
Iteration Aware Prefetching for
Large Multidimensional Scientific Datasets

Philip J. Rhodes
Dept. of Computer Science
University of Mississippi
rhodes@cs.olemiss.edu

Xuan Tang
EMC Corporation

tang_xuan@emc.com

R. Daniel Bergeron
Dept. of Computer Science

University of New Hampshire
rdb@cs.unh.edu

Ted M. Sparr
Dept. of Computer Science

University of New Hampshire
tms@cs.unh.edu

Abstract
Most caching and prefetching research does not take

advantage of prior knowledge of access patterns, or does
not adequately address the storage issues associated with
multidimensional scientific data. Armed with an access
pattern specified at run time as an iteration over a multi-
dimensional array stored as a disk file, we use prefetching
to greatly reduce the number of disk accesses and mitigate
the cost of read latency. We call this iteration aware pre-
fetching.

We assume the pattern of access is not known until
runtime, in contrast to chunking methods that preprocess
a file for a particular access pattern. Our approach results
in dramatic performance improvements over file system
caching. We also significantly outperform chunking with-
out having to reorganize the data, and can do even better
by applying our approach on top of a chunked file.

1 Introduction1
Scientists often work with data represented in an n-

dimensional space in which data values are associated
with a location in the space [Cigno97, Hibbard95]. For
example, satellite data is typically considered to be or-
ganized in a two dimensional space, while medical CT and
MRI data usually exists in a three dimensional space. We
consider these kinds of scientific data to be multidimen-
sional. Multidimensional data presents special challenges
when designing efficient access methods because elements
that are nearby in the data space may not be nearby in the
underlying data file. The caching and prefetching schemes
present in most operating systems do not take into account
the natural spatial relationships in the data, so they tend to
cache, discard, or prefetch the wrong information.

Over the last fifteen years there has been a thousand-
fold increase in processor speed, along with even larger
gains in memory and disk capacity. During the same pe-
riod, the size of scientific data sets increased even into the
terabyte range. However, the average seek time of hard
disk drives has improved only modestly over the same
period [Coughlin, Chang01]. The work described here is
motivated by the need to minimize the now comparatively

high latency or stalling costs associated with modern disk
drive media. Using our system, a researcher can take ad-
vantage of improved I/O performance without spending
time on the minutiae of efficient file access.

To implement this abstraction while still maintaining
efficiency, the researcher must be able to define the appli-
cation’s data access pattern. We are developing a toolkit of
iterators that succinctly describe the access pattern and
also perform the iteration through the data space. Using
knowledge of the access pattern, we can create a cache
and a prefetching strategy that usually provides significant
speedup for the application.

A unique aspect of our approach is that we create and
prefetch cache blocks with n-dimensional shape, as op-
posed to the 1 dimensional pages of file system caches and
similar methods. N-dimensional cache blocks can be given
a shape that is tuned to a particular iteration and to the
storage organization of the data. We choose a shape that
minimizes the total number of disk accesses while reading
data that is sure to be visited in the near future by the it-
eration. We call this method spatial prefetching, an exam-
ple of iteration aware prefetching.

Unlike other methods for achieving efficient I/O per-
formance [Sarawagi94, More00], our approach does not
require any reorganization of the data. That is, we work
with the original data file, rather than making a copy with
a different storage organization.

The work described here is done in the context of the
datasource component of the Granite Scientific Database
System, which is in turn an implementation of our multi-
source multiresolution data model for scientific data
[Rhodes01]. The datasource layer handles multidimen-
sional data in which sample points are arranged in a regu-
lar and rectilinear fashion throughout the domain. As with
many other scientific databases, the design of the Granite
system assumes that update operations are infrequent or
entirely absent, so the work described here is aimed to-
ward a read-only data environment.

After a brief overview of related work, the next several
sections describe the functionality and implementation of
the datasource, iterator and cache classes, all of which
contribute to the support of transparent and efficient out-

1 This work is supported by the National Science Foundation under grants IIS-0082577 and IIS-9871859

of-core access. We then present performance test results
that demonstrate the significant advantages of this ap-
proach. Finally, we end with future work and conclusions.

2 Related Research
Providing efficient access to huge scientific datasets is

a challenging problem, and has attracted a lot of attention
from both the operating system and scientific data man-
agement communities. Work has focused on either pro-
viding comprehensive scientific data management sys-
tems, or optimizing file systems using techniques like
prefetching, caching and parallel I/O.

2.1 File Access
 Reorganizing datasets on disk to speed access has

been explored by a number of researchers. Sarawagi and
Stonebraker [Sarawagi94] describe chunking, which uses
the expected access pattern to group spatially adjacent
data elements into n-dimensional chunks which are then
used as a basic I/O unit, making access to multidimen-
sional data an order of magnitude faster. They also arrange
the storage order of these chunks to minimize seek dis-
tance during access. Following this work, many other
reorganization methods have been developed. More and
Choudary [More00] reorganize their data according to the
expected query type, and the likelihood that data values
will be accessed together. The Active Data Repository
(ADR) uses chunking to reduce overall access costs and to
achieve balanced parallel I/O [CChang00, CChangADR].

