problems are vastly simplified in 
our system. We call our approach Iteration Aware Pre-
fetching.

The standard caching and prefetching view of files as 
one dimensional entities is not adequate for scientific ap-
plications involving multidimensional datasets because it 
misses the neighborhood relationships inherent in the data. 
The problem becomes even more acute as the dimension-
ality of the dataset increases. To address this issue we have 
designed a multidimensional cache that preserves the 
iterator’s spatial data view. The iteration space is concep-
tually partitioned into an n-dimensional array of n-
dimensional cache blocks. Data is read from disk one 
block at a time, and is retained in memory to quickly sat-
isfy user data requests. 

Our iteration aware prefetching approach includes two 
independent components — spatial prefetching and 
threaded prefetching.  Their different roles become clear 
when considering an iterator reading a series of blocks 
from  a datasource. Spatial prefetching reduces the latency 
costs incurred while reading data from a single block. 
Threaded prefetching reduces or eliminates the amount of 
time an application must wait for a complete block to be 
read by overlapping application processing with I/O.

5.1 Spatial Prefetching 
The key contribution of our prefetching strategy is 

based on adjusting the shape of the cache blocks to mini-
mize the number of separate reads made to disk. 

An important characteristic of our approach is that we 
can perform effective prefetching using a single concep-
tual cache block. Although there are sometimes practical 
reasons for breaking a single conceptual cache block into 
2 or more physical blocks, the discussion in this section 
addresses the construction of a single conceptual block 
that is tuned to the user's access pattern.

5.1.1 Examples
Figure 3 shows three potential cache block shapes. The 

numbered sequence indicates a column-by-column itera-
tion over a datasource stored in row-by-row fashion. 

Suppose that the shaded shape in the upper left region 
of the figure were assigned to the cache block. Such an 
assignment would be poorly suited for a single block 
cache since step 4 of the iteration causes the block to be 
discarded, only to be reloaded at step 8. The algorithm 
shown in figure 4 would extend the block shape all the 
way down to the bottom of the space before attempting to 
extend it in the horizontal direction. The cache block 
shape shown is poorly suited to a single block cache be-
cause step 4 of the iteration causes the block to be dis-
carded, only to be reloaded at step 8. 

The middle shaded shape in figure 3 does not have this 
problem, since it extends over the full length of the verti-
cal axis. However, this block cannot reduce the number of 
read operations. Since the rod axis is the horizontal axis, 
filling this cache block would require eight separate reads, 
which is the same number needed with no cache at all. 

The shaded shape on the right is much better, since it 
can be filled with 8 reads of length 3. The striped region 
represents a single rod subset for this block. Depending on 
the characteristics of the platform, this shape may produce 
a useful increase in performance.

5.1.2 Well Formed Cache Blocks
Typically, when a cache needs to load data from disk to 

satisfy a request, it loads a larger set of data in the neigh-
borhood of the original request. Hopefully, the nearby data 
can be used to satisfy future requests without returning to 
the disk. If the pattern of future accesses is already known, 
however, we can choose a cache block shape that guaran-
tees that all the needed contents will be used before being 
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that is both well formed and practical.



discarded. We say such a cache block is well formed with 
respect to the iteration. A more formal definition follows:

Definition D1: 
We denote a rectilinear iteration I over a rectilinear 

iteration space D using an axis ordering A as I(A,D). Con-
sider a rectilinear region R of shape B that is a subset of D. 
We say  the shape B is well formed  with respect  to I(A,D) if 
for any region R of shape B  in  D, once I leaves R, it will 
not revisit  R.  
If we can construct a cache containing blocks that are 

well formed with respect to a given iterator, we can be 
assured that no cache block will need to be read more than 
once, and that once the iterator is done with a cache block, 
we can discard it. Therefore, most iterations only require a 
single cache block to be used at one time. Overlapping 
block iterators require at least two cache blocks, as does 
threaded prefetching.

Algorithm A1 generates a well formed cache block 
shape for a datum iterator that visits single elements in the 
index space. It must be given the iterator ordering, the 
space over which the iterator travels, and the amount of 
memory that is available for constructing a cache block. 