2.2 Prefetching and Caching
Software prefetching has been used by many research-

ers to hide or minimize the cost of I/O stalling. In the file
systems arena, approaches to this problem can be distin-
guished by whether or not prefetching is guided by ex-
plicit information about the access pattern. Albers et al.
[Albers98] describe an algorithm that produces an optimal
schedule for prefetching and discarding cache blocks
when the entire access pattern is given in advance. Other
researchers have explored the case where the access pat-
tern is disclosed less completely in the form of hints. Pat-
terson et al. [Patterson95] developed a framework for
informed caching and prefetching based on a cost-benefit
model. This model has been extended to account for stor-
age devices with very different performance characteris-
tics [Forney02]. Cao et al. demonstrate success by letting
applications have control of data cache replacement strat-
egy in their share of cache blocks [Cao96]. Brown et al.
[Brown01] describe a hint based method that effectively
accelerates paged virtual memory performance using an
operating system that takes advantage of compiler gener-

ated hints and multiple disks. Kotz [Kotz97] describes
disk directed I/O, a method for aggregating and prefetch-
ing data requests in a parallel environment. Mowry [Mow-
ry94] presents software controlled prefetching for hiding
or reducing the latency experienced by a processor ac-
cessing memory.

When no explicit information about access pattern is
available, the history of prior accesses can be used to pre-
dict future accesses. Amer et al. group files together based
on historical file access patterns [Amer02]. Other re-
searchers have used probability trees or graphs to repre-
sent the likelihood of future block accesses given past and
current block accesses [Vellanki99, Highley03, Griffio-
en94]. Madhyastha et al. use a hidden Markov model to
automatically predict file access patterns over time; the file
system adaptively selects appropriate caching and pre-
fetching policies according to the detected pattern [Madh-
yastha96, Madhyastha97].

At the application level, Chang [Chang01] adds a sepa-
rate thread to the user program that performs prefetching
by mimicking the I/O behavior of the main thread and
preloading data. Doshi [Doshi03] describes a system that
adaptively selects a prefetching strategy based on user
behavior. The VisTools [Nadeau] system is most similar to
our approach. It provides an application level data pre-
fetching and caching service for huge multidimensional
datasets, using the Paged-Array schema. It reads format-
ted pages of elements from the underlying files when the
first element in the page is requested. The formatted pages
are then stored in a page cache for fast future re-access.
When the cache size limit is reached, the paged-arrays are
deleted or written to a swap file. Like our own work,
paged-arrays also support intelligent prefetching guided
by the iterators that have an n-dimensional view of the
dataset. However, the one dimensional nature of pages
fails to take into account the proximity of elements in n-
dimensional space. By using pages as its unit of cache
storage, VisTools and other page based methods may
make poor decisions about what data to retain or discard.
The following section examines this issue in greater detail.

 2.3 Advantages of the Granite Approach
Reorganizing data into chunks is a very effective and

general technique, but the required reorganization (and
implied duplication) of the dataset can be inconvenient,
especially when working with large datasets. Also, per-
formance may suffer if the data is accessed in a different
way than was expected when the reorganization was per-
formed. The approach adopted by the Granite system
works with the original data, and requires no such reor-
ganization.

Systems that access the data in pages suffer from not
taking into account the multidimensional nature of the
data. In particular, elements that are nearby in n-
dimensional space may be far apart in the one dimensional
file space. Since paging is essentially a one dimensional
method, it may be inefficient for an n-dimensional access
pattern.

Figure 1 shows a conceptual view of a portion of the
39GB Visible Woman dataset, provided by the National
Institutes of Health. This dataset consists of
5186x2048x1216 elements of 3 bytes apiece [Rhodes05].
Each block in the figure represents a single element. The
number in parentheses at the bottom of each block repre-
sents the byte offset of that element from the beginning of
the file and the number at the top of each block represents
the order in which that block will be visited by an iterator.
The light gray blocks show the initial path of the iteration,
beginning with the white corner element. When this initial
element is accessed, the file system will load a page of
data, typically 4K in size, indicated by the series of me-
dium gray elements. Unfortunately, the next element to be
visited (the light gray block at offset 7471104) is not con-
tained in this page, so the disk must be read again. In fact,
separate reads must be made for each element in the light
gray series, since they are all separated by over 7MB in
the one dimensional file. When, at step 5186, the iteration
returns from the far end of the data set to begin a new
“row”, a new page will still have to be read, since this
element is not contained in any of the pages that have
been read so far. In fact, the next medium gray element
would be used at step 2490368 of the iteration, but this
first page will certainly have been discarded at this point,
unless the file system is able to retain 10GB of disk pages
in memory. This is clearly beyond the capacity of today’s
commonly available systems.

File systems also commonly prefetch pages following
an explicitly accessed page in the hope that the prefetched
pages will be accessed next, and reads to disk will be
reduced. This helps slightly in this example, because ele-
ments that are vertically adjacent are only 6K apart. So, if
the file system prefetches at least one additional page for
each read to disk, the elements immediately beneath the
light gray elements will be read from pages loaded during
the traversal of the light gray elements. Although this is an
improvement, it still means that only two elements will be
read out of each 4K page before it is discarded, only to be
reread later in the iteration. For datasets with even larger
dimensions, the distance between vertically adjacent ele-
ments may be too large for pages to ever be used more
than once before being discarded. In this case, prefetching
just makes the situation worse by increasing the number of
inappropriate pages loaded into memory. Because the file
system has no information about the dimensionality of the
data or the path of the iteration, it is grossly unsuited for
the job.

We address these issues by creating cache blocks that
are n-dimensional, and shaped according to the iteration.
Elements that are contiguous in the file are loaded in a
single read() call. This method has several beneficial ef-
fects. First, it uses more data from each file system page
that is read, thereby reducing the number of redundant
reads made to disk. Second, it reduces the number of
read() calls made to the operating system. Third, since the
cache block can be filled in any order, we choose to fill it
in a way that most closely matches the ordering of the data
in the file. This allows us to sometimes take advantage of
the file system prefetching that is otherwise a liability.

We utilize nearly complete information about the ac-
cess pattern given by our iterators. We don’t have to guess
which data to prefetch, and we don’t discard needed data
before it is used. Because of this, the various caches we
have developed require at most two cache blocks to be
maintained in memory at a time, which can extend the
reach of an application to much larger datasets than would
otherwise be possible.

Figure 1. The elements fetched by the file system
(medium gray, on the right) are not the elements
needed by the iteration (light gray, on the left).

The top number in each block indicates iteration
order, while the numbers in parentheses indicate

the offset in the file.

Rod
Storage
Model

Physical
Data

Source Other

Other Other

Chunked

Native

Spatial
Prefetching/

Caching
User

Access
Pattern

Iteration

Storage Models File FormatsDatasource Data ModelIteratorUser

Figure 2. Spatial prefetching and the Datasource
data model serves as a bridge between the user
access pattern expressed as an iteration, and

the data as it lies on disk.

3 The Multidimensional Data Model
Figure 2 is a conceptual diagram of the pipeline relat-

ing a user access pattern to the file. The datasource is the
representation seen by a Granite user, and uses a storage
model to help translate the n-dimensional data space to the
one dimensional file space. The storage model may be
able to work with more than one file format. For example,
the rod storage model discussed later in this section repre-
sents both chunked data files and files that have been left
in their native plane-row-column order.

3.1 Datasources
We model the data to be processed as a datasource,

which is conceptually an n-dimensional array containing a
set of sample points. We call the space defined by the
array indices an index space. Each location in the index
space has a collection of associated data values, which we
call a datum. Although our datasource model allows data-
sources to be built on top of other datasources or to be
associated with a network stream, we limit our discussion
in this paper to datasources that are associated directly
with a file on disk.

Datasources must handle two basic kinds of queries. A
datum query specifies a single location in the index space,
and is satisfied by the return of a single datum. A subblock
query specifies an n-dimensional rectangular region of the
index space, and is satisfied by the return of a data block,
which is conceptually an array of datums, with a dimen-
sionality matching the datasource.

3.2 The Rod Storage Model
While the file is a one dimensional entity, a datasource

has an index space that is n-dimensional. The datasource
is responsible for satisfying queries expressed in its index
space by reading data from the file. It must therefore map
its index space to file offsets. It does this with the help of
an axis ordering, which is simply a ranking of axes from
outermost to innermost. “Innermost” and “outermost”
suggest position in a set of nested for loops used to access
the file in its storage order on disk. The innermost axis
changes most frequently and is called the rod axis when
referring to the storage ordering of a datasource. Each
axis is labeled with an integer that identifies the position
of coordinates of that axis in a tuple used to specify loca-
tions in the index space. Consequently, an axis ordering is
just a list of integers that defines an ordering of axis coor-
dinates from least to most frequently varying. For exam-
ple, an axis ordering of {0,2,1} indicates that coordinates
of axis 0 change least frequently, followed by axis 2, and
then by axis 1, which changes most frequently.

The number of separate read requests made to the stor-
age device strongly impacts I/O performance, so it is im-
portant to minimize the number of reads when satisfying a
subblock query. Toward this end, the rod storage model
views the datasource as being conceptually composed of
rods. A rod is a one dimensional sequence of elements that
are contiguous in both the n-dimensional index space and
the 1-dimensional file space. Consequently, rods are al-
ways aligned with the rod axis. Because it is contiguous in
the file space, a rod can be accessed in one read. Note that
rods are composed of datums when the native file format
is used, or whole chunks of datums with the chunked file
format. When a subblock query is processed, the requested
region of index space is decomposed into a collection of
rod segments contained in the region. We then retrieve the
subblock data from disk in rod-by-rod fashion where each
rod segment corresponds to a separate read. To maximize
locality, we read this set of rods according to the storage
ordering. In the case where a set of rods is itself contigu-
ous (or nearly so) in the file, we issue only one read and
retrieve the entire set of rods in one disk operation.

Like the order line model described in [Wu03], the rod
storage model does not take into account the physical
layout of the file on the disk, but only the logical layout
presented by the file system. However we have found that
this approximation serves as an effective foundation for
our iteration aware prefetching, which shows significant
performance improvements over other techniques. In ad-
dition, applying the rod model to chunked data and other
formats extends the reach of iteration aware prefetching to
a wider range of data representations.

4 Iterators
Since our system aims to improve I/O performance for

particular access patterns, we use iterators to represent
access patterns as well as to perform the actual iteration
through the datasource index space. Iterators have a value
that changes with each call to the iterator’s next() method.
This value might denote a single location in the index
space, or perhaps a rectilinear region. In either case, the
iterator value can be used directly in datum and subblock
queries.