The algorithm works by marching through the itera-
tor’s axis ordering from innermost to outermost axis, 
setting the corresponding dimension of the cache block 
shape to equal the extent of the iteration region along that 
axis. Below is a proof that algorithm A1 produces a well 
formed cache block shape for a datum iterator.

Proof P1:
Claim:  Algorithm A1 produces a well formed shape B for 
the given iterator, iteration space, and available memory.

Base Case: An n-dimensional shape with a single ele-
ment, B0 =  {1, 1, 1  … 1} is well-formed with respect to an 
iterator I(A, D) using any axis ordering A.

Assumption: Algorithm A1 produces a shape at step k, 
Bk, that  is well  formed with respect to A.

Induction step: At step k+1, we know that block Bk ex-
tends across the entire extent of the iteration space for the 
k least  significant axes and that it is well-formed. Algo-
rithm A1 then extends the block along axis k+1 to  either 
the entire extent of the iteration space in that axis or as 
much as will fit in the available memory. In both cases the 
shape is well  formed since the iteration will not  return to 
that shape after leaving it. If the algorithm cannot  add the 
entire extent  of the iteration space in that axis, it termi-
nates, leaving a well formed block.
 
The algorithm and proof can be easily modified to ac-

count for block iterators rather than datum iterators. Since 
block iterators represent a sequence of block accesses, we 
can set the initial dimensions of the cache block shape to 
match a single iterator block. The algorithm then proceeds 
as before. The proof still holds for this case if we consider 
an element to be a block instead of a single position in the 
index space. The block version of the algorithm can also 
be used to handle the case where an iterator has gaps or 
overlap between visited elements. 

5.1.3 Practicality
Whether the shape of a cache block is well formed is 

related only to a particular iteration. It is possible that a 
well formed cache block will not enhance performance 
with a certain dataset because of the way the data lies on 
disk. In order to guard against this possibility, we must 
check to see if a cache block shape is practical with re-
spect to the storage model. We currently only consider the 
rod storage model, and our definition of practicality con-
cerns the extent of the cache block shape along the rod 
axis.

Definition D2:
A cache block shape is practical  with respect  to a rod 
storage model if it has extent greater than r  elements along 
the  rod axis, where the value of r is determined by cache 
overhead and the performance characteristics of the I/O 
subsystem, and must be greater than 1.

Algorithm A1: 
Input:  
 Iterator Ordering An = {a0, a1, a2,… an-1}, 
 Iteration space dimensions Sn = {s0, s1, s2,…sn-1}, 
 available memory M   

Output: 
 A set  of cache block dimensions B = {b0, b1, b2,…bn-1} that 
represent a cache block shape that is well formed with 
respect to the iterator ordering.

Note:
M(B) indicates the bytes occupied by a cache block of 
shape B  

begin
  B  = {1, 1, 1, …1}

  for i =  n-1  downto  to 0  // from innermost to outermost

     axis =  ai        // for the next innermost axis…
     baxis =  saxis  // extend B to end of iteration space

     if (M(B) > M) then  // is  memory exceeded?
       baxis = 1                  // then return B to previous shape
       baxis = M / M(B)     //  extend B as far as memory allows

       done
     end 
  end
end

Figure 4. Algorithm A1 produces a cache block 
shape that is well formed with respect to a 

given iteration.



This definition is motivated by the fact that in order to 
get any gain in performance, we must reduce the number 
of reads made to disk. It follows that we must therefore 
make each read longer than would be performed without 
the cache. The extent of the cache block shape along the 
rod axis determines the length of these reads, so this value 
must be sufficiently long to provide a performance gain, 
even in the face of cache overhead.

5.2 File Formats
When the rod storage model is used on top of the na-

tive file format, the rods consist of a series of datums 
stored sequentially on disk. We refer to this file format as 
“native” because it requires no preprocessing — the file is 
handled “as is”. In this situation, using a well formed 
cache block also guarantees that no data is read from disk 
more than once. This is because the cache block is defined 
in terms of the same units (datums) as the file format. 