The pattern of iteration is determined when the iterator
is constructed. An axis ordering is used to help represent
the behavior of iterators that proceed through the index
space in rectilinear fashion. In this context, the innermost
axis of the iteration is called the run axis. While the data-
source is conceptually composed of rods, the space being
traversed by a rectilinear iterator is conceptually com-
posed of runs.

The iteration space is the space traversed by the itera-
tor. It may be the entire index space of a datasource, or

some subset of that space. We also represent the starting
point and the stride through the iteration space in cases
where the iterator skips over some locations. The iteration
space, starting point, stride and axis ordering all contribute
to the creation of a prefetching cache that is tuned to the
iteration.

5 Iteration Aware Prefetching
As noted in section 2, much of the literature in caching

and prefetching concerns when to load new blocks from
disk, and choosing blocks to be discarded. Because we
have nearly complete information about the access pattern
from the iterator, these problems are vastly simplified in
our system. We call our approach Iteration Aware Pre-
fetching.

The standard caching and prefetching view of files as
one dimensional entities is not adequate for scientific ap-
plications involving multidimensional datasets because it
misses the neighborhood relationships inherent in the data.
The problem becomes even more acute as the dimension-
ality of the dataset increases. To address this issue we have
designed a multidimensional cache that preserves the
iterator’s spatial data view. The iteration space is concep-
tually partitioned into an n-dimensional array of n-
dimensional cache blocks. Data is read from disk one
block at a time, and is retained in memory to quickly sat-
isfy user data requests.

Our iteration aware prefetching approach includes two
independent components — spatial prefetching and
threaded prefetching. Their different roles become clear
when considering an iterator reading a series of blocks
from a datasource. Spatial prefetching reduces the latency
costs incurred while reading data from a single block.
Threaded prefetching reduces or eliminates the amount of
time an application must wait for a complete block to be
read by overlapping application processing with I/O.

5.1 Spatial Prefetching
The key contribution of our prefetching strategy is

based on adjusting the shape of the cache blocks to mini-
mize the number of separate reads made to disk.

An important characteristic of our approach is that we
can perform effective prefetching using a single concep-
tual cache block. Although there are sometimes practical
reasons for breaking a single conceptual cache block into
2 or more physical blocks, the discussion in this section
addresses the construction of a single conceptual block
that is tuned to the user's access pattern.

5.1.1 Examples
Figure 3 shows three potential cache block shapes. The

numbered sequence indicates a column-by-column itera-
tion over a datasource stored in row-by-row fashion.

Suppose that the shaded shape in the upper left region
of the figure were assigned to the cache block. Such an
assignment would be poorly suited for a single block
cache since step 4 of the iteration causes the block to be
discarded, only to be reloaded at step 8. The algorithm
shown in figure 4 would extend the block shape all the
way down to the bottom of the space before attempting to
extend it in the horizontal direction. The cache block
shape shown is poorly suited to a single block cache be-
cause step 4 of the iteration causes the block to be dis-
carded, only to be reloaded at step 8.

The middle shaded shape in figure 3 does not have this
problem, since it extends over the full length of the verti-
cal axis. However, this block cannot reduce the number of
read operations. Since the rod axis is the horizontal axis,
filling this cache block would require eight separate reads,
which is the same number needed with no cache at all.

The shaded shape on the right is much better, since it
can be filled with 8 reads of length 3. The striped region
represents a single rod subset for this block. Depending on
the characteristics of the platform, this shape may produce
a useful increase in performance.

5.1.2 Well Formed Cache Blocks
Typically, when a cache needs to load data from disk to

satisfy a request, it loads a larger set of data in the neigh-
borhood of the original request. Hopefully, the nearby data
can be used to satisfy future requests without returning to
the disk. If the pattern of future accesses is already known,
however, we can choose a cache block shape that guaran-
tees that all the needed contents will be used before being

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Rod Axis

Run
Axis

Figure 3. For a {1,0} iteration over a {0,1} data-
source, the shape on the right is the only one

that is both well formed and practical.

discarded. We say such a cache block is well formed with
respect to the iteration. A more formal definition follows:

Definition D1:
We denote a rectilinear iteration I over a rectilinear

iteration space D using an axis ordering A as I(A,D). Con-
sider a rectilinear region R of shape B that is a subset of D.
We say the shape B is well formed with respect to I(A,D) if
for any region R of shape B in D, once I leaves R, it will
not revisit R.
If we can construct a cache containing blocks that are

well formed with respect to a given iterator, we can be
assured that no cache block will need to be read more than
once, and that once the iterator is done with a cache block,
we can discard it. Therefore, most iterations only require a
single cache block to be used at one time. Overlapping
block iterators require at least two cache blocks, as does
threaded prefetching.

Algorithm A1 generates a well formed cache block
shape for a datum iterator that visits single elements in the
index space. It must be given the iterator ordering, the
space over which the iterator travels, and the amount of
memory that is available for constructing a cache block.

The algorithm works by marching through the itera-
tor’s axis ordering from innermost to outermost axis,
setting the corresponding dimension of the cache block
shape to equal the extent of the iteration region along that
axis. Below is a proof that algorithm A1 produces a well
formed cache block shape for a datum iterator.

Proof P1:
Claim: Algorithm A1 produces a well formed shape B for
the given iterator, iteration space, and available memory.