The rod storage model can also be used on top of 
chunked files. In this case, the rods consist of a series of 
contiguous chunks that can be loaded with a single read 
operation. Here, the file format is defined in terms of units 
different from what was used to define the cache block. 
Because of this, data may be read more than once, even 
with well formed cache block shapes. Currently, we solve 
this problem by ensuring that for each dimension a cache 
block will either extend through the entire iteration space, 
or have length equal to one chunk. This ensures that the 
cache block is well formed with respect to the n-
dimensional chunked space.

5.3 Threaded Prefetching
Threaded prefetching uses a separate I/O thread to 

fetch the next cache block while the current one is being 
processed.  Unlike other systems using I/O threads, we 
don’t have to guess which block should be read next, be-
cause that information is contained in the iterator.  Cur-
rently, we have only implemented and tested threaded 
prefetching for a single disk, so we can achieve at most 
the doubling of performance that occurs when the I/O time 
perfectly matches the computation time for each block. 

Our current approach is very effective in hiding the 
cost of loading a block of data from disk, but even greater 
performance improvements should be possible if multiple 
disks are available. 

When the rate at which an application consumes data is 
less than or equal to the rate at which data can be read 
from disk, threaded prefetching can yield performance 
similar to the in-core case.  The combination of threaded 
prefetching (even with only one I/O stream) and spatial 
prefetching can be particularly effective in an interactive 
application. Figure 5 shows an image created with the 

Slicer application described in [Rhodes05]. Slicer uses a 
combination of threaded and spatial prefetching to view 
progressive slices of a user defined subset of the 39GB 
Visible Woman dataset. By matching the frame rate to the 
capabilities of the I/O subsystem, threaded prefetching 
allows for smooth animation. 

6 Example Code
Figure 6 shows a small example of a datum iteration 

using the Granite system. We first create the datasource 
from an xml file that describes such properties as dimen-

Figure 5. A view of the 39GB Visible Woman 
Dataset produced with Slicer, an interactive 

slice based volume visualizer.

// Create datasource
Datasource ds = Datasource.createDS(“8gig.xml”);

// Create ordering for iterator
AxisOrdering 
 iterOrdering= new AxisOrdering(new int[]{0, 1, 2});

// Create an iterator that traverses the entire datasource
ISIterator 
    iter=new ISIterator(ds.getBounds(), iterOrdering);

// Create a spatial prefetching cache for the 
// given datasource and iterator
CacheDataSource 
    cds = CacheMaker.createCDS(ds, iter, freeMem);

// Create a datum to receive data values.
Datum d = new Datum(ds.getNumAttributes());

// Traverse the entire datasource index space,
// accessing the data through the cache.
for( iter.init(); iter.valid(); iter.next() )
{
    cds.datum(d,iter); // Process datum
}

Figure 6. Example code for a datum iteration 
over a cache.



sionality, size along each axis, and the number of attrib-
utes at each location in the index space. Next, we define 
an axis ordering and iterator that will traverse the data-
source. We are now able to create a cache that is tuned to 
the iteration we wish to use. Finally, we create a datum 
object for retrieving data values and perform the iteration.

This code is very flexible, and requires very minimal 
changes in order to work with different datasources and 
iterator orderings. To make the code work on another file 
of entirely different size and shape, we only need to 
change the name of the xml file given in the first line of 
code. The iteration order is just as easily changed, and an 
appropriate cache will be created without further thought 
from the programmer. 

This flexibility is especially attractive in situations 
where a user wants to process a large file using several  
different traversals. With spatial prefetching, it is a simple 
matter to create caches that are tuned to each iteration. 
With preprocessing methods, some compromise must be 
made when deciding the chunked format, unless the user 
is willing to make a separate file for each iteration.

7 Results
We have run our tests on a variety of machines and 

found that machines with fast I/O show smaller perform-
ance improvement simply because the I/O is a smaller 
portion of the total execution time. 

We present results from the machine with the fastest I/
O available to us. This is a single processor Pentium 4 
machine with a 2.4Ghz CPU and 2GB of RAM running 
the Linux operating system. The disk on this machine is a 
fast 15,000 RPM SCSI disk with a 3.6ms average read 
seek time. Though we show here very substantial gains in 
performance, we saw even greater gains on other plat-
forms, since a fast disk actually minimizes the benefits of 
spatial prefetching.