Base Case: An n-dimensional shape with a single ele-
ment, B0 = {1, 1, 1 … 1} is well-formed with respect to an
iterator I(A, D) using any axis ordering A.

Assumption: Algorithm A1 produces a shape at step k,
Bk, that is well formed with respect to A.

Induction step: At step k+1, we know that block Bk ex-
tends across the entire extent of the iteration space for the
k least significant axes and that it is well-formed. Algo-
rithm A1 then extends the block along axis k+1 to either
the entire extent of the iteration space in that axis or as
much as will fit in the available memory. In both cases the
shape is well formed since the iteration will not return to
that shape after leaving it. If the algorithm cannot add the
entire extent of the iteration space in that axis, it termi-
nates, leaving a well formed block.

The algorithm and proof can be easily modified to ac-

count for block iterators rather than datum iterators. Since
block iterators represent a sequence of block accesses, we
can set the initial dimensions of the cache block shape to
match a single iterator block. The algorithm then proceeds
as before. The proof still holds for this case if we consider
an element to be a block instead of a single position in the
index space. The block version of the algorithm can also
be used to handle the case where an iterator has gaps or
overlap between visited elements.

5.1.3 Practicality
Whether the shape of a cache block is well formed is

related only to a particular iteration. It is possible that a
well formed cache block will not enhance performance
with a certain dataset because of the way the data lies on
disk. In order to guard against this possibility, we must
check to see if a cache block shape is practical with re-
spect to the storage model. We currently only consider the
rod storage model, and our definition of practicality con-
cerns the extent of the cache block shape along the rod
axis.

Definition D2:
A cache block shape is practical with respect to a rod
storage model if it has extent greater than r elements along
the rod axis, where the value of r is determined by cache
overhead and the performance characteristics of the I/O
subsystem, and must be greater than 1.

Algorithm A1:
Input:
 Iterator Ordering An = {a0, a1, a2,… an-1},
 Iteration space dimensions Sn = {s0, s1, s2,…sn-1},
 available memory M

Output:
 A set of cache block dimensions B = {b0, b1, b2,…bn-1} that
represent a cache block shape that is well formed with
respect to the iterator ordering.

Note:
M(B) indicates the bytes occupied by a cache block of
shape B

begin
 B = {1, 1, 1, …1}

 for i = n-1 downto to 0 // from innermost to outermost

 axis = ai // for the next innermost axis…
 baxis = saxis // extend B to end of iteration space

 if (M(B) > M) then // is memory exceeded?
 baxis = 1 // then return B to previous shape
 baxis = M / M(B) // extend B as far as memory allows

 done
 end
 end
end

Figure 4. Algorithm A1 produces a cache block
shape that is well formed with respect to a

given iteration.

This definition is motivated by the fact that in order to
get any gain in performance, we must reduce the number
of reads made to disk. It follows that we must therefore
make each read longer than would be performed without
the cache. The extent of the cache block shape along the
rod axis determines the length of these reads, so this value
must be sufficiently long to provide a performance gain,
even in the face of cache overhead.

5.2 File Formats
When the rod storage model is used on top of the na-

tive file format, the rods consist of a series of datums
stored sequentially on disk. We refer to this file format as
“native” because it requires no preprocessing — the file is
handled “as is”. In this situation, using a well formed
cache block also guarantees that no data is read from disk
more than once. This is because the cache block is defined
in terms of the same units (datums) as the file format.

The rod storage model can also be used on top of
chunked files. In this case, the rods consist of a series of
contiguous chunks that can be loaded with a single read
operation. Here, the file format is defined in terms of units
different from what was used to define the cache block.
Because of this, data may be read more than once, even
with well formed cache block shapes. Currently, we solve
this problem by ensuring that for each dimension a cache
block will either extend through the entire iteration space,
or have length equal to one chunk. This ensures that the
cache block is well formed with respect to the n-
dimensional chunked space.

5.3 Threaded Prefetching
Threaded prefetching uses a separate I/O thread to

fetch the next cache block while the current one is being
processed. Unlike other systems using I/O threads, we
don’t have to guess which block should be read next, be-
cause that information is contained in the iterator. Cur-
rently, we have only implemented and tested threaded
prefetching for a single disk, so we can achieve at most
the doubling of performance that occurs when the I/O time
perfectly matches the computation time for each block.

Our current approach is very effective in hiding the
cost of loading a block of data from disk, but even greater
performance improvements should be possible if multiple
disks are available.

When the rate at which an application consumes data is
less than or equal to the rate at which data can be read
from disk, threaded prefetching can yield performance
similar to the in-core case. The combination of threaded
prefetching (even with only one I/O stream) and spatial
prefetching can be particularly effective in an interactive
application. Figure 5 shows an image created with the

Slicer application described in [Rhodes05]. Slicer uses a
combination of threaded and spatial prefetching to view
progressive slices of a user defined subset of the 39GB
Visible Woman dataset. By matching the frame rate to the
capabilities of the I/O subsystem, threaded prefetching
allows for smooth animation.

6 Example Code
Figure 6 shows a small example of a datum iteration

using the Granite system. We first create the datasource
from an xml file that describes such properties as dimen-

Figure 5. A view of the 39GB Visible Woman
Dataset produced with Slicer, an interactive

slice based volume visualizer.

// Create datasource
Datasource ds = Datasource.createDS(“8gig.xml”);

// Create ordering for iterator
AxisOrdering
 iterOrdering= new AxisOrdering(new int[]{0, 1, 2});

// Create an iterator that traverses the entire datasource
ISIterator
 iter=new ISIterator(ds.getBounds(), iterOrdering);

// Create a spatial prefetching cache for the
// given datasource and iterator
CacheDataSource
 cds = CacheMaker.createCDS(ds, iter, freeMem);

// Create a datum to receive data values.
Datum d = new Datum(ds.getNumAttributes());

// Traverse the entire datasource index space,
// accessing the data through the cache.
for(iter.init(); iter.valid(); iter.next())
{
 cds.datum(d,iter); // Process datum
}

Figure 6. Example code for a datum iteration
over a cache.

sionality, size along each axis, and the number of attrib-
utes at each location in the index space. Next, we define
an axis ordering and iterator that will traverse the data-
source. We are now able to create a cache that is tuned to
the iteration we wish to use. Finally, we create a datum
object for retrieving data values and perform the iteration.

This code is very flexible, and requires very minimal
changes in order to work with different datasources and
iterator orderings. To make the code work on another file
of entirely different size and shape, we only need to
change the name of the xml file given in the first line of
code. The iteration order is just as easily changed, and an
appropriate cache will be created without further thought
from the programmer.

This flexibility is especially attractive in situations
where a user wants to process a large file using several
different traversals. With spatial prefetching, it is a simple
matter to create caches that are tuned to each iteration.
With preprocessing methods, some compromise must be
made when deciding the chunked format, unless the user
is willing to make a separate file for each iteration.

7 Results
We have run our tests on a variety of machines and

found that machines with fast I/O show smaller perform-
ance improvement simply because the I/O is a smaller
portion of the total execution time.

We present results from the machine with the fastest I/
O available to us. This is a single processor Pentium 4
machine with a 2.4Ghz CPU and 2GB of RAM running
the Linux operating system. The disk on this machine is a
fast 15,000 RPM SCSI disk with a 3.6ms average read
seek time. Though we show here very substantial gains in
performance, we saw even greater gains on other plat-
forms, since a fast disk actually minimizes the benefits of
spatial prefetching.

The Linux file system cache loads and stores 4k blocks
of data from disk whenever a file is accessed. Since the

file system cache is persistent across task execution, it is
possible for a task to request an I/O block for the first
time, but still get a cache hit if another task had previously
read that block. Although this is generally a good thing, it
is problematic for our testing environment. We therefore
ran all tests with a cold (i.e., empty) file system cache. In
addition to guaranteeing a consistent environment by al-
ways starting with an empty cache, this approach more
realistically portrays the behavior that a researcher might
expect when dealing with very large datasets.

In the following sections, we present results for both
datum and block iteration over the entirety of a three di-
mensional 8GB dataset. ([Rhodes05] examines subset
iteration in an interactive context.) On our test machine,
running the unix cp command with this dataset takes
approximately 400 seconds. The dataset has dimensions
1024x1024x2048, where each datum is a single floating
point value. Tests were run on both native and chunked
file formats. In all cases, the files had a storage ordering of
{0,1,2}.

Table 1 shows our results for three different iterator
orderings over both native and chunked file formats. Both
datum and block access were tested. We have performed
extensive testing with a wide range of machine character-
istics, file sizes, and cache sizes. For clarity and simplicity,
we present results here for a single 8GB data set on one
machine configuration and we concentrate on a cache size
of 512MB. Considering the current affordability of mem-
ory and the recent introduction of commodity 64 bit ma-
chines, we feel 512MB is a reasonable memory cost for
working with very large data sets. However we still see
significant performance improvements for smaller cache
sizes.

7.1 Datum Iteration over Native Files
 Our datum iteration tests ran code very similar to the

example in section 6. Columns a through d of table 1
show the execution times for traversals using the file sys-

Datum Iteration over native file Datum Iteration over chunked
file

643 Block Iteration over
native file

643 Block Iteration over
chunked file

a b c d e f g h i j k l m

Ordering
File

System
Cache

128MB
SP

Cache

512MB
SP

Cache

Max
Speed

up

512MB
LRU
Cache

512MB
SP

Cache

Speed
up

File
System
Cache

512MB
SP

Cache

Speed
up

512MB
LRU
Cache

512MB
SP

Cache

Speed
up

{0, 1, 2} 9963 868 961 11.5 4628 3634 1.27 705 304 2.3 3288 342 9.6

{1, 2, 0} 16786 1311 1294 13.0 9175 3880 2.4 664 279 2.4 3081 342 9.0

{2, 1, 0} 360000
(est)

11349 3719 96.8
(est)

9607 4485 2.14 7847 2777 2.8 3736 966 3.7

Table 1. Results for a complete traversal of an 8GB file of 1024x1024x2048 floats. Native files are in
plane-row-column order, while chunked files consist of 4K chunks. All execution times are in seconds.

tem cache and spatial prefetching (SP) caches of 128MB
and 512MB. In all three iterator orderings, the SP cache
provides a very substantial improvement in performance.
Notice that the {0,1,2} ordering shows somewhat less
improvement than the other orderings. This is because the
file system is prefetching blocks in the same order that the
iterator will request them. File system prefetching is much
less effective for the other orderings, so our spatial pre-
fetching offers more improvement in these cases. In fact,
the file system cache test for {2,1,0} ordering did not
complete within twelve hours. We determined that the test
was making forward progress in a linear fashion, but very
slowly, due to the awkward nature of this access pattern. A
very simple C program that mimicked the access pattern
for this test but performed no type conversion or copying
of data took over 37 hours to run, so we are confident that
disk access is causing the excessive runtime. Using a sim-
ple extrapolation, we estimated the completion time for
the Java implementation using the file system cache to be
about 100 hours, and we report this estimated value in the
table.