The Linux file system cache loads and stores 4k blocks 
of data from disk whenever a file is accessed. Since the 

file system cache is persistent across task execution, it is 
possible for a task to request an I/O block for the first 
time, but still get a cache hit if another task had previously 
read that block. Although this is generally a good thing, it 
is problematic for our testing environment. We therefore 
ran all tests with a cold (i.e., empty) file system cache. In 
addition to guaranteeing a consistent environment by al-
ways starting with an empty cache, this approach more 
realistically portrays the behavior that a researcher might 
expect when dealing with very large datasets.

In the following sections, we present results for both 
datum and block iteration over the entirety of a three di-
mensional 8GB dataset. ([Rhodes05] examines subset 
iteration in an interactive context.)  On our test machine, 
running the unix cp command with this dataset takes 
approximately 400 seconds. The dataset has dimensions 
1024x1024x2048, where each datum is a single floating 
point value. Tests were run on both native and chunked 
file formats. In all cases, the files had a storage ordering of 
{0,1,2}.

Table 1 shows our results for three different iterator 
orderings over both native and chunked file formats. Both 
datum and block access were tested. We have performed 
extensive testing with a wide range of machine character-
istics, file sizes, and cache sizes. For clarity and simplicity, 
we present results here for a single 8GB data set on one 
machine configuration and we concentrate on a cache size 
of 512MB. Considering the current affordability of mem-
ory and the recent introduction of commodity 64 bit ma-
chines, we feel 512MB is a reasonable memory cost for 
working with very large data sets. However we still see 
significant performance improvements for smaller cache 
sizes.

7.1 Datum Iteration over Native Files
 Our datum iteration tests ran code very similar to the 

example in section 6. Columns a through d of table 1 
show the execution times for traversals using the file sys-

Datum Iteration over native file Datum Iteration over chunked 
file

643 Block Iteration over 
native file

643 Block Iteration over 
chunked file

a b c d e f g h i j k l m

Ordering
File 

System 
Cache

128MB
SP 

Cache

512MB
SP 

Cache

Max
Speed

up

512MB 
LRU 
Cache 

512MB 
SP 

Cache

Speed 
up

File 
System 
Cache

512MB 
SP 

Cache 

Speed
up

512MB 
LRU 
Cache

512MB 
SP 

Cache

Speed 
up

{0, 1, 2} 9963 868 961 11.5 4628 3634 1.27 705 304 2.3 3288 342 9.6

{1, 2, 0} 16786 1311 1294 13.0 9175 3880 2.4 664 279 2.4 3081 342 9.0

{2, 1, 0} 360000 
(est)

11349 3719 96.8 
(est)

9607 4485 2.14 7847 2777 2.8 3736 966 3.7

Table 1. Results for a complete traversal of an 8GB file of 1024x1024x2048 floats.  Native files are in 
plane-row-column order, while chunked files consist of 4K chunks.  All execution times are in seconds.



tem cache and spatial prefetching (SP) caches of 128MB 
and 512MB. In all three iterator orderings, the SP cache 
provides a very substantial improvement in performance. 
Notice that the {0,1,2} ordering shows somewhat less 
improvement than the other orderings. This is because the 
file system is prefetching blocks in the same order that the 
iterator will request them. File system prefetching is much 
less effective for the other orderings, so our spatial pre-
fetching offers more improvement in these cases. In fact, 
the file system cache test for {2,1,0} ordering did not 
complete within twelve hours. We determined that the test 
was making forward progress in a linear fashion, but very 
slowly, due to the awkward nature of this access pattern. A 
very simple C program that mimicked the access pattern 
for this test but performed no type conversion or copying 
of data took over 37 hours to run, so we are confident that  
disk access is causing the excessive runtime. Using a sim-
ple extrapolation, we estimated the completion time for 
the Java implementation using the file system cache to be 
about 100 hours, and we report this estimated value in the 
table. 

The test with a 512MB Spatial Prefetching cache does 
considerably better in the {2,1,0} direction than the 
128MB cache. For this ordering, the rods span the shortest 
dimension of the cache block, so increasing the available 
memory increases the length of the rods, meaning more 
data is read with each read operation.

Clearly, it would be beneficial to develop an automatic 
means of choosing how much memory to allocate to a 
cache based on storage ordering, iterator ordering, system 
characteristics, and total memory available. We plan to 
extend  the notion of practicality to support this function-
ality in future work.

7.2 Datum Iteration over Chunked Files
Chunking is a common method for speeding access to 

spatial data, so it is important to compare spatial pre-
fetching alone with the performance of chunked file ac-
cess. The chunked format typically divides the file into 
chunks equal to the file system page size. The dimensions 
of the chunks are chosen to best suit a particular access 
pattern [Sarawagi94].

An important assumption of our work is that the user 
access pattern is not known until runtime. A generic  
chunking method chooses chunk dimensions that are equal 
or nearly equal in all directions. This method provides a 
substantial performance improvement for most access 
patterns without being tailored specifically to a particular 
one. We therefore chose to compare spatial prefetching 
with this form of chunking.  

Chunking generally requires some kind of cache in 
order to be effective with datum access, so we imple-

mented a simple LRU cache that holds a collection of 
chunks. We compared the performance of our spatial pre-
fetching cache against the performance of this LRU cache. 
In all of these tests, the memory used for both caches was 
always 512MB, and the file was in chunked format.

Columns e through g show the execution times for both 
caches. Comparing LRU performance with the file system 
datum iteration in column a, it is clear that chunking is a 
very effective technique. However, we get even better 
performance by applying spatial prefetching on top of 
chunked files, especially in the last two orderings listed in 
the table. On machines with larger disk latency, speedup is 
substantial even in the first case. 

Of even greater interest is the fact that the performance 
of spatial prefetching over a native file presented in col-
umn c is markedly superior to the performance of the LRU 
cache over a chunked file shown in column e. For each 
ordering, spatial prefetching produces speedups of 4.8, 
7.1, and 2.6 compared with chunking. That such perform-
ance can be achieved without preprocessing or duplicating 
the file makes spatial prefetching a particularly attractive 
technique.

7.3 Block Iteration over Native Files
Block iteration involves loading successive n-

dimensional subsets of the data from disk. The rod storage 
model by itself facilitates this form of access since it reads 
rods according to the storage ordering, which improves 
locality. However, spatial prefetching is still able to pro-
vide a useful performance increase by reading data for 
many blocks at one time. Columns h through j show the 
execution times for a 643 block traversal over the same 
dataset used in the previous section. 

7.4 Block Iteration over Chunked Files
Our fourth group of tests compared the performance of 

our spatial prefetching cache over a chunked file with the 
LRU cache on the same file. Columns k through m show 
that spatial prefetching over chunked files provides much 
more meaningful speedup for block access than for datum 
access. Since datum access involves many more cache 
lookup operations, it is likely that in this case, cache over-
head erodes gains in I/O efficiency.

8 Conclusions and Future Work
Mismatch between iteration and storage patterns is a 

well-known problem addressed by many systems in an ad 
hoc manner. Generally, these approaches are based on a 
one-dimensional view of the data and do not provide a 
convenient application level interface to the prefetching 
facility. We have developed a comprehensive environment 



for seamless integration of the data access pattern and the 
prefetching mechanism. The future multidimensional 
access pattern is specified implicitly during construction 
of an iterator. The iterator, in turn, is used to determine an 
effective prefetching strategy tuned for the particular 
combination of file storage order and iteration pattern.

Spatial prefetching can provide a very meaningful 
performance increase when large data files are accessed in 
a rectilinear manner. We have shown that performance is 
superior to generic chunked file access, yet does not re-
quire a preprocessing step. Since spatial prefetching can 
be used “on the fly”, it is particularly well suited to situa-
tions where the pattern of access is not known until run-
time, or when several different patterns will be used on the 
same file. 

The Granite system lets the user take advantage of the 
efficiencies of spatial prefetching and other iterator aware 
prefetching methods while abstracting away the details of 
storage organization.

For future work, we plan to expand our use of iterators 
to include traversal through a collection of data values of 
interest to the experimenter. We will also expand our sup-
port of the current iterators to include a way to automati-
cally determine an amount of cache memory that provides 
a good tradeoff between performance and memory use. 
Lastly, we are exploring the application of our methods to 
a distributed context. Since network latency can be even 
more severe than disk latency, we expect promising results 
in that environment.
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