The test with a 512MB Spatial Prefetching cache does
considerably better in the {2,1,0} direction than the
128MB cache. For this ordering, the rods span the shortest
dimension of the cache block, so increasing the available
memory increases the length of the rods, meaning more
data is read with each read operation.

Clearly, it would be beneficial to develop an automatic
means of choosing how much memory to allocate to a
cache based on storage ordering, iterator ordering, system
characteristics, and total memory available. We plan to
extend the notion of practicality to support this function-
ality in future work.

7.2 Datum Iteration over Chunked Files
Chunking is a common method for speeding access to

spatial data, so it is important to compare spatial pre-
fetching alone with the performance of chunked file ac-
cess. The chunked format typically divides the file into
chunks equal to the file system page size. The dimensions
of the chunks are chosen to best suit a particular access
pattern [Sarawagi94].

An important assumption of our work is that the user
access pattern is not known until runtime. A generic
chunking method chooses chunk dimensions that are equal
or nearly equal in all directions. This method provides a
substantial performance improvement for most access
patterns without being tailored specifically to a particular
one. We therefore chose to compare spatial prefetching
with this form of chunking.

Chunking generally requires some kind of cache in
order to be effective with datum access, so we imple-

mented a simple LRU cache that holds a collection of
chunks. We compared the performance of our spatial pre-
fetching cache against the performance of this LRU cache.
In all of these tests, the memory used for both caches was
always 512MB, and the file was in chunked format.

Columns e through g show the execution times for both
caches. Comparing LRU performance with the file system
datum iteration in column a, it is clear that chunking is a
very effective technique. However, we get even better
performance by applying spatial prefetching on top of
chunked files, especially in the last two orderings listed in
the table. On machines with larger disk latency, speedup is
substantial even in the first case.

Of even greater interest is the fact that the performance
of spatial prefetching over a native file presented in col-
umn c is markedly superior to the performance of the LRU
cache over a chunked file shown in column e. For each
ordering, spatial prefetching produces speedups of 4.8,
7.1, and 2.6 compared with chunking. That such perform-
ance can be achieved without preprocessing or duplicating
the file makes spatial prefetching a particularly attractive
technique.

7.3 Block Iteration over Native Files
Block iteration involves loading successive n-

dimensional subsets of the data from disk. The rod storage
model by itself facilitates this form of access since it reads
rods according to the storage ordering, which improves
locality. However, spatial prefetching is still able to pro-
vide a useful performance increase by reading data for
many blocks at one time. Columns h through j show the
execution times for a 643 block traversal over the same
dataset used in the previous section.

7.4 Block Iteration over Chunked Files
Our fourth group of tests compared the performance of

our spatial prefetching cache over a chunked file with the
LRU cache on the same file. Columns k through m show
that spatial prefetching over chunked files provides much
more meaningful speedup for block access than for datum
access. Since datum access involves many more cache
lookup operations, it is likely that in this case, cache over-
head erodes gains in I/O efficiency.

8 Conclusions and Future Work
Mismatch between iteration and storage patterns is a

well-known problem addressed by many systems in an ad
hoc manner. Generally, these approaches are based on a
one-dimensional view of the data and do not provide a
convenient application level interface to the prefetching
facility. We have developed a comprehensive environment

for seamless integration of the data access pattern and the
prefetching mechanism. The future multidimensional
access pattern is specified implicitly during construction
of an iterator. The iterator, in turn, is used to determine an
effective prefetching strategy tuned for the particular
combination of file storage order and iteration pattern.

Spatial prefetching can provide a very meaningful
performance increase when large data files are accessed in
a rectilinear manner. We have shown that performance is
superior to generic chunked file access, yet does not re-
quire a preprocessing step. Since spatial prefetching can
be used “on the fly”, it is particularly well suited to situa-
tions where the pattern of access is not known until run-
time, or when several different patterns will be used on the
same file.

The Granite system lets the user take advantage of the
efficiencies of spatial prefetching and other iterator aware
prefetching methods while abstracting away the details of
storage organization.

For future work, we plan to expand our use of iterators
to include traversal through a collection of data values of
interest to the experimenter. We will also expand our sup-
port of the current iterators to include a way to automati-
cally determine an amount of cache memory that provides
a good tradeoff between performance and memory use.
Lastly, we are exploring the application of our methods to
a distributed context. Since network latency can be even
more severe than disk latency, we expect promising results
in that environment.

9 References
[Albers98] S. Albers, N. Garg and S. Leonardi, Minimizing Stall

Time in SIngle and Parallel Disk Systems, Proceedings of the
30th Annual ACM Symposium on Theory of Computing, pp.
454-462, 1998

[Amer02] A. Amer, D. Long, and R. Burns. Group-Based Man-
agement of Distributed File Caches. In Proc. of the 17th Inter-
national Conference on Distributed Computing Systems, 2002

[Brown01] A.D. Brown, T.C. Mowry, Compiler-Based I/O Pre-
fetching for Out-of-Core Applications, ACM Trans. on Com-
puter Systems, Vol. 19, No. 2, May 2001

[Cao96] P. Cao and E. Felten, Implementation and Performance
of Integrated Application-Controlled File Caching, Prefetching,
and Disk Scheduling, ACM Transactions on Computer Sys-
tems, vol. 14, No. 4, 1996

[Chang01] F. Chang, Using Speculative Execution to Automati-
cally Hide I/O Latency, Ph. D. Dissertation, Carnegie Mellon
University, 2001

[CChang00] C. Chang, T. Kurc, A. Sussman, J. Saltz, Optimizing
Retrieval and Processing of Multi-dimensional Scientific Data-
sets, In Proc. of the Third Merged IPPS/SPDP Symposiums.
IEEE Computer Society Press, May 2000

[CChangADR] C. Chang, T. Kurc, A. Sussman, J. Saltz, Active
Data Repository Software User Manual,
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/ADR-dist/
ADR.htm

[Cigno97] P. Cignoni, C. Montani, E. Puppo, Roberto Scopigno,
Multiresolution Representation and Visualization of Volume
Data, IEEE Transactions on Visualization and Computer
Graphics, Volume 3, No. 4, IEEE, Los Alamitos, CA, 1997

[Coughlin] T. Coughlin, High Density Hard Disk Drive Trends in
the USA, tech report at http://www.tomcoughlin.com
/techpapers.htm

[Doshi03] P.R. Doshi, G.E. Rosario, E.A. Rundensteiner, and
M.O. Ward, A Strategy Selection Framework for Adaptive
Prefetching in Data Visualization, Proc. of SSDBM, 2003

[Forney02] B. C. Forney, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, Storage-Aware Caching: Revisiting Caching for
Heterogeneous Storage Systems, In The First USENIX Confer-
ence on File and Storage Technologies (FAST '02), 2002.

[Griffioen94] J. Griffioen and R. Appleton, Reducing File Sys-
tem Latency Using A Predictive Approach, University of Ken-
tucky Technical Report #CS247-94

[Hibbard95] W. L. Hibbard, D. T. Kao, and A. Wierse, Database
Issues for Data Visualization: Scientific Data Modeling, Data-
base Issues for Data Visualization, Proceedings of the IEEE
Visualization ‘95 Workshop, LNCS 1183, Springer, Berlin, 1995

[Highley03] T. Highley and P. Reynolds, Marginal Cost-Benefit
Analysis for Predictive File Prefetching, Proc. of the 41st
Anuual ACM Southeast Conference (ACMSE 2003)

[Kotz97] D. Kotz, Disk-Directed I/O for MIMD Multiproces-
sors, ACM Trans. on Computer Systems, Vol. 15, No. 1, 1997

[Madhyastha96] T. M. Madhyastha, C. L. Elford, and D. A,
Reed, Optimizing Input/Output Using Adaptive File System
Policies, In Fifth NASA Goddard Conference on Mass Storage
Systems and Technologies, September 1996

[Madhyastha97] T. M. Madhyastha, and D. A. Reed, Input/
Output Access Pattern Classification Using Hidden Markov
Models, In Workshop on Input/Output in Parallel and Distr.
Systems, Nov. 1997

[More00] S. More, A. Choudhary, Tertiary Storage Organization
for Large Multidimensional Datasets, 8th NASA Goddard
Conference on Mass Storage Systems and Technologies, 2000

[Mowry94] T. C. Mowry, Tolerating Latency Through Software-
Controlled Data Prefetching, Ph.D. Dissertation, Stanford Uni-
versity, 1994

[Nadeau] D. R. Nadeau, An Architecture for Large Multi-
Dimensional Data Management, Scalable Visualization Tools
White Paper, http://vistools.npaci.edu/

[Patterson95] R.H. Patterson, G. A. Gibson, E. Ginting, D.
Stodolsky, and J. Zelenka, Informed Prefetching and Caching.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995, PP. 79-95.

[Rhodes01] P.J. Rhodes, R.D. Bergeron, and T.M. Sparr, A Data
Model for Distributed Multisource Scientific Data, Hierarchi-
cal and Geometrical Methods in Scientific Visualization,
Springer-Verlag, Heidelberg, 2001

[Rhodes05] P.J. Rhodes, X. Tang, R.D. Bergeron, and T.M.
Sparr, “Out of core visualization using Iterator Aware Multi-
dimensional Prefetching”, Conference on Visualization and
Data Analysis 2005

[Sarawagi94] S. Sarawagi, M. Stonebraker, Efficient Organiza-
tions of Large Multidimensional Arrays, Proc. of the Tenth
International Conference on Data Engineering, Feb. 1994

[Vellanki99] V. Vellanki and A. Chervenak, A Cost-Benefit
Scheme for High Performance Predictive Prefetching, Proc. of
Supercomputing ‘99, Nov. 1999

[Wu03] K. Wu, W. Koegler, J. Chen, A. Shoshani, Using Bitmap
Index for Interactive Exploration of Large Datasets, Proc. of
SSDBM, 2003